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PREFACE

WHAT IS DATA MINING? WHAT IS PREDICTIVE
ANALYTICS?

Data mining is the process of discovering useful patterns and trends in large

data sets.

Predictive analytics is the process of extracting information from large data sets

in order to make predictions and estimates about future outcomes.

Data Mining and Predictive Analytics, by Daniel Larose and Chantal Larose,

will enable you to become an expert in these cutting-edge, profitable fields.

WHY IS THIS BOOK NEEDED?

According to the research firm MarketsandMarkets, the global big data market is

expected to grow by 26% per year from 2013 to 2018, from $14.87 billion in 2013

to $46.34 billion in 2018.1 Corporations and institutions worldwide are learning to

apply data mining and predictive analytics, in order to increase profits. Companies

that do not apply these methods will be left behind in the global competition of the

twenty-first-century economy.

Humans are inundated with data in most fields. Unfortunately, most of this

valuable data, which cost firms millions to collect and collate, are languishing in

warehouses and repositories. The problem is that there are not enough trained human
analysts available who are skilled at translating all of this data into knowledge, and

thence up the taxonomy tree into wisdom. This is why this book is needed.

The McKinsey Global Institute reports2:

There will be a shortage of talent necessary for organizations to take advantage of big

data. A significant constraint on realizing value from big data will be a shortage of talent,

particularly of people with deep expertise in statistics and machine learning, and the

1Big Data Market to Reach $46.34 Billion by 2018, by Darryl K. Taft, eWeek, www.eweek.com/database/

big-data-market-to-reach-46.34-billion-by-2018.html, posted September 1, 2013, last accessed March 23,

2014.
2Big data: The next frontier for innovation, competition, and productivity, by James Manyika et al., Mck-

insey Global Institute, www.mckinsey.com, May, 2011. Last accessed March 16, 2014.
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managers and analysts who know how to operate companies by using insights from big

data . . . . We project that demand for deep analytical positions in a big data world could

exceed the supply being produced on current trends by 140,000 to 190,000 positions.

… In addition, we project a need for 1.5 million additional managers and analysts in the

United States who can ask the right questions and consume the results of the analysis

of big data effectively.

This book is an attempt to help alleviate this critical shortage of data analysts.

Data mining is becoming more widespread every day, because it empowers

companies to uncover profitable patterns and trends from their existing databases.

Companies and institutions have spent millions of dollars to collect gigabytes and

terabytes of data, but are not taking advantage of the valuable and actionable infor-

mation hidden deep within their data repositories. However, as the practice of data

mining becomes more widespread, companies that do not apply these techniques are

in danger of falling behind, and losing market share, because their competitors are

applying data mining, and thereby gaining the competitive edge.

WHO WILL BENEFIT FROM THIS BOOK?

In Data Mining and Predictive Analytics, the step-by-step hands-on solutions of

real-world business problems using widely available data mining techniques applied

to real-world data sets will appeal to managers, CIOs, CEOs, CFOs, data analysts,

database analysts, and others who need to keep abreast of the latest methods for

enhancing return on investment.

Using Data Mining and Predictive Analytics, you will learn what types of anal-

ysis will uncover the most profitable nuggets of knowledge from the data, while

avoiding the potential pitfalls that may cost your company millions of dollars. You
will learn data mining and predictive analytics by doing data mining and predictive
analytics.

DANGER! DATA MINING IS EASY TO DO BADLY

The growth of new off-the-shelf software platforms for performing data mining has

kindled a new kind of danger. The ease with which these applications can manipulate

data, combined with the power of the formidable data mining algorithms embedded

in the black-box software, make their misuse proportionally more hazardous.

In short, data mining is easy to do badly. A little knowledge is especially dan-

gerous when it comes to applying powerful models based on huge data sets. For

example, analyses carried out on unpreprocessed data can lead to erroneous conclu-

sions, or inappropriate analysis may be applied to data sets that call for a completely

different approach, or models may be derived that are built on wholly unwarranted

specious assumptions. If deployed, these errors in analysis can lead to very expensive

failures. Data Mining and Predictive Analytics will help make you a savvy analyst,

who will avoid these costly pitfalls.
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“WHITE-BOX” APPROACH

Understanding the Underlying Algorithmic and Model
Structures

The best way to avoid costly errors stemming from a blind black-box approach to

data mining and predictive analytics is to instead apply a “white-box” methodology,

which emphasizes an understanding of the algorithmic and statistical model struc-

tures underlying the software.

Data Mining and Predictive Analytics applies this white-box approach by

• clearly explaining why a particular method or algorithm is needed;

• getting the reader acquainted with how a method or algorithm works, using

a toy example (tiny data set), so that the reader may follow the logic step by

step, and thus gain a white-box insight into the inner workings of the method

or algorithm;

• providing an application of the method to a large, real-world data set;

• using exercises to test the reader’s level of understanding of the concepts and

algorithms;

• providing an opportunity for the reader to experience doing some real data min-

ing on large data sets.

ALGORITHM WALK-THROUGHS

Data Mining Methods and Models walks the reader through the operations and

nuances of the various algorithms, using small data sets, so that the reader gets

a true appreciation of what is really going on inside the algorithm. For example,

in Chapter 21, we follow step by step as the balanced iterative reducing and

clustering using hierarchies (BIRCH) algorithm works through a tiny data set,

showing precisely how BIRCH chooses the optimal clustering solution for this

data, from start to finish. As far as we know, such a demonstration is unique to

this book for the BIRCH algorithm. Also, in Chapter 27, we proceed step by step

to find the optimal solution using the selection, crossover, and mutation operators,

using a tiny data set, so that the reader may better understand the underlying

processes.

Applications of the Algorithms and Models to Large Data Sets

Data Mining and Predictive Analytics provides examples of the application of data

analytic methods on actual large data sets. For example, in Chapter 9, we analytically

unlock the relationship between nutrition rating and cereal content using a real-world

data set. In Chapter 4, we apply principal components analysis to real-world cen-

sus data about California. All data sets are available from the book series web site:

www.dataminingconsultant.com.

http://www.dataminingconsultant.com
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Chapter Exercises: Checking to Make Sure You Understand It

Data Mining and Predictive Analytics includes over 750 chapter exercises, which

allow readers to assess their depth of understanding of the material, as well as have

a little fun playing with numbers and data. These include Clarifying the Concept
exercises, which help to clarify some of the more challenging concepts in data min-

ing, and Working with the Data exercises, which challenge the reader to apply the

particular data mining algorithm to a small data set, and, step by step, to arrive at a

computationally sound solution. For example, in Chapter 14, readers are asked to find

the maximum a posteriori classification for the data set and network provided in the

chapter.

Hands-On Analysis: Learn Data Mining by Doing Data Mining

Most chapters provide the reader with Hands-On Analysis problems, representing an

opportunity for the reader to apply his or her newly acquired data mining expertise

to solving real problems using large data sets. Many people learn by doing. Data
Mining and Predictive Analytics provides a framework where the reader can learn

data mining by doing data mining. For example, in Chapter 13, readers are challenged

to approach a real-world credit approval classification data set, and construct their

best possible logistic regression model, using the methods learned in this chapter as

possible, providing strong interpretive support for the model, including explanations

of derived variables and indicator variables.

EXCITING NEW TOPICS

Data Mining and Predictive Analytics contains many exciting new topics, including

the following:

• Cost-benefit analysis using data-driven misclassification costs.

• Cost-benefit analysis for trinary and k-nary classification models.

• Graphical evaluation of classification models.

• BIRCH clustering.

• Segmentation models.

• Ensemble methods: Bagging and boosting.

• Model voting and propensity averaging.

• Imputation of missing data.

THE R ZONE

R is a powerful, open-source language for exploring and analyzing data sets

(www.r-project.org). Analysts using R can take advantage of many freely available

packages, routines, and graphical user interfaces to tackle most data analysis

http://www.r-project.org
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problems. In most chapters of this book, the reader will find The R Zone, which

provides the actual R code needed to obtain the results shown in the chapter, along

with screenshots of some of the output.

APPENDIX: DATA SUMMARIZATION
AND VISUALIZATION

Some readers may be a bit rusty on some statistical and graphical concepts, usually

encountered in an introductory statistics course. Data Mining and Predictive Analyt-
ics contains an appendix that provides a review of the most common concepts and

terminology helpful for readers to hit the ground running in their understanding of

the material in this book.

THE CASE STUDY: BRINGING IT ALL TOGETHER

Data Mining and Predictive Analytics culminates in a detailed Case Study. Here the

reader has the opportunity to see how everything he or she has learned is brought all

together to create actionable and profitable solutions. This detailed Case Study ranges

over four chapters, and is as follows:

• Chapter 29: Case Study, Part 1: Business Understanding, Data Preparation,
and EDA

• Chapter 30: Case Study, Part 2: Clustering and Principal Components Analysis

• Chapter 31: Case Study, Part 3: Modeling and Evaluation for Performance and
Interpretability

• Chapter 32: Case Study, Part 4: Modeling and Evaluation for High Perfor-
mance Only

The Case Study includes dozens of pages of graphical, exploratory data

analysis (EDA), predictive modeling, customer profiling, and offers different

solutions, depending on the requisites of the client. The models are evaluated using a

custom-built data-driven cost-benefit table, reflecting the true costs of classification

errors, rather than the usual methods such as overall error rate. Thus, the analyst can

compare models using the estimated profit per customer contacted, and can predict

how much money the models will earn, based on the number of customers contacted.

HOW THE BOOK IS STRUCTURED

Data Mining and Predictive Analytics is structured in a way that the reader will hope-

fully find logical and straightforward. There are 32 chapters, divided into eight major

parts.

• Part 1, Data Preparation, consists of chapters on data preparation, EDA, and

dimension reduction.
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• Part 2, Statistical Analysis, provides classical statistical approaches to data anal-

ysis, including chapters on univariate and multivariate statistical analysis, sim-

ple and multiple linear regression, preparing to model the data, and model

building.

• Part 3, Classification, contains nine chapters, making it the largest section of

the book. Chapters include k-nearest neighbor, decision trees, neural networks,

logistic regression, naïve Bayes, Bayesian networks, model evaluation tech-

niques, cost-benefit analysis using data-driven misclassification costs, trinary

and k-nary classification models, and graphical evaluation of classification

models.

• Part 4, Clustering, contains chapters on hierarchical clustering, k-means clus-

tering, Kohonen networks clustering, BIRCH clustering, and measuring cluster

goodness.

• Part 5, Association Rules, consists of a single chapter covering a priori associ-

ation rules and generalized rule induction.

• Part 6, Enhancing Model Performance, provides chapters on segmenta-

tion models, ensemble methods: bagging and boosting, model voting, and

propensity averaging.

• Part 7, Further Methods in Predictive Modeling, contains a chapter on imputa-

tion of missing data, along with a chapter on genetic algorithms.

• Part 8, Case Study: Predicting Response to Direct-Mail Marketing, consists of

four chapters presenting a start-to-finish detailed Case Study of how to generate

the greatest profit from a direct-mail marketing campaign.

THE SOFTWARE

The software used in this book includes the following:

• IBM SPSS Modeler data mining software suite

• R open source statistical software

• SAS Enterprise Miner

• SPSS statistical software

• Minitab statistical software

• WEKA open source data mining software.

IBM SPSS Modeler (www-01.ibm.com/software/analytics/spss/products/

modeler/) is one of the most widely used data mining software suites, and is

distributed by SPSS, whose base software is also used in this book. SAS Enterprise
Miner is probably more powerful than Modeler, but the learning curve is also steeper.

SPSS is available for download on a trial basis as well (Google “spss” download).

Minitab is an easy-to-use statistical software package that is available for download

on a trial basis from their web site at www.minitab.com.

http://www.minitab.com
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WEKA: THE OPEN-SOURCE ALTERNATIVE

The Weka (Waikato Environment for Knowledge Analysis) machine learning

workbench is open-source software issued under the GNU General Public License,

which includes a collection of tools for completing many data mining tasks.

Data Mining and Predictive Modeling presents several hands-on, step-by-step

tutorial examples using Weka 3.6, along with input files available from the book’s

companion web site www.dataminingconsultant.com. The reader is shown how

to carry out the following types of analysis, using WEKA: Logistic Regression

(Chapter 13), Naïve Bayes classification (Chapter 14), Bayesian Networks classifi-

cation (Chapter 14), and Genetic Algorithms (Chapter 27). For more information

regarding Weka, see www.cs.waikato.ac.nz/ml/weka/. The author is deeply grateful

to James Steck for providing these WEKA examples and exercises. James Steck

(james_steck@comcast.net) was one of the first students to complete the master of

science in data mining from Central Connecticut State University in 2005 (GPA 4.0),

and received the first data mining Graduate Academic Award. James lives with his

wife and son in Issaquah, WA.

THE COMPANION WEB SITE:
WWW.DATAMININGCONSULTANT.COM

The reader will find supporting materials, both for this book and for the other data

mining books written by Daniel Larose and Chantal Larose for Wiley InterScience, at

the companion web site, www.dataminingconsultant.com. There one may download

the many data sets used in the book, so that the reader may develop a hands-on feel

for the analytic methods and models encountered throughout the book. Errata are also

available, as is a comprehensive set of data mining resources, including links to data

sets, data mining groups, and research papers.

However, the real power of the companion web site is available to

faculty adopters of the textbook, who will have access to the following

resources:

• Solutions to all the exercises, including the hands-on analyses.

• PowerPoint® presentations of each chapter, ready for deployment in the class-

room.

• Sample data mining course projects, written by the author for use in his own

courses, and ready to be adapted for your course.

• Real-world data sets, to be used with the course projects.

• Multiple-choice chapter quizzes.

• Chapter-by-chapter web resources.

Adopters may e-mail Daniel Larose at larosed@ccsu.edu to request access

information for the adopters’ resources.

http://www.dataminingconsultant.com
http://www.cs.waikato.ac.nz/ml/weka
mailto:steck@comcast.net
http://www.dataminingconsultant.com
mailto:larosed@ccsu.edu
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DATA MINING AND PREDICTIVE ANALYTICS
AS A TEXTBOOK

Data Mining and Predictive Analytics naturally fits the role of textbook for a

one-semester course or two-semester sequences of courses in introductory and

intermediate data mining. Instructors may appreciate

• the presentation of data mining as a process;

• the “white-box” approach, emphasizing an understanding of the underlying

algorithmic structures;

— Algorithm walk-throughs with toy data sets

— Application of the algorithms to large real-world data sets

— Over 300 figures and over 275 tables

— Over 750 chapter exercises and hands-on analysis

• the many exciting new topics, such as cost-benefit analysis using data-driven

misclassification costs;

• the detailed Case Study, bringing together many of the lessons learned from the

earlier 28 chapters;

• the Appendix: Data Summarization and Visualization, containing a review of

statistical and graphical concepts readers may be a bit rusty on;

• the companion web site, providing the array of resources for adopters detailed

above.

Data Mining and Predictive Analytics is appropriate for advanced

undergraduate- or graduate-level courses. An introductory statistics course

would be nice, but is not required. No computer programming or database expertise

is required.
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PART I

DATA PREPARATION





C H A P T E R 1
AN INTRODUCTION TO DATA
MINING AND PREDICTIVE
ANALYTICS

1.1 WHAT IS DATA MINING? WHAT IS PREDICTIVE
ANALYTICS?

Recently, the computer manufacturer Dell was interested in improving the productiv-

ity of its sales workforce. It therefore turned to data mining and predictive analytics to

analyze its database of potential customers, in order to identify the most likely respon-

dents. Researching the social network activity of potential leads, using LinkedIn and

other sites, provided a richer amount of information about the potential customers,

thereby allowing Dell to develop more personalized sales pitches to their clients. This

is an example of mining customer data to help identify the type of marketing approach

for a particular customer, based on customer’s individual profile. What is the bottom

line? The number of prospects that needed to be contacted was cut by 50%, leaving

only the most promising prospects, leading to a near doubling of the productivity and

efficiency of the sales workforce, with a similar increase in revenue for Dell.1

The Commonwealth of Massachusetts is wielding predictive analytics as a tool

to cut down on the number of cases of Medicaid fraud in the state. When a Medicaid

claim is made, the state now immediately passes it in real time to a predictive analytics

model, in order to detect any anomalies. During its first 6 months of operation, the new

system has “been able to recover $2 million in improper payments, and has avoided

paying hundreds of thousands of dollars in fraudulent claims,” according to Joan

Senatore, Director of the Massachusetts Medicaid Fraud Unit.2

1How Dell Predicts Which Customers Are Most Likely to Buy, by Rachael King, CIO Journal, Wall Street

Journal, December 5, 2012.
2How MassHealth cut Medicaid fraud with predictive analytics, by Rutrell Yasin, GCN, February 24,

2014.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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The McKinsey Global Institute (MGI) reports3 that most American companies

with more than 1000 employees had an average of at least 200 TB of stored data. MGI

projects that the amount of data generated worldwide will increase by 40% annually,

creating profitable opportunities for companies to leverage their data to reduce costs

and increase their bottom line. For example, retailers harnessing this “big data” to best

advantage could expect to realize an increase in their operating margin of more than

60%, according to the MGI report. And health-care providers and health maintenance

organizations (HMOs) that properly leverage their data storehouses could achieve

$300 in cost savings annually, through improved efficiency and quality.

Forbes magazine reports4 that the use of data mining and predictive analytics

has helped to identify patients who have been of the greatest risk of developing con-

gestive heart failure. IBM collected 3 years of data pertaining to 350,000 patients,

and including measurements on over 200 factors, including things such as blood

pressure, weight, and drugs prescribed. Using predictive analytics, IBM was able

to identify the 8500 patients most at risk of dying of congestive heart failure within

1 year.

The MIT Technology Review reports5 that it was the Obama campaign’s

effective use of data mining that helped President Obama win the 2012 presidential

election over Mitt Romney. They first identified likely Obama voters using a data

mining model, and then made sure that these voters actually got to the polls. The

campaign also used a separate data mining model to predict the polling outcomes

county by county. In the important swing county of Hamilton County, Ohio, the

model predicted that Obama would receive 56.4% of the vote; the Obama share of the

actual vote was 56.6%, so that the prediction was off by only 0.02%. Such precise

predictive power allowed the campaign staff to allocate scarce resources more

efficiently.

Data mining is the process of discovering useful patterns and trends in large

data sets.

Predictive analytics is the process of extracting information from large data sets

in order to make predictions and estimates about future outcomes.

So, what is data mining? What is predictive analytics?

While waiting in line at a large supermarket, have you ever just closed your

eyes and listened? You might hear the beep, beep, beep of the supermarket scanners,

reading the bar codes on the grocery items, ringing up on the register, and storing

the data on company servers. Each beep indicates a new row in the database, a new

3Big data: The next frontier for innovation, competition, and productivity, by James Manyika et al., Mck-

insey Global Institute, www.mckinsey.com, May, 2011. Last accessed March 16, 2014.
4IBM and Epic Apply Predictive Analytics to Electronic Health Records, by Zina Moukheiber, Forbes
magazine, February 19, 2014.
5How President Obama’s campaign used big data to rally individual voters, by Sasha Issenberg, MIT
Technology Review, December 19, 2012.

http://www.mckinsey.com
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“observation” in the information being collected about the shopping habits of your

family, and the other families who are checking out.

Clearly, a lot of data is being collected. However, what is being learned from

all this data? What knowledge are we gaining from all this information? Probably

not as much as you might think, because there is a serious shortage of skilled data

analysts.

1.2 WANTED: DATA MINERS

As early as 1984, in his book Megatrends,6 John Naisbitt observed that “We are

drowning in information but starved for knowledge.” The problem today is not that

there is not enough data and information streaming in. We are in fact inundated with

data in most fields. Rather, the problem is that there are not enough trained human
analysts available who are skilled at translating all of this data into knowledge, and

thence up the taxonomy tree into wisdom.

The ongoing remarkable growth in the field of data mining and knowledge dis-

covery has been fueled by a fortunate confluence of a variety of factors:

• The explosive growth in data collection, as exemplified by the supermarket

scanners above.

• The storing of the data in data warehouses, so that the entire enterprise has

access to a reliable, current database.

• The availability of increased access to data from web navigation and intranets.

• The competitive pressure to increase market share in a globalized economy.

• The development of “off-the-shelf” commercial data mining software suites.

• The tremendous growth in computing power and storage capacity.

Unfortunately, according to the McKinsey report,7

There will be a shortage of talent necessary for organizations to take advantage of big

data. A significant constraint on realizing value from big data will be a shortage of talent,

particularly of people with deep expertise in statistics and machine learning, and the

managers and analysts who know how to operate companies by using insights from big

data . . . . We project that demand for deep analytical positions in a big data world could

exceed the supply being produced on current trends by 140,000 to 190,000 positions.

… In addition, we project a need for 1.5 million additional managers and analysts in the

United States who can ask the right questions and consume the results of the analysis

of big data effectively.

This book is an attempt to help alleviate this critical shortage of data analysts.

6Megatrends, John Naisbitt, Warner Books, 1984.
7Big data: The next frontier for innovation, competition, and productivity, by James Manyika et al.,
Mckinsey Global Institute, www.mckinsey.com, May, 2011. Last accessed March 16, 2014.

http://www.mckinsey.com
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1.3 THE NEED FOR HUMAN DIRECTION
OF DATA MINING

Automation is no substitute for human oversight. Humans need to be actively

involved at every phase of the data mining process. Rather than asking where

humans fit into data mining, we should instead inquire about how we may design

data mining into the very human process of problem solving.

Further, the very power of the formidable data mining algorithms embedded in

the black box software currently available makes their misuse proportionally more

dangerous. Just as with any new information technology, data mining is easy to do
badly. Researchers may apply inappropriate analysis to data sets that call for a com-

pletely different approach, for example, or models may be derived that are built on

wholly specious assumptions. Therefore, an understanding of the statistical and math-

ematical model structures underlying the software is required.

1.4 THE CROSS-INDUSTRY STANDARD PROCESS
FOR DATA MINING: CRISP-DM

There is a temptation in some companies, due to departmental inertia and compart-

mentalization, to approach data mining haphazardly, to reinvent the wheel and dupli-

cate effort. A cross-industry standard was clearly required, that is industry-neutral,

tool-neutral, and application-neutral. The Cross-Industry Standard Process for Data

Mining (CRISP-DM8) was developed by analysts representing Daimler-Chrysler,

SPSS, and NCR. CRISP provides a nonproprietary and freely available standard pro-

cess for fitting data mining into the general problem-solving strategy of a business or

research unit.

According to CRISP-DM, a given data mining project has a life cycle consisting

of six phases, as illustrated in Figure 1.1. Note that the phase-sequence is adaptive.

That is, the next phase in the sequence often depends on the outcomes associated with

the previous phase. The most significant dependencies between phases are indicated

by the arrows. For example, suppose we are in the modeling phase. Depending on the

behavior and characteristics of the model, we may have to return to the data prepa-

ration phase for further refinement before moving forward to the model evaluation

phase.

The iterative nature of CRISP is symbolized by the outer circle in Figure 1.1.

Often, the solution to a particular business or research problem leads to further ques-

tions of interest, which may then be attacked using the same general process as before.

Lessons learned from past projects should always be brought to bear as input into

new projects. Here is an outline of each phase. (Issues encountered during the evalu-

ation phase can conceivably send the analyst back to any of the previous phases for

amelioration.)

8Peter Chapman, Julian Clinton, Randy Kerber, Thomas Khabaza, Thomas Reinart, Colin Shearer, Rudiger

Wirth, CRISP-DM Step-by-Step Data Mining Guide, 2000.
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Business/Research
Understanding Phase

Data Preparation
Phase

Deployment Phase

Evaluation Phase Modeling Phase

Data Understanding
Phase

Figure 1.1 CRISP-DM is an iterative, adaptive process.

1.4.1 CRISP-DM: The Six Phases

1. Business/Research Understanding Phase

a. First, clearly enunciate the project objectives and requirements in terms of

the business or research unit as a whole.

b. Then, translate these goals and restrictions into the formulation of a data

mining problem definition.

c. Finally, prepare a preliminary strategy for achieving these objectives.

2. Data Understanding Phase

a. First, collect the data.

b. Then, use exploratory data analysis to familiarize yourself with the data, and

discover initial insights.

c. Evaluate the quality of the data.

d. Finally, if desired, select interesting subsets that may contain actionable

patterns.
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3. Data Preparation Phase

a. This labor-intensive phase covers all aspects of preparing the final data

set, which shall be used for subsequent phases, from the initial, raw, dirty

data.

b. Select the cases and variables you want to analyze, and that are appropriate

for your analysis.

c. Perform transformations on certain variables, if needed.

d. Clean the raw data so that it is ready for the modeling tools.

4. Modeling Phase

a. Select and apply appropriate modeling techniques.

b. Calibrate model settings to optimize results.

c. Often, several different techniques may be applied for the same data mining

problem.

d. May require looping back to data preparation phase, in order to bring the

form of the data into line with the specific requirements of a particular data

mining technique.

5. Evaluation Phase

a. The modeling phase has delivered one or more models. These models must

be evaluated for quality and effectiveness, before we deploy them for use in

the field.

b. Also, determine whether the model in fact achieves the objectives set for it

in phase 1.

c. Establish whether some important facet of the business or research problem

has not been sufficiently accounted for.

d. Finally, come to a decision regarding the use of the data mining results.

6. Deployment Phase

a. Model creation does not signify the completion of the project. Need to make

use of created models.

b. Example of a simple deployment: Generate a report.

c. Example of a more complex deployment: Implement a parallel data mining

process in another department.

d. For businesses, the customer often carries out the deployment based on your

model.

This book broadly follows CRISP-DM, with some modifications. For example,

we prefer to clean the data (Chapter 2) before performing exploratory data analysis

(Chapter 3).
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1.5 FALLACIES OF DATA MINING

Speaking before the US House of Representatives Subcommittee on Technology,

Information Policy, Intergovernmental Relations, and Census, Jen Que Louie, Presi-

dent of Nautilus Systems, Inc., described four fallacies of data mining.9 Two of these

fallacies parallel the warnings we have described above.

• Fallacy 1. There are data mining tools that we can turn loose on our data repos-

itories, and find answers to our problems.

∘ Reality. There are no automatic data mining tools, which will mechanically

solve your problems “while you wait.” Rather data mining is a process.

CRISP-DM is one method for fitting the data mining process into the overall

business or research plan of action.

• Fallacy 2. The data mining process is autonomous, requiring little or no human

oversight.

∘ Reality. Data mining is not magic. Without skilled human supervision, blind

use of data mining software will only provide you with the wrong answer

to the wrong question applied to the wrong type of data. Further, the wrong

analysis is worse than no analysis, because it leads to policy recommenda-

tions that will probably turn out to be expensive failures. Even after the model

is deployed, the introduction of new data often requires an updating of the

model. Continuous quality monitoring and other evaluative measures must

be assessed, by human analysts.

• Fallacy 3. Data mining pays for itself quite quickly.

∘ Reality. The return rates vary, depending on the start-up costs, analysis per-

sonnel costs, data warehousing preparation costs, and so on.

• Fallacy 4. Data mining software packages are intuitive and easy to use.

∘ Reality. Again, ease of use varies. However, regardless of what some soft-

ware vendor advertisements may claim, you cannot just purchase some data

mining software, install it, sit back, and watch it solve all your problems.

For example, the algorithms require specific data formats, which may require

substantial preprocessing. Data analysts must combine subject matter knowl-

edge with an analytical mind, and a familiarity with the overall business or

research model.

To the above list, we add three further common fallacies:

• Fallacy 5. Data mining will identify the causes of our business or research

problems.

∘ Reality. The knowledge discovery process will help you to uncover patterns

of behavior. Again, it is up to the humans to identify the causes.

9Jen Que Louie, President of Nautilus Systems, Inc. (www.nautilus-systems.com), Testimony before the

US House of Representatives Subcommittee on Technology, Information Policy, Intergovernmental Rela-

tions, and Census, Federal Document Clearing House, Congressional Testimony, March 25, 2003.

http://www.nautilus-systems.com
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• Fallacy 6. Data mining will automatically clean up our messy database.

∘ Reality. Well, not automatically. As a preliminary phase in the data mining

process, data preparation often deals with data that has not been examined or

used in years. Therefore, organizations beginning a new data mining oper-

ation will often be confronted with the problem of data that has been lying

around for years, is stale, and needs considerable updating.

• Fallacy 7. Data mining always provides positive results.

∘ Reality. There is no guarantee of positive results when mining data for action-

able knowledge. Data mining is not a panacea for solving business problems.

But, used properly, by people who understand the models involved, the data

requirements, and the overall project objectives, data mining can indeed pro-

vide actionable and highly profitable results.

The above discussion may have been termed what data mining cannot or should
not do. Next we turn to a discussion of what data mining can do.

1.6 WHAT TASKS CAN DATA MINING ACCOMPLISH

The following listing shows the most common data mining tasks.

Data Mining Tasks

Description

Estimation

Prediction

Classification

Clustering

Association.

1.6.1 Description

Sometimes researchers and analysts are simply trying to find ways to describe pat-

terns and trends lying within the data. For example, a pollster may uncover evidence

that those who have been laid off are less likely to support the present incumbent in

the presidential election. Descriptions of patterns and trends often suggest possible

explanations for such patterns and trends. For example, those who are laid off are

now less well-off financially than before the incumbent was elected, and so would

tend to prefer an alternative.

Data mining models should be as transparent as possible. That is, the results

of the data mining model should describe clear patterns that are amenable to intu-

itive interpretation and explanation. Some data mining methods are more suited to

transparent interpretation than others. For example, decision trees provide an intu-

itive and human-friendly explanation of their results. However, neural networks are
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comparatively opaque to nonspecialists, due to the nonlinearity and complexity of the

model.

High-quality description can often be accomplished with exploratory data
analysis, a graphical method of exploring the data in search of patterns and trends.

We look at exploratory data analysis in Chapter 3.

1.6.2 Estimation

In estimation, we approximate the value of a numeric target variable using a set of

numeric and/or categorical predictor variables. Models are built using “complete”

records, which provide the value of the target variable, as well as the predictors. Then,

for new observations, estimates of the value of the target variable are made, based on

the values of the predictors.

For example, we might be interested in estimating the systolic blood pressure

reading of a hospital patient, based on the patient’s age, gender, body mass index,

and blood sodium levels. The relationship between systolic blood pressure and the

predictor variables in the training set would provide us with an estimation model. We

can then apply that model to new cases.

Examples of estimation tasks in business and research include

• estimating the amount of money a randomly chosen family of four will spend

for back-to-school shopping this fall;

• estimating the percentage decrease in rotary movement sustained by a National

Football League (NFL) running back with a knee injury;

• estimating the number of points per game LeBron James will score when

double-teamed in the play-offs;

• estimating the grade point average (GPA) of a graduate student, based on that

student’s undergraduate GPA.

Consider Figure 1.2, where we have a scatter plot of the graduate GPAs against

the undergraduate GPAs for 1000 students. Simple linear regression allows us to find

the line that best approximates the relationship between these two variables, accord-

ing to the least-squares criterion. The regression line, indicated in blue in Figure 1.2,

may then be used to estimate the graduate GPA of a student, given that student’s

undergraduate GPA.

Here, the equation of the regression line (as produced by the statistical package

Minitab, which also produced the graph) is ŷ = 1.24 + 0.67x. This tells us that the

estimated graduate GPA ŷ equals 1.24 plus 0.67 times the student’s undergrad GPA.

For example, if your undergrad GPA is 3.0, then your estimated graduate GPA is

ŷ = 1.24 + 0.67(3) = 3.25. Note that this point (x = 3.0, ŷ = 3.25) lies precisely on

the regression line, as do all of the linear regression predictions.

The field of statistical analysis supplies several venerable and widely used

estimation methods. These include point estimation and confidence interval estima-

tions, simple linear regression and correlation, and multiple regression. We examine

these methods and more in Chapters 5, 6, 8, and 9. Chapter 12 may also be used for

estimation.
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Figure 1.2 Regression estimates lie on the regression line.

1.6.3 Prediction

Prediction is similar to classification and estimation, except that for prediction,

the results lie in the future. Examples of prediction tasks in business and research

include

• predicting the price of a stock 3 months into the future;

• predicting the percentage increase in traffic deaths next year if the speed limit

is increased;

• predicting the winner of this fall’s World Series, based on a comparison of the

team statistics;

• predicting whether a particular molecule in drug discovery will lead to a prof-

itable new drug for a pharmaceutical company.

Any of the methods and techniques used for classification and estimation may

also be used, under appropriate circumstances, for prediction. These include the tradi-

tional statistical methods of point estimation and confidence interval estimations, sim-

ple linear regression and correlation, and multiple regression, investigated in Chapters

5, 6, 8, and 9, as well as data mining and knowledge discovery methods such as

k-nearest neighbor methods (Chapter 10), decision trees (Chapter 11), and neural

networks (Chapter 12).

1.6.4 Classification

Classification is similar to estimation, except that the target variable is categorical

rather than numeric. In classification, there is a target categorical variable, such

as income bracket, which, for example, could be partitioned into three classes or



1.6 WHAT TASKS CAN DATA MINING ACCOMPLISH 13

categories: high income, middle income, and low income. The data mining model

examines a large set of records, each record containing information on the target

variable as well as a set of input or predictor variables. For example, consider the

excerpt from a data set in Table 1.1.

TABLE 1.1 Excerpt from dataset for classifying income

Subject Age Gender Occupation Income Bracket

001 47 F Software Engineer High

002 28 M Marketing Consultant Middle

003 35 M Unemployed Low

… … … … …

Suppose the researcher would like to be able to classify the income bracket of

new individuals, not currently in the above database, based on the other characteristics

associated with that individual, such as age, gender, and occupation. This task is a

classification task, very nicely suited to data mining methods and techniques.

The algorithm would proceed roughly as follows. First, examine the data set

containing both the predictor variables and the (already classified) target variable,

income bracket. In this way, the algorithm (software) “learns about” which combi-

nations of variables are associated with which income brackets. For example, older

females may be associated with the high-income bracket. This data set is called the

training set.
Then the algorithm would look at new records, for which no information about

income bracket is available. On the basis of the classifications in the training set, the

algorithm would assign classifications to the new records. For example, a 63-year-old

female professor might be classified in the high-income bracket.

Examples of classification tasks in business and research include

• determining whether a particular credit card transaction is fraudulent;

• placing a new student into a particular track with regard to special needs;

• assessing whether a mortgage application is a good or bad credit risk;

• diagnosing whether a particular disease is present;

• determining whether a will was written by the actual deceased, or fraudulently

by someone else;

• identifying whether or not certain financial or personal behavior indicates a

possible terrorist threat.

For example, in the medical field, suppose we are interested in classifying the

type of drug a patient should be prescribed, based on certain patient characteristics,

such as the age of the patient, and the patient’s sodium/potassium ratio. For a sample

of 200 patients, Figure 1.3 presents a scatter plot of the patients’ sodium/potassium

ratio against the patients’ age. The particular drug prescribed is symbolized by the

shade of the points. Light gray points indicate drug Y; medium gray points indicate

drugs A or X; dark gray points indicate drugs B or C. In this scatter plot, Na/K
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Figure 1.3 Which drug should be prescribed for which type of patient?

(sodium/potassium ratio) is plotted on the Y (vertical) axis and age is plotted on the

X (horizontal) axis.

Suppose that we will base our prescription recommendation based on this data

set.

1. Which drug should be prescribed for a young patient with high sodium/ potas-

sium ratio?

Young patients are on the left in the graph, and high sodium/potassium ratios

are in the upper half, which indicates that previous young patients with high

sodium/potassium ratios were prescribed drug Y (light gray points). The rec-

ommended prediction classification for such patients is drug Y.

2. Which drug should be prescribed for older patients with low sodium/potassium

ratios?

Patients in the lower right of the graph have been taking different prescrip-

tions, indicated by either dark gray (drugs B or C) or medium gray (drugs A

or X). Without more specific information, a definitive classification cannot be

made here. For example, perhaps these drugs have varying interactions with

beta-blockers, estrogens, or other medications, or are contraindicated for con-

ditions such as asthma or heart disease.

Graphs and plots are helpful for understanding two- and three-dimensional

relationships in data. But sometimes classifications need to be based on many dif-

ferent predictors, requiring a multidimensional plot. Therefore, we need to turn to

more sophisticated models to perform our classification tasks. Common data mining

methods used for classification are covered in Chapters 10–14.
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1.6.5 Clustering

Clustering refers to the grouping of records, observations, or cases into classes of

similar objects. A cluster is a collection of records that are similar to one another,

and dissimilar to records in other clusters. Clustering differs from classification in that

there is no target variable for clustering. The clustering task does not try to classify,

estimate, or predict the value of a target variable. Instead, clustering algorithms seek

to segment the whole data set into relatively homogeneous subgroups or clusters,

where the similarity of the records within the cluster is maximized, and the similarity

to records outside of this cluster is minimized.

Nielsen Claritas is in the clustering business. Among the services they provide

is a demographic profile of each of the geographic areas in the country, as defined

by zip code. One of the clustering mechanisms they use is the PRIZM segmentation

system, which describes every American zip code area in terms of distinct lifestyle

types. The 66 distinct clusters are shown in Table 1.2.

For illustration, the clusters for zip code 90210, Beverly Hills, California, are

as follows:

• Cluster # 01: Upper Crust Estates

• Cluster # 03: Movers and Shakers

TABLE 1.2 The 66 clusters used by the PRIZM segmentation system

01 Upper Crust 02 Blue Blood Estates 03 Movers and Shakers

04 Young Digerati 05 Country Squires 06 Winner’s Circle

07 Money and Brains 08 Executive Suites 09 Big Fish, Small Pond

10 Second City Elite 11 God’s Country 12 Brite Lites, Little City

13 Upward Bound 14 New Empty Nests 15 Pools and Patios

16 Bohemian Mix 17 Beltway Boomers 18 Kids and Cul-de-sacs

19 Home Sweet Home 20 Fast-Track Families 21 Gray Power

22 Young Influentials 23 Greenbelt Sports 24 Up-and-Comers

25 Country Casuals 26 The Cosmopolitans 27 Middleburg Managers

28 Traditional Times 29 American Dreams 30 Suburban Sprawl

31 Urban Achievers 32 New Homesteaders 33 Big Sky Families

34 White Picket Fences 35 Boomtown Singles 36 Blue-Chip Blues

37 Mayberry-ville 38 Simple Pleasures 39 Domestic Duos

40 Close-in Couples 41 Sunset City Blues 42 Red, White and Blues

43 Heartlanders 44 New Beginnings 45 Blue Highways

46 Old Glories 47 City Startups 48 Young and Rustic

49 American Classics 50 Kid Country, USA 51 Shotguns and Pickups

52 Suburban Pioneers 53 Mobility Blues 54 Multi-Culti Mosaic

55Golden Ponds 56 Crossroads Villagers 57 Old Milltowns

58 Back Country Folks 59 Urban Elders 60 Park Bench Seniors

61 City Roots 62 Hometown Retired 63 Family Thrifts

64 Bedrock America 65 Big City Blues 66 Low-Rise Living



16 CHAPTER 1 AN INTRODUCTION TO DATA MINING AND PREDICTIVE ANALYTICS

• Cluster # 04: Young Digerati

• Cluster # 07: Money and Brains

• Cluster # 16: Bohemian Mix.

The description for Cluster # 01: Upper Crust is “The nation’s most exclusive

address, Upper Crust is the wealthiest lifestyle in America, a haven for empty-nesting

couples between the ages of 45 and 64. No segment has a higher concentration of

residents earning over $100,000 a year and possessing a postgraduate degree. And

none has a more opulent standard of living.”

Examples of clustering tasks in business and research include the following:

• Target marketing of a niche product for a small-cap business which does not

have a large marketing budget.

• For accounting auditing purposes, to segmentize financial behavior into benign

and suspicious categories.

• As a dimension-reduction tool when the data set has hundreds of attributes.

• For gene expression clustering, where very large quantities of genes may

exhibit similar behavior.

Clustering is often performed as a preliminary step in a data mining process,

with the resulting clusters being used as further inputs into a different technique

downstream, such as neural networks. We discuss hierarchical and k-means cluster-

ing in Chapter 19, Kohonen networks in Chapter 20, and balanced iterative reducing

and clustering using hierarchies (BIRCH) clustering in Chapter 21.

1.6.6 Association

The association task for data mining is the job of finding which attributes “go

together.” Most prevalent in the business world, where it is known as affinity

analysis or market basket analysis, the task of association seeks to uncover rules for

quantifying the relationship between two or more attributes. Association rules are

of the form “If antecedent then consequent,” together with a measure of the support

and confidence associated with the rule. For example, a particular supermarket may

find that, of the 1000 customers shopping on a Thursday night, 200 bought diapers,

and of those 200 who bought diapers, 50 bought beer. Thus, the association rule

would be “If buy diapers, then buy beer,” with a support of 200/1000= 20% and a

confidence of 50/200= 25%.

Examples of association tasks in business and research include

• investigating the proportion of subscribers to your company’s cell phone plan

that respond positively to an offer of a service upgrade;

• examining the proportion of children whose parents read to them who are them-

selves good readers;

• predicting degradation in telecommunications networks;

• finding out which items in a supermarket are purchased together, and which

items are never purchased together;
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• determining the proportion of cases in which a new drug will exhibit dangerous

side effects.

We discuss two algorithms for generating association rules, the a priori algo-

rithm, and the generalized rule induction (GRI) algorithm, in Chapter 22.

THE R ZONE

Getting Started with R

# Comments, indents, and semicolons

# Anything prefaced by a pound sign (#) is a comment.

# Comments are not executed by R. Instead, they explain what the code is doing.

# Indented code (that is not a comment) will run in R as if it was on one line

# Code separated by semicolons will run as if the code was on separate lines,

# with the semicolon marking the line break

# Open a dataset and display the data

# Replace “C:/… /” with the exact location of the file you want to open

cars <- read.csv(file = "C:/… /cars.txt",

stringsAsFactors = FALSE)

cars # To display the whole dataset, type the dataset name

head(cars) # Display the first few records of a dataset

names(cars) # Display variable names of a data frame, one kind of data in R

cars$weight # Look at only the weight variable within data frame cars

# Matrices

# Create a matrix with three rows, two columns, and every value equal to 0.0

mat <- matrix(0.0, nrow = 3, ncol = 2); mat

colnames(mat) <- c("Var 1", "Var 2") # Give a matrix variable names

colnames(mat) # Display variable names of a matrix

# Subset data and declare new variables

cars.rsub <- cars[1:50,] # Subset the data by rows

cars.csub <- cars[,1:3] # Subset by columns

cars.rcsub <- cars[c(1,3,5), c(2,4)] # Subset by specific rows and columns

cars.vsub <- cars[which(cars$mpg > 30),] # Subset by a logical condition

# To declare new variables, type the

variable name, a left-arrow, then the value of the variable

firstletter <- “a”

weight <- cars$weight
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# Display more than one figure at a time

par(mfrow=c(1,1)) # plots one figure; the default setting

par(mfrow=c(2,3)) # plots six figures: three in the top row, three in the bottom row

# Plots will fill the plot space row by row

# Download and install an R Package

# Example: ggplot2, from Chapter 3.

install.packages("ggplot2")

# Pick any CRAN mirror, as shown

# Open the new package

library(ggplot2)

R REFERENCES

Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer; 2009.

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Aus-

tria: R Foundation for Statistical Computing; 2012. ISBN: 3-900051-07-0, http://www.

R-project.org/.

EXERCISES

1. For each of the following, identify the relevant data mining task(s):

a. The Boston Celtics would like to approximate how many points their next opponent will

score against them.

b. A military intelligence officer is interested in learning about the respective proportions

of Sunnis and Shias in a particular strategic region.

c. A NORAD defense computer must decide immediately whether a blip on the radar is a

flock of geese or an incoming nuclear missile.

d. A political strategist is seeking the best groups to canvass for donations in a particular

county.

e. A Homeland Security official would like to determine whether a certain sequence of

financial and residence moves implies a tendency to terrorist acts.

f. A Wall Street analyst has been asked to find out the expected change in stock price for

a set of companies with similar price/earnings ratios.

2. For each of the following meetings, explain which phase in the CRISP-DM process is rep-

resented:

a. Managers want to know by next week whether deployment will take place. Therefore,

analysts meet to discuss how useful and accurate their model is.

http://www
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b. The data mining project manager meets with the data warehousing manager to discuss

how the data will be collected.

c. The data mining consultant meets with the vice president for marketing, who says that

he would like to move forward with customer relationship management.

d. The data mining project manager meets with the production line supervisor, to discuss

implementation of changes and improvements.

e. The analysts meet to discuss whether the neural network or decision tree models should

be applied.

3. Discuss the need for human direction of data mining. Describe the possible consequences

of relying on completely automatic data analysis tools.

4. CRISP-DM is not the only standard process for data mining. Research an alternative

methodology (Hint: Sample, Explore, Modify, Model and Assess (SEMMA), from the

SAS Institute). Discuss the similarities and differences with CRISP-DM.



C H A P T E R 2
DATA PREPROCESSING

Chapter 1 introduced us to data mining, and the cross-industry standard process for

data mining (CRISP-DM) standard process for data mining model development. In

phase 1 of the data mining process, business understanding or research understand-
ing, businesses and researchers first enunciate project objectives, then translate these

objectives into the formulation of a data mining problem definition, and finally pre-

pare a preliminary strategy for achieving these objectives.

Here in this chapter, we examine the next two phases of the CRISP-DM stan-

dard process, data understanding and data preparation. We will show how to evaluate

the quality of the data, clean the raw data, deal with missing data, and perform trans-

formations on certain variables. All of Chapter 3 is devoted to this very important

aspect of the data understanding phase. The heart of any data mining project is the

modeling phase, which we begin examining in Chapter 7.

2.1 WHY DO WE NEED TO PREPROCESS THE DATA?

Much of the raw data contained in databases is unpreprocessed, incomplete, and

noisy. For example, the databases may contain

• fields that are obsolete or redundant;

• missing values;

• outliers;

• data in a form not suitable for the data mining models;

• values not consistent with policy or common sense.

In order to be useful for data mining purposes, the databases need to undergo

preprocessing, in the form of data cleaning and data transformation. Data mining

often deals with data that has not been looked at for years, so that much of the data

contains field values that have expired, are no longer relevant, or are simply missing.

The overriding objective is to minimize garbage in, garbage out (GIGO), to minimize

the Garbage that gets Into our model, so that we can minimize the amount of Garbage

that our models give Out.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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Depending on the data set, data preprocessing alone can account for 10–60%

of all the time and effort for the entire data mining process. In this chapter, we shall

examine several ways to preprocess the data for further analysis downstream.

2.2 DATA CLEANING

To illustrate the need for cleaning up the data, let us take a look at some of the kinds

of errors that could creep into even a tiny data set, such as that in Table 2.1.

Let us discuss, attribute by attribute, some of the problems that have found their

way into the data set in Table 2.1. The customer ID variable seems to be fine. What

about zip?

Let us assume that we are expecting all of the customers in the database to have

the usual five-numeral American zip code. Now, customer 1002 has this strange (to

American eyes) zip code of J2S7K7. If we were not careful, we might be tempted to

classify this unusual value as an error, and toss it out, until we stop to think that not all

countries use the same zip code format. Actually, this is the zip code (known as postal

code in Canada) of St. Hyancinthe, Quebec, Canada, and so probably represents real

data from a real customer. What has evidently occurred is that a French-Canadian

customer has made a purchase, and put their home zip code down in the required

field. In the era of free trade, we must be ready to expect unusual values in fields such

as zip codes that vary from country to country.

What about the zip code for customer 1004? We are unaware of any countries

that have four-digit zip codes, such as the 6269 indicated here, so this must be an error,

right? Probably not. Zip codes for the New England states begin with the numeral 0.

Unless the zip code field is defined to be character (text) and not numeric, the software

will most likely chop off the leading zero, which is apparently what happened here.

The zip code may well be 06269, which refers to Storrs, Connecticut, home of the

University of Connecticut.

The next field, gender, contains a missing value for customer 1003. We shall

detail the methods for dealing with missing values later in this chapter.

The income field has three potentially anomalous values. First, customer 1003

is shown as having an income of $10,000,000 per year. While entirely possible, espe-

cially when considering the customer’s zip code (90210, Beverly Hills), this value of

income is nevertheless an outlier, an extreme data value. Certain statistical and data

mining modeling techniques do not function smoothly in the presence of outliers;

therefore, we shall examine the methods of handling outliers later in this chapter.

TABLE 2.1 Can you find any problems in this tiny data set?

Customer ID Zip Gender Income Age Marital Status Transaction Amount

1001 10048 M 75,000 C M 5000

1002 J2S7K7 F −40,000 40 W 4000

1003 90210 10,000,000 45 S 7000

1004 6269 M 50,000 0 S 1000

1005 55101 F 99,999 30 D 3000
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Poverty is one thing, but it is rare to find an income that is negative, as our

poor customer 1002 has. Unlike customer 1003’s income, customer 1002’s reported

income of −$40,000 lies beyond the field bounds for income, and therefore must be

an error. It is unclear how this error crept in, with perhaps the most likely explanation

being that the negative sign is a stray data entry error. However, we cannot be sure,

and hence should approach this value cautiously, and attempt to communicate with

the database manager most familiar with the database history.

So what is wrong with customer 1005’s income of $99,999? Perhaps nothing;

it may in fact be valid. But, if all the other incomes are rounded to the nearest $5000,

why the precision with customer 1005’s income? Often, in legacy databases, certain

specified values are meant to be codes for anomalous entries, such as missing values.

Perhaps 99,999 was coded in an old database to mean missing. Again, we cannot be

sure, and should again refer to the database administrator.

Finally, are we clear regarding, which unit of measure the income variable is

measured in? Databases often get merged, sometimes without bothering to check

whether such merges are entirely appropriate for all fields. For example, it is quite

possible that customer 1002, with the Canadian zip code, has an income measured in

Canadian dollars, not U.S. dollars.

The age field has a couple of problems. Although all the other customers have

numeric values for age, customer 1001’s “age” of C probably reflects an earlier

categorization of this man’s age into a bin labeled C. The data mining software

will definitely not allow this categorical value in an otherwise numeric field, and

we will have to resolve this problem somehow. How about customer 1004’s age of

0? Perhaps, there is a newborn male living in Storrs, Connecticut, who has made a

transaction of $1000. More likely, the age of this person is probably missing, and

was coded as 0 to indicate this or some other anomalous condition (e.g., refused to

provide the age information).

Of course, keeping an age field in a database is a minefield in itself, as the

passage of time will quickly make the field values obsolete and misleading. It is better

to keep date-type fields (such as birthdate) in a database, as these are constant, and

may be transformed into ages when needed.

The marital status field seems fine, right? Maybe not. The problem lies in the

meaning behind these symbols. We all think we know what these symbols mean, but

are sometimes surprised. For example, if you are in search of cold water in a restroom

in Montreal, and turn on the faucet marked C, you may be in for a surprise, as the C
stands for chaude, which is French for hot. There is also the problem of ambiguity.

In Table 2.1, for example, does the S for customers 1003 and 1004 stand for single or

separated?

The transaction amount field seems satisfactory, as long as we are confident

that we know what unit of measure is being used, and that all records are transacted

in this unit.

2.3 HANDLING MISSING DATA

Missing data is a problem that continues to plague data analysis methods. Even as our

analysis methods gain sophistication, we nevertheless continue to encounter missing
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values in fields, especially in databases with a large number of fields. The absence of

information is rarely beneficial. All things being equal, more information is almost

always better. Therefore, we should think carefully about how we handle the thorny

issue of missing data.

To help us tackle this problem, we will introduce ourselves to a new data

set, the cars data set, originally compiled by Barry Becker and Ronny Kohavi

of Silicon Graphics, and available for download at the book series web site

www.dataminingconsultant.com. The data set consists of information about 261

automobiles manufactured in the 1970s and 1980s, including gas mileage, number

of cylinders, cubic inches, horsepower, and so on.

Suppose, however, that some of the field values were missing for certain

records. Figure 2.1 provides a peek at the first 10 records in the data set, with two of

the field values missing.

Figure 2.1 Some of our field values are missing.

A common method of “handling” missing values is simply to omit the records

or fields with missing values from the analysis. However, this may be dangerous,

as the pattern of missing values may in fact be systematic, and simply deleting the

records with missing values would lead to a biased subset of the data. Further, it seems

like a waste to omit the information in all the other fields, just because one field value

is missing. In fact, Schmueli, Patel, and Bruce1 state that if only 5% of data values

are missing from a data set of 30 variables, and the missing values are spread evenly

throughout the data, almost 80% of the records would have at least one missing value.

Therefore, data analysts have turned to methods that would replace the missing value

with a value substituted according to various criteria.

Some common criteria for choosing replacement values for missing data are as

follows:

1. Replace the missing value with some constant, specified by the analyst.

2. Replace the missing value with the field mean2 (for numeric variables) or the

mode (for categorical variables).

3. Replace the missing values with a value generated at random from the observed

distribution of the variable.

4. Replace the missing values with imputed values based on the other character-

istics of the record.

1Gallit Shmueli, Nitin Patel, and Peter Bruce, Data Mining for Business Intelligence, 2nd edition, John

Wiley and Sons, 2010.
2See the Appendix for the definition of mean and mode.

http://www.dataminingconsultant.com
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Let us examine each of the first three methods, none of which is entirely satis-

factory, as we shall see. Figure 2.2 shows the result of replacing the missing values

with the constant 0 for the numerical variable cubicinches and the label missing for

the categorical variable brand.

Figure 2.2 Replacing missing field values with user-defined constants.

Figure 2.3 illustrates how the missing values may be replaced with the respec-

tive field means and modes.

Figure 2.3 Replacing missing field values with means or modes.

The variable brand is categorical, with mode US, so the software replaces

the missing brand value with brand=US. Cubicinches, however, is continuous

(numeric), so that the software replaces the missing cubicinches values with

cubicinches= 200.65, which is the mean of all 258 non-missing values of that

variable.

Is it not nice to have the software take care of your missing data problems like

this? In a way, certainly. However, do not lose sight of the fact that the software is

creating information on the spot, actually fabricating data to fill in the holes in our

data set. Choosing the field mean as a substitute for whatever value would have been

there may sometimes work out well. However, the end-user needs to be informed that

this process has taken place.

Further, the mean may not always be the best choice for what constitutes a

“typical” value. For example, Larose3 examines a data set where the mean is greater

than the 81st percentile. Also, if many missing values are replaced with the mean, the

resulting confidence levels for statistical inference will be overoptimistic, as measures

3Discovering Statistics, 2nd edition, by Daniel Larose, W.H. Freeman and Company, Publishers, 2013.
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of spread will be artificially reduced. It must be stressed that replacing missing values

is a gamble, and the benefits must be weighed against the possible invalidity of the

results.

Finally, Figure 2.4 demonstrates how missing values can be replaced with val-

ues generated at random from the observed distribution of the variable.

Figure 2.4 Replacing missing field values with random draws from the distribution of the

variable.

One benefit of this method is that the measures of center and spread should

remain closer to the original, when compared to the mean replacement method. How-

ever, there is no guarantee that the resulting records would make sense. For example,

the random values drawn in Figure 2.4 has led to at least one car that does not in fact

exist! There is no Japanese-made car in the database that has an engine size of 400

cubic inches.

We therefore need data imputation methods that take advantage of the knowl-

edge that the car is Japanese when calculating its missing cubic inches. In data impu-

tation, we ask “What would be the most likely value for this missing value, given all

the other attributes for a particular record?” For instance, an American car with 300

cubic inches and 150 horsepower would probably be expected to have more cylinders

than a Japanese car with 100 cubic inches and 90 horsepower. This is called imputa-
tion of missing data. Before we can profitably discuss data imputation, however, we

need to learn the tools needed to do so, such as multiple regression or classification

and regression trees. Therefore, to learn about the imputation of missing data, see

Chapter 27.

2.4 IDENTIFYING MISCLASSIFICATIONS

Let us look at an example of checking the classification labels on the categorical

variables, to make sure that they are all valid and consistent. Suppose that a frequency

distribution of the variable brand was as shown in Table 2.2.

The frequency distribution shows five classes, USA, France, US, Europe, and

Japan. However, two of the classes, USA and France, have a count of only one

automobile each. What is clearly happening here is that two of the records have

been inconsistently classified with respect to the origin of manufacture. To maintain

consistency with the remainder of the data set, the record with origin USA should

have been labeled US, and the record with origin France should have been labeled

Europe.
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TABLE 2.2 Notice anything strange about this frequency
distribution?

Brand Frequency

USA 1

France 1

US 156

Europe 46

Japan 51

2.5 GRAPHICAL METHODS FOR IDENTIFYING
OUTLIERS

Outliers are extreme values that go against the trend of the remaining data. Identifying

outliers is important because they may represent errors in data entry. Also, even if an

outlier is a valid data point and not an error, certain statistical methods are sensitive

to the presence of outliers, and may deliver unreliable results.

One graphical method for identifying outliers for numeric variables is to exam-

ine a histogram4 of the variable. Figure 2.5 shows a histogram of the vehicle weights

from the (slightly amended) cars data set. (Note: This slightly amended data set is

available as cars2 from the series web site.)

There appears to be one lonely vehicle in the extreme left tail of the distribution,

with a vehicle weight in the hundreds of pounds rather than in the thousands. Further

investigation (not shown) tells us that the minimum weight is 192.5 pounds, which is

40
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Figure 2.5 Histogram of vehicle weights: can you find the outlier?

4See the Appendix for more on histograms, including a caution on their interpretation.
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undoubtedly our little outlier in the lower tail. As 192.5 pounds is rather light for an

automobile, we would tend to doubt the validity of this information.

We can surmise that perhaps the weight was originally 1925 pounds, with the

decimal inserted somewhere along the line. We cannot be certain, however, and fur-

ther investigation into the data sources is called for.

Sometimes two-dimensional scatter plots5 can help to reveal outliers in more

than one variable. Figure 2.6, a scatter plot of mpg against weightlbs, seems to have

netted two outliers.
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Figure 2.6 Scatter plot of mpg against weightlbs shows two outliers.

Most of the data points cluster together along the horizontal axis, except for two

outliers. The one on the left is the same vehicle we identified in Figure 2.6, weighing

only 192.5 pounds. The outlier near the top is something new: a car that gets over

500 miles per gallon! Clearly, unless this vehicle runs on dilithium crystals, we are

looking at a data entry error.

Note that the 192.5-pound vehicle is an outlier with respect to weight but not

with respect to mileage. Similarly, the 500-mpg car is an outlier with respect to

mileage but not with respect to weight. Thus, a record may be an outlier in a particu-

lar dimension but not in another. We shall examine numeric methods for identifying

outliers, but we need to pick up a few tools first.

2.6 MEASURES OF CENTER AND SPREAD

Suppose that we are interested in estimating where the center of a particular variable

lies, as measured by one of the numerical measures of center, the most common of

which are the mean, median, and mode. The measures of center are a special case of

5See the Appendix for more on scatter plots.
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measures of location, numerical summaries that indicate where on a number line a

certain characteristic of the variable lies. Examples of the measures of location are

percentiles and quantiles.

The mean of a variable is simply the average of the valid values taken by the

variable. To find the mean, simply add up all the field values and divide by the sam-

ple size. Here, we introduce a bit of notation. The sample mean is denoted as x
(“x-bar”) and is computed as x = Σx∕n, where Σ (capital sigma, the Greek letter “S,”

for “summation”) represents “sum all the values,” and n represents the sample size.

For example, suppose that we are interested in estimating where the center of the

customer service calls variable lies from the churn data set, which we will explore in

Chapter 3. IBM/SPSS Modeler supplies us with the statistical summaries shown in

Figure 2.7. The mean number of customer service calls for this sample of n= 3333

customers is given as x = 1.563 Using the sum and the count statistics, we can verify

that

x = Σx
n

= 5209

3333
= 1.563

For variables that are not extremely skewed, the mean is usually not too far

from the variable center. However, for extremely skewed data sets, the mean becomes

less representative of the variable center. Also, the mean is sensitive to the presence of

outliers. For this reason, analysts sometimes prefer to work with alternative measures

of center, such as the median, defined as the field value in the middle when the field

values are sorted into ascending order. The median is resistant to the presence of

outliers. Other analysts may prefer to use the mode, which represents the field value

occurring with the greatest frequency. The mode may be used with either numerical

or categorical data, but is not always associated with the variable center.

Note that the measures of center do not always concur as to where the center of

the data set lies. In Figure 2.7, the median is 1, which means that half of the customers

made at least one customer service call; the mode is also 1, which means that the

most frequent number of customer service calls was 1. The median and mode agree.

However, the mean is 1.563, which is 56.3% higher than the other measures. This is

due to the mean’s sensitivity to the right-skewness of the data.

Measures of location are not sufficient to summarize a variable effectively. In

fact, two variables may have the very same values for the mean, median, and mode,

and yet have different natures. For example, suppose that stock portfolio A and stock

Figure 2.7 Statistical summary of customer service calls.
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TABLE 2.3 The two portfolios have the same mean,
median, and mode, but are clearly different

Stock Portfolio A Stock Portfolio B

1 7

11 8

11 11

11 11

16 13

portfolio B contained five stocks each, with the price/earnings (P/E) ratios as shown

in Table 2.3. The portfolios are distinctly different in terms of P/E ratios. Portfolio A

includes one stock that has a very small P/E ratio and another with a rather large P/E

ratio. However, portfolio B’s P/E ratios are more tightly clustered around the mean.

However, despite these differences, the mean, median, and mode P/E ratios of the

portfolios are precisely the same: The mean P/E ratio is 10, the median is 11, and the

mode is 11 for each portfolio.

Clearly, these measures of center do not provide us with a complete picture.

What are missing are the measures of spread or the measures of variability, which

will describe how spread out the data values are. Portfolio A’s P/E ratios are more

spread out than those of portfolio B, so the measures of variability for portfolio A

should be larger than those of B.

Typical measures of variability include the range (maximum−minimum), the

standard deviation (SD), the mean absolute deviation, and the interquartile range

(IQR). The sample SD is perhaps the most widespread measure of variability and

is defined by

s =
√

Σ(x − x)2
n − 1

Because of the squaring involved, the SD is sensitive to the presence of out-

liers, leading analysts to prefer other measures of spread, such as the mean absolute
deviation, in situations involving extreme values.

The SD can be interpreted as the “typical” distance between a field value and

the mean, and most field values lie within two SDs of the mean. From Figure 2.7

we can state that the number of customer service calls made by most customers lies

within 2(1.315)= 2.63 of the mean of 1.563 calls. In other words, most of the number

of customer service calls lie within the interval (−1.067, 4.193), that is, (0, 4). (This

can be verified by examining the histogram of customer service calls in Figure 3.12.)

More information about these statistics may be found in the Appendix. A more

complete discussion of measures of location and variability can be found in any intro-

ductory statistics textbook, such as Larose.6

6Discovering Statistics, 2nd edition, by Daniel Larose, W.H. Freeman and Company, Publishers, 2013.
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2.7 DATA TRANSFORMATION

Variables tend to have ranges that vary greatly from each other. For example, if we are

interested in major league baseball, players’ batting averages will range from zero to

less than 0.400, while the number of home runs hit in a season will range from zero

to around 70. For some data mining algorithms, such differences in the ranges will

lead to a tendency for the variable with greater range to have undue influence on the

results. That is, the greater variability in home runs will dominate the lesser variability

in batting averages.

Therefore, data miners should normalize their numeric variables, in order to

standardize the scale of effect each variable has on the results. Neural networks benefit

from normalization, as do algorithms that make use of distance measures, such as the

k-nearest neighbors algorithm. There are several techniques for normalization, and

we shall examine two of the more prevalent methods. Let X refer to our original field

value, and X∗ refer to the normalized field value.

2.8 MIN–MAX NORMALIZATION

Min–max normalization works by seeing how much greater the field value is than

the minimum value min(X), and scaling this difference by the range. That is,

X∗
mm = X − min(X)

range(X)
= X − min(X)

max(X) − min(X)
The summary statistics for weight are shown in Figure 2.8. The minimum

weight is 1613 pounds, and the range = max(X) − min(X) = 4997 − 1613 =
3384 pounds.

Let us find the min–max normalization for three automobiles weighing 1613,

3384, and 4997 pounds, respectively.

• For an ultralight vehicle, weighing only 1613 pounds (the field minimum), the

min–max normalization is

X∗
mm = X − min(X)

range(X)
= 1613 − 1613

3384
= 0

Thus, data values which represent the minimum for the variable will have a

min–max normalization value of 0.

Figure 2.8 Summary statistics for weight.
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• The midrange equals the average of the maximum and minimum values in a

data set. That is,

Midrange(X) = max(X) + min(X)
2

= 4997 + 1613

2
= 3305 pounds

For a “midrange” vehicle (if any), which weighs exactly halfway between the

minimum weight and the maximum weight, the min–max normalization is

X∗
mm = X − min(X)

range(X)
= 3305 − 1613

3384
= 0.5

So the midrange data value has a min–max normalization value of 0.5.

• The heaviest vehicle has a min–max normalization value of

X∗
mm = X − min(X)

range(X)
= 4497 − 1613

3384
= 1

That is, data values representing the field maximum will have a min–max nor-

malization of 1. To summarize, min–max normalization values will range from

0 to 1.

2.9 Z-SCORE STANDARDIZATION

Z-score standardization, which is very widespread in the world of statistical analysis,

works by taking the difference between the field value and the field mean value, and

scaling this difference by the SD of the field values. That is

Z-score = X − mean(X)
SD(X)

Figure 2.8 tells us that mean(weight)= 3005.49 and SD(weight)= 852.49.

• For the vehicle weighing only 1613 pounds, the Z-score standardization is

Z-score = X − mean(X)
SD(X)

= 1613 − 3005.49

852.49
≈ −1.63

Thus, data values that lie below the mean will have a negative Z-score standardi-

zation.

• For an “average” vehicle (if any), with a weight equal to mean(X)= 3005.49

pounds, the Z-score standardization is

Z-score = X − mean(X)
SD(X)

= 3005.49 − 3005.49

852.49
= 0

That is, values falling exactly on the mean will have a Z-score standardization

of zero.

• For the heaviest car, the Z-score standardization is

Z-score = X − mean(X)
SD(X)

= 4997 − 3005.49

852.49
≈ 2.34
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That is, data values that lie above the mean will have a positive Z-score stan-

dardization.7

2.10 DECIMAL SCALING

Decimal scaling ensures that every normalized value lies between −1 and 1.

X∗
decimal

= X
10d

where d represents the number of digits in the data value with the largest absolute

value. For the weight data, the largest absolute value is |4997| = 4997, which has

d= 4 digits. The decimal scaling for the minimum and maximum weight are

Min ∶ X∗
decimal

= 1613

104
= 0.1613 Max ∶ X∗

decimal
= 4997

104
= 0.4997

2.11 TRANSFORMATIONS TO ACHIEVE NORMALITY

Some data mining algorithms and statistical methods require that the variables be

normally distributed. The normal distribution is a continuous probability distribution

commonly known as the bell curve, which is symmetric. It is centered at mean 𝜇

(“mew”) and has its spread determined by SD 𝜎 (sigma). Figure 2.9 shows the nor-

mal distribution that has mean 𝜇 = 0 and SD 𝜎 = 1, known as the standard normal
distribution Z.

It is a common misconception that variables that have had the Z-score

standardization applied to them follow the standard normal Z distribution. This is

not correct! It is true that the Z-standardized data will have mean 0 and SD= 1

Mean μ
0−1−2−3 321

Figure 2.9 Standard normal Z distribution.

7Also, for a given Z-score, we may find its associated data value. See the Appendix.
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but the distribution may still be skewed. Compare the histogram of the original weight
data in Figure 2.10 with the Z-standardized data in Figure 2.11. Both histograms are

right-skewed; in particular, Figure 2.10 is not symmetric, and so cannot be normally

distributed.

We use the following statistic to measure the skewness of a distribution8:

Skewness = 3(mean − median)
standard deviation
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Figure 2.10 Original data.
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Figure 2.11 Z-standardized data is still right-skewed, not normally distributed.

8Find more about standard deviations in the Appendix.
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For right-skewed data, the mean is greater than the median, and thus the skew-

ness will be positive (Figure 2.12), while for left-skewed data, the mean is smaller

than the median, generating negative values for skewness (Figure 2.13). For perfectly

symmetric (and unimodal) data (Figure 2.9) of course, the mean, median, and mode

are all equal, and so the skewness equals zero.

Much real-world data is right-skewed, including most financial data.

Left-skewed data is not as common, but often occurs when the data is right-censored,

such as test scores on an easy test, which can get no higher than 100. We use the

statistics for weight and weight_Z shown in Figure 2.14 to calculate the skewness

for these variables.

For weight we have

Skewness = 3(mean − median)
standard deviation

= 3(3005.490 − 2835)
852.646

= 0.6

Median Mean

Figure 2.12 Right-skewed data has positive skewness.

MedianMean

Figure 2.13 Left-skewed data has negative skewness.
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Figure 2.14 Statistics for calculating skewness.

For weight_Z we have

Skewness = 3(mean − median)
standard deviation

= 3(0 − (−0.2))
1

= 0.6

Thus, Z-score standardization has no effect on skewness.

To make our data “more normally distributed,” we must first make it symmetric,

which means eliminating the skewness. To eliminate skewness, we apply a trans-
formation to the data. Common transformations are the natural log transformation

ln(weight), the square root transformation
√

weight, and the inverse square root trans-

formation 1∕
√

weight. Application of the square root transformation (Figure 2.15)

somewhat reduces the skewness, while applying the ln transformation (Figure 2.16)

reduces skewness even further.
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Figure 2.15 Square root transformation somewhat reduces skewness.

The statistics in Figure 2.17 are used to calculate the reduction in skewness:

Skewness (sqrt(weight)) = 3(54.280 − 53.245)
7.709

≈ 0.40

Skewness (ln(weight)) = 3(7.968 − 7.950)
0.284

≈ 0.19

Finally, we try the inverse square root transformation 1∕
√

weight, which gives

us the distribution in Figure 2.18. The statistics in Figure 2.19 give us

Skewness (inverse_sqrt(weight)) = 3(0.019 − 0.019)
0.003

= 0
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Figure 2.16 Natural log transformation reduces skewness even further.

Figure 2.17 Statistics for calculating skewness.

which indicates that we have eliminated the skewness and achieved a symmetric dis-

tribution.

Now, there is nothing magical about the inverse square root transformation; it

just happened to work for this variable.

Although we have achieved symmetry, we still have not arrived at normality. To

check for normality, we construct a normal probability plot, which plots the quantiles

of a particular distribution against the quantiles of the standard normal distribution.

Similar to a percentile, the pth quantile of a distribution is the value xp such that p%
of the distribution values are less than or equal to xp.

In a normal probability plot, if the distribution is normal, the bulk of the points

in the plot should fall on a straight line; systematic deviations from linearity in this

plot indicate nonnormality. Note from Figure 2.18 that the distribution is not a good

fit for the normal distribution curve shown. Thus, we would not expect our normal

probability plot to exhibit normality. As expected, the normal probability plot of

inverse_sqrt(weight) in Figure 2.20 shows systematic deviations from linearity, indi-

cating nonnormality. For contrast, a normal probability plot of normally distributed

data is shown in Figure 2.21; this graph shows no systematic deviations from linearity.

Experimentation with further transformations (not shown) did not yield accept-

able normality for inverse_sqrt(weight). Fortunately, algorithms requiring normality

usually do fine when supplied with data that is symmetric and unimodal.
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Figure 2.18 The transformation inverse_sqrt(weight) has eliminated the skewness, but is still

not normal.

Figure 2.19 Statistics for inverse_sqrt(weight).
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Figure 2.20 Normal probability plot of inverse_sqrt(weight) indicates nonnormality.
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Figure 2.21 Normal probability plot of normally distributed data.

Finally, when the algorithm is done with its analysis, don’t forget to
“de-transform” the data. Let x represent the original variable, and y represent the

transformed variable. Then, for the inverse square root transformation we have

y = 1√
x

“de-transforming,” we obtain: x = 1

y2 . Results that your algorithm provided on the

transformed scale would have to be de-transformed using this formula.9

2.12 NUMERICAL METHODS FOR IDENTIFYING
OUTLIERS

The Z-score method for identifying outliers states that a data value is an outlier if it has

a Z-score that is either less than −3 or greater than 3. Variable values with Z-scores

much beyond this range may bear further investigation, in order to verify that they do

not represent data entry errors or other issues. However, one should not automatically

omit outliers from analysis.

We saw that the minimum Z-score was for the vehicle weighing only 1613

pounds, and having a Z-score of −1.63, while the maximum Z-score was for the

4997-pound vehicle, with a Z-score of 2.34. As neither Z-scores are either less than

−3 or greater than 3, we conclude that there are no outliers among the vehicle weights.

Unfortunately, the mean and SD, which are both part of the formula for the

Z-score standardization, are both rather sensitive to the presence of outliers. That is, if

9For more on data transformations, see Chapter 8.



2.13 FLAG VARIABLES 39

an outlier is added to (or deleted from) a data set, then the values of mean and SD will

both be unduly affected by the presence (or absence) of this new data value. Therefore,

when choosing a method for evaluating outliers, it may not seem appropriate to use

measures that are themselves sensitive to their presence.

Therefore, data analysts have developed more robust statistical methods for

outlier detection, which are less sensitive to the presence of the outliers themselves.

One elementary robust method is to use the IQR. The quartiles of a data set divide

the data set into the following four parts, each containing 25% of the data:

• The first quartile (Q1) is the 25th percentile.

• The second quartile (Q2) is the 50th percentile, that is, the median.

• The third quartile (Q3) is the 75th percentile.

Then, the IQR is a measure of variability, much more robust than the SD. The

IQR is calculated as IQR=Q3−Q1, and may be interpreted to represent the spread

of the middle 50% of the data.

A robust measure of outlier detection is therefore defined as follows. A data

value is an outlier if

a. it is located 1.5(IQR) or more below Q1, or

b. it is located 1.5(IQR) or more above Q3.

For example, suppose for a set of test scores, the 25th percentile was Q1= 70
and the 75th percentile was Q3= 80, so that half of all the test scores fell between 70

and 80. Then the interquartile range, or the difference between these quartiles was

IQR= 80− 70= 10.

A test score would be robustly identified as an outlier if

a. it is lower than Q1− 1.5(IQR)= 70− 1.5(10)= 55, or

b. it is higher than Q3+ 1.5(IQR)= 80+ 1.5(10)= 95.

2.13 FLAG VARIABLES

Some analytical methods, such as regression, require predictors to be numeric. Thus,

analysts wishing to use categorical predictors in regression need to recode the cate-

gorical variable into one or more flag variables. A flag variable (or dummy variable,
or indicator variable) is a categorical variable taking only two values, 0 and 1. For

example, the categorical predictor sex, taking values for female and male, could be

recoded into the flag variable sex_flag as follows:

If sex = female = then sex_flag = 0; if sex = male then sex_flag = 1.

When a categorical predictor takes k ≥ 3 possible values, then define k− 1

dummy variables, and use the unassigned category as the reference category. For

example, if a categorical predictor region has k= 4 possible categories, {north, east,
south, west}, then the analyst could define the following k− 1= 3 flag variables.
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north_flag: If region = north then north_flag = 1; otherwise north_flag = 0.

east_flag: If region = east then east_flag = 1; otherwise east_flag = 0.

south_flag: If region = south then south_flag = 1; otherwise south_flag = 0.

The flag variable for the west is not needed, as region=west is already uniquely

identified by zero values for each of the three existing flag variables.10 Instead, the

unassigned category becomes the reference category, meaning that, the interpretation

of the value of north_flag is region= north compared to region=west. For example,

if we are running a regression analysis with income as the target variable, and the

regression coefficient (see Chapter 8) for north_flag equals $1000, then the estimated

income for region= north is $1000 greater than for region=west, when all other pre-

dictors are held constant.

2.14 TRANSFORMING CATEGORICAL VARIABLES INTO
NUMERICAL VARIABLES

Would it not be easier to simply transform the categorical variable region into a single
numerical variable rather than using several different flag variables? For example,
suppose we defined the quantitative variable region_num as follows:

Region Region_num

North 1

East 2

South 3

West 4

Unfortunately, this is a common and hazardous error. The algorithm now erro-

neously thinks the following:

• The four regions are ordered.

• West>South>East>North.

• West is three times closer to South compared to North, and so on.

So, in most instances, the data analyst should avoid transforming categorical

variables to numerical variables. The exception is for categorical variables that are

clearly ordered, such as the variable survey_response, taking values always, usually,

sometimes, never. In this case, one could assign numerical values to the responses,

although one may bicker with the actual values assigned, such as:

10Further, inclusion of the fourth flag variable will cause some algorithms to fail, because of the singularity

of the (X′X)−1 matrix in regression, for instance.
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Survey response Survey Response_num

Always 4

Usually 3

Sometimes 2

Never 1

Should never be “0” rather than “1”? Is always closer to usually than usually
is to sometimes? Careful assignment of the numerical values is important.

2.15 BINNING NUMERICAL VARIABLES

Some algorithms prefer categorical rather than continuous predictors,11 in which case

we would need to partition any numerical predictors into bins or bands. For example,

we may wish to partition the numerical predictor house value into low, medium, and

high. There are the following four common methods for binning numerical predic-

tors:

1. Equal width binning divides the numerical predictor into k categories of equal

width, where k is chosen by the client or analyst.

2. Equal frequency binning divides the numerical predictor into k categories, each

having k/n records, where n is the total number of records.

3. Binning by clustering uses a clustering algorithm, such as k-means clustering
(Chapter 19) to automatically calculate the “optimal” partitioning.

4. Binning based on predictive value. Methods (1)–(3) ignore the target variable;

binning based on predictive value partitions the numerical predictor based on

the effect each partition has on the value of the target variable. Chapter 3 con-

tains an example of this.

Equal width binning is not recommended for most data mining applications,

as the width of the categories can be greatly affected by the presence of outliers.

Equal frequency distribution assumes that each category is equally likely, an

assumption which is usually not warranted. Therefore, methods (3) and (4) are

preferred.

Suppose we have the following tiny data set, which we would like to discretize

into k= 3 categories: X = {1, 1, 1, 1, 1, 2, 2, 11, 11, 12, 12, 44}.

1. Using equal width binning, we partition X into the following categories of equal

width, illustrated in Figure 2.22a:

∘ Low: 0 ≤ X < 15, which contains all the data values except one.

11For further information about discrete and continuous variables, as well as other ways of classifying

variables, see the Appendix.
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(a) Equal width
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(b) Equal frequency

(c) k-Means clustering

Figure 2.22 (a–c) Illustration of binning methods.

∘ Medium: 15 ≤ X < 30, which contains no data values at all.

∘ High: 30 ≤ X < 45, which contains a single outlier.

2. Using equal frequency binning, we have n= 12, k= 3, and n/k= 4. The partition

is illustrated in Figure 2.22b.

∘ Low: Contains the first four data values, all X= 1.

∘ Medium: Contains the next four data values, {1, 2, 2, 11}.

∘ High: Contains the last four data values, {11, 12, 12, 44}.

Note that one of the medium data values equals a data value in the low cate-

gory, and another equals a data value in the high category. This violates what

should be a self-evident heuristic: Equal data values should belong to the same

category.

3. Finally, k-means clustering identifies what seems to be the intuitively correct

partition, as shown in Figure 2.22c.

We provide two examples of binning based on predictive value in Chapter 3.

2.16 RECLASSIFYING CATEGORICAL VARIABLES

Reclassifying categorical variables is the categorical equivalent of binning numeri-

cal variables. Often, a categorical variable will contain too many easily analyzable

field values. For example, the predictor state could contain 50 different field values.

Data mining methods such as logistic regression and the C4.5 decision tree algorithm

perform suboptimally when confronted with predictors containing too many field val-

ues. In such a case, the data analyst should reclassify the field values. For example,

the 50 states could each be reclassified as the variable region, containing field values

Northeast, Southeast, North Central, Southwest, and West. Thus, instead of 50 differ-

ent field values, the analyst (and algorithm) is faced with only 5. Alternatively, the

50 states could be reclassified as the variable economic_level, with three field val-

ues containing the richer states, the midrange states, and the poorer states. The data

analyst should choose a reclassification that supports the objectives of the business

problem or research question.
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2.17 ADDING AN INDEX FIELD

It is recommended that the data analyst create an index field, which tracks the sort

order of the records in the database. Data mining data gets partitioned at least once

(and sometimes several times). It is helpful to have an index field so that the original

sort order may be recreated. For example, using IBM/SPSS Modeler, you can use the

@Index function in the Derive node to create an index field.

2.18 REMOVING VARIABLES THAT ARE NOT USEFUL

The data analyst may wish to remove variables that will not help the analysis, regard-

less of the proposed data mining task or algorithm. Such variables include

• unary variables and

• variables that are very nearly unary.

Unary variables take on only a single value, so a unary variable is not so much

a variable as a constant. For example, data collection on a sample of students at an

all-girls private school would find that the sex variable would be unary, as every

subject would be female. As sex is constant across all observations, it cannot have

any effect on any data mining algorithm or statistical tool. The variable should be

removed.

Sometimes a variable can be very nearly unary. For example, suppose that

99.95% of the players in a field hockey league are female, with the remaining 0.05%

male. The variable sex is therefore very nearly, but not quite, unary. While it may

be useful to investigate the male players, some algorithms will tend to treat the vari-

able as essentially unary. For example, a classification algorithm can be better than

99.9% confident that a given player is female. So, the data analyst needs to weigh how

close to unary a given variable is, and whether such a variable should be retained or

removed.

2.19 VARIABLES THAT SHOULD PROBABLY NOT BE
REMOVED

It is (unfortunately) a common – although questionable – practice to remove from

analysis the following types of variables:

• Variables for which 90% or more of the values are missing.

• Variables that are strongly correlated.

Before you remove a variable because it has 90% or more missing values, con-

sider that there may be a pattern in the missingness, and therefore useful information,

that you may be jettisoning. Variables that contain 90% missing values present a chal-

lenge to any strategy for imputation of missing data (see Chapter 27). For example,

are the remaining 10% of the cases truly representative of the missing data, or are
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the missing values occurring due to some systematic but unobserved phenomenon?

For example, suppose we have a field called donation_dollars in a self-reported sur-

vey database. Conceivably, those who donate a lot would be inclined to report their

donations, while those who do not donate much may be inclined to skip this survey

question. Thus, the 10% who report are not representative of the whole. In this case,

it may be preferable to construct a flag variable, donation_flag, as there is a pattern

in the missingness which may turn out to have predictive power.

However, if the data analyst has reason to believe that the 10% are representa-

tive, then he or she may choose to proceed with the imputation of the missing 90%. It

is strongly recommended that the imputation be based on the regression or decision

tree methods shown in Chapter 27. Regardless of whether the 10% are representa-

tive of the whole or not, the data analyst may decide that it is wise to construct a

flag variable for the non-missing values, as they may very well be useful for pre-

diction or classification. Also, there is nothing special about the 90% figure; the

data analyst may use any large proportion he or she considers warranted. Bottom

line: One should avoid removing variables just because they have lots of missing

values.

An example of correlated variables may be precipitation and attendance at a

state beach. As precipitation increases, attendance at the beach tends to decrease, so

that the variables are negatively correlated.12 Inclusion of correlated variables may

at best double-count a particular aspect of the analysis, and at worst lead to insta-

bility of the model results. When confronted with two strongly correlated variables,

therefore, some data analysts may decide to simply remove one of the variables. We

advise against doing so, as important information may thereby be discarded. Instead,

it is suggested that principal components analysis be applied, where the common vari-

ability in correlated predictors may be translated into a set of uncorrelated principal

components.13

2.20 REMOVAL OF DUPLICATE RECORDS

During a database’s history, records may have been inadvertently copied, thus creat-

ing duplicate records. Duplicate records lead to an overweighting of the data values

in those records, so, if the records are truly duplicate, only one set of them should

be retained. For example, if the ID field is duplicated, then definitely remove the

duplicate records. However, the data analyst should apply common sense. To take an

extreme case, suppose a data set contains three nominal fields, and each field takes

only three values. Then there are only 3 × 3 × 3 = 27 possible different sets of obser-

vations. In other words, if there are more than 27 records, at least one of them has

12For more on correlation, see the Appendix.
13For more on principal components analysis, see Chapter 4.
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to be a duplicate. So, the data analyst should weigh the likelihood that the duplicates

represent truly different records against the likelihood that the duplicates are indeed

just duplicated records.

2.21 A WORD ABOUT ID FIELDS

Because ID fields have a different value for each record, they will not be helpful for

your downstream data mining algorithms. They may even be hurtful, with the algo-

rithm finding some spurious relationship between ID field and your target. Thus, it is

recommended that ID fields should be filtered out from the data mining algorithms,

but should not be removed from the data, so that the data analyst can differentiate

between similar records.

In Chapter 3, we apply some basic graphical and statistical tools to help us

begin to uncover simple patterns and trends in the data structure.

THE R ZONE

# Read in the Cars and Cars2 datasets
cars <- read.csv("C:/ … /cars.txt",

stringsAsFactors = FALSE)

cars2 <- read.csv("C:/ … /cars2.txt",

stringsAsFactors = FALSE)

# Missing data

# Look at four variables from cars
cars.4var <- cars[, c(1, 3, 4, 8)]

head(cars.4var)

# Make certain entries missing

cars.4var[2,2] <- cars.4var[4,4] <- NA

head(cars.4var)
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# Replace missing values with constants

cars.4var[2,2] <- 0

cars.4var[4,4] <- "Missing"

head(cars.4var)

# Replace values with mean and mode

cars.4var[2,2] <-

mean(na.omit(cars.4var$cubicinches))

our_table <- table(cars.4var$brand)

our_mode <- names(our_table)

[our_table ==
max(our_table)]

cars.4var[4,4] <- our_mode

head(cars.4var)

# Generate random observations

obs_brand <-

sample(na.omit(cars.4var$brand), 1)

obs_cubicinches <-

sample(na.omit(cars.4var$cubicinches), 1)

cars.4var[2,2] <- obs_cubicinches

cars.4var[4,4] <- obs_brand

head(cars.4var)

# Create a Histogram

# Set up the plot area

par(mfrow = c(1,1))

# Create the

histogram bars

hist(cars2$weight,

breaks = 30,

xlim = c(0, 5000),

col = "blue",

border = "black",

ylim = c(0, 40),

xlab = "Weight",

ylab = "Counts",

main = "Histogram

of Car Weights")

# Make a box around

# the plot

box(which = "plot",

lty = "solid",

col = "black")
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# Create a Scatterplot

plot(cars2$weight,

cars2$mpg,

xlim = c(0, 5000),

ylim = c(0, 600),

xlab = "Weight",

ylab = "MPG",

main = "Scatterplot

of MPG by

Weight",

type = "p",

pch = 16,

col = "blue")

#Add open black

# circles

points(cars2$weight,

cars2$mpg,

type = "p",

col = "black")
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# Descriptive Statistics

mean(cars$weight) # Mean

median(cars$weight) # Median

length(cars$weight) # Number of observations

sd(cars$weight) # Standard deviation

summary(cars$weight) # Min, Q1, Median, Mean, Q3, Max

# Transformations
# Min-max normalization

summary(cars$weight)

mi <- min(cars$weight)

ma <- max(cars$weight)

minmax.weight <- (cars$weight - mi)/(ma - mi)

minmax.weight

# Z-score standarization

m <- mean(cars$weight); s <- sd(cars$weight)

z.weight <- (cars$weight - m)/s

z.weight

length(cars$weight)

# Decimal scaling

max(abs(cars$weight)) # 4 digits

d.weight <- cars$weight/(10^4); d.weight
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# Side-by-Side Histograms

par(mfrow = c(1,2))

# Create two histograms

hist(cars$weight, breaks = 20,

xlim = c(1000, 5000),

main = "Histogram of Weight",

xlab = "Weight",

ylab = "Counts")

box(which = "plot",

lty = "solid",

col = "black")

hist(z.weight,

breaks = 20,

xlim = c(-2, 3),

main = "Histogram of Z-

score of Weight",

xlab = "Z-score of Weight",

ylab = "Counts")

box(which = "plot",

lty = "solid",

col = "black")
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# Skewness
(3*(mean(cars$weight) - median(cars$weight)))/sd(cars$weight)

(3*(mean(z.weight) - median(z.weight)))/sd(z.weight)

# Transformations for Normality

sqrt.weight <- sqrt(cars$weight) # Square root

sqrt.weight_skew <- (3*(mean(sqrt.weight) - median(sqrt.weight))) / sd(sqrt.weight)

ln.weight <- log(cars$weight) # Natural log

ln.weight_skew <- (3*(mean(ln.weight) - median(ln.weight))) / sd(ln.weight)

invsqrt.weight <- 1 / sqrt(cars$weight) # Inverse square root

invsqrt.weight_skew <- (3*(mean(invsqrt.weight) - median(invsqrt.weight))) /sd(invsqrt.weight)
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# Histogram with Normal Distribution Overlay

par(mfrow=c(1,1))

x <- rnorm(1000000,

mean = mean

(invsqrt.weight),

sd = sd(invsqrt.weight))

hist(invsqrt.weight,

breaks = 30,

xlim= c(0.0125, 0.0275),

col = "lightblue",

prob = TRUE,

border = "black",

xlab= "Inverse Square

Root of Weight",

ylab = "Counts",

main = "Histogram of

Inverse Square Root

of Weight")

box(which = "plot",

lty = "solid",

col="black")

# Overlay with

Normal density

lines(density(x), col= "red")
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# Normal Q-Q Plot

qqnorm(invsqrt.weight,

datax = TRUE,

col = "red",

ylim = c(0.01, 0.03),

main = "Normal

Q-Q Plot of Inverse

Square Root of Weight")

qqline(invsqrt.weight,

col = "blue",

datax = TRUE)
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# De-transform data
# Transform x using y = 1 / sqrt(x)

x <- cars$weight[1]; y <- 1 / sqrt(x)

# Detransform x using x = 1 / (y)^2

detransformedx <- 1 / y^2

x; y; detransformedx

# Create indicator variables
north_flag <- east_flag <- south_flag <-

c(rep(NA, 10))

region <- c(rep(c("north", "south", "east",

"west"),2), "north", "south")

# Change the region variable to indicators

for (i in 1:length(region)) {

if(region[i] == "north") north_flag[i] = 1

else north_flag[i] = 0

if(region[i] == "east") east_flag[i] = 1

else east_flag[i] = 0

if(region[i] == "south") south_flag[i] = 1

else south_flag[i] = 0

}

north_flag; east_flag; south_flag

# Index fields
# Data frames have an index field;

# the left-most column

cars

cars[order(cars$mpg),]

# For vectors or matrices,

# add a column to act as an index field

x <- c(1,1,3:1,1:4,3); y <- c(9,9:1)

z <- c(2,1:9)

matrix <- t(rbind(x,y,z)); matrix

indexed_m <- cbind(c(1:length(x)), matrix); indexed_m

indexed_m[order(z),]

# Duplicate records

# For number of duplicate records, use anyDuplicated

anyDuplicated(cars)

# To examine each record, use Duplicated

duplicated(cars)

# ‘True’: record is a duplicate,

# ‘False’: record is not a duplicate

# Let’s duplicate the first record

new.cars <- rbind(cars, cars[1,])

# Check for duplicates

anyDuplicated(new.cars)

# The 262nd record is a duplicate

duplicated(new.cars)
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R REFERENCE
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project.org/.

EXERCISES

CLARIFYING THE CONCEPTS

1. Describe the possible negative effects of proceeding directly to mine data that has not

been preprocessed.

2. Refer to the income attribute of the five customers in Table 2.1, before preprocessing.

a. Find the mean income before preprocessing.

b. What does this number actually mean?

c. Now, calculate the mean income for the three values left after preprocessing. Does this

value have a meaning?

3. Explain why zip codes should be considered text variables rather than numeric.

4. What is an outlier? Why do we need to treat outliers carefully?

5. Explain why a birthdate variable would be preferred to an age variable in a database.

6. True or false: All things being equal, more information is almost always better.

7. Explain why it is not recommended, as a strategy for dealing with missing data, to simply

omit the records or fields with missing values from the analysis.

8. Which of the four methods for handling missing data would tend to lead to an underesti-

mate of the spread (e.g., SD) of the variable? What are some benefits to this method?

9. What are some of the benefits and drawbacks for the method for handling missing data

that chooses values at random from the variable distribution?

10. Of the four methods for handling missing data, which method is preferred?

11. Make up a classification scheme that is inherently flawed, and would lead to misclassifi-

cation, as we find in Table 2.2. For example, classes of items bought in a grocery store.

12. Make up a data set, consisting of the heights and weights of six children, in which one of

the children is an outlier with respect to one of the variables, but not the other. Then alter

this data set so that the child is an outlier with respect to both variables.

WORKING WITH THE DATA

Use the following stock price data (in dollars) for Exercises 13–18.

10 7 20 12 75 15 9 18 4 12 8 14

http://www.R-project.org
http://www.R-project.org
http://www.R-project.org
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13. Calculate the mean, median, and mode stock price.

14. Compute the SD of the stock price. Interpret what this number means.

15. Find the min–max normalized stock price for the stock price $20.

16. Calculate the midrange stock price.

17. Compute the Z-score standardized stock price for the stock price $20.

18. Find the decimal scaling stock price for the stock price $20.

19. Calculate the skewness of the stock price data.

20. Explain why data analysts need to normalize their numeric variables.

21. Describe three characteristics of the standard normal distribution.

22. If a distribution is symmetric, does it follow that it is normal? Give a counterexample.

23. What do we look for in a normal probability plot to indicate nonnormality?

Use the stock price data for Exercises 24–26.

24. Do the following.

a. Identify the outlier.

b. Verify that this value is an outlier, using the Z-score method.

c. Verify that this value is an outlier, using the IQR method.

25. Identify all possible stock prices that would be outliers, using:

a. The Z-score method.

b. The IQR method.

26. Investigate how the outlier affects the mean and median by doing the following:

a. Find the mean score and the median score, with and without the outlier.

b. State which measure, the mean or the median, the presence of the outlier affects more,

and why.

27. What are the four common methods for binning numerical predictors? Which of these are

preferred?

Use the following data set for Exercises 28–30:

1 1 1 3 3 7

28. Bin the data into three bins of equal width (width= 3).

29. Bin the data into three bins of two records each.

30. Clarify why each of the binning solutions above are not optimal.

31. Explain why we might not want to remove a variable that had 90% or more missing

values.

32. Explain why we might not want to remove a variable just because it is highly correlated

with another variable.
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HANDS-ON ANALYSIS

Use the churn data set14 on the book series web site for the following exercises:

33. Explore whether there are missing values for any of the variables.

34. Compare the area code and state fields. Discuss any apparent abnormalities.

35. Use a graph to visually determine whether there are any outliers among the number of

calls to customer service.

36. Identify the range of customer service calls that should be considered outliers, using:

a. the Z-score method;

b. the IQR method.

37. Transform the day minutes attribute using Z-score standardization.

38. Work with skewness as follows:

a. Calculate the skewness of day minutes.

b. Then calculate the skewness of the Z-score standardized day minutes. Comment.

c. Based on the skewness value, would you consider day minutes to be skewed or nearly

perfectly symmetric?

39. Construct a normal probability plot of day minutes. Comment on the normality of the data.

40. Work with international minutes as follows:

a. Construct a normal probability plot of international minutes.

b. What is preventing this variable from being normally distributed.

c. Construct a flag variable to deal with the situation in (b).

d. Construct a normal probability plot of the derived variable nonzero international min-
utes. Comment on the normality of the derived variable.

41. Transform the night minutes attribute using Z-score standardization. Using a graph,

describe the range of the standardized values.

14Churn data set. Blake, C.L. & Merz, C.J. UCI Repository of machine learning databases

[kdd.ics.uci.edu/]. Irvine, CA: University of California, Department of Information and Computer Science,

1998.



C H A P T E R 3
EXPLORATORY DATA ANALYSIS

3.1 HYPOTHESIS TESTING VERSUS EXPLORATORY
DATA ANALYSIS

When approaching a data mining problem, a data mining analyst may already have

some a priori hypotheses that he or she would like to test regarding the relationships

between the variables. For example, suppose that cell-phone executives are interested

in whether a recent increase in the fee structure has led to a decrease in market share.

In this case, the analyst would test the hypothesis that market share has decreased,

and would therefore use hypothesis testing procedures.

A myriad of statistical hypothesis testing procedures are available

through the traditional statistical analysis literature. We cover many of these

in Chapters 5 and 6. However, analysts do not always have a priori notions

of the expected relationships among the variables. Especially when confronted

with unknown, large databases, analysts often prefer to use exploratory data
analysis (EDA), or graphical data analysis. EDA allows the analyst to

• delve into the data set;

• examine the interrelationships among the attributes;

• identify interesting subsets of the observations;

• develop an initial idea of possible associations amongst the predictors, as well

as between the predictors and the target variable.

3.2 GETTING TO KNOW THE DATA SET

Graphs, plots, and tables often uncover important relationships that could indicate

important areas for further investigation. In Chapter 3, we use exploratory meth-

ods to delve into the churn data set1 from the UCI Repository of Machine Learning

1Churn data set. Blake, C.L. & Merz, C.J. UCI Repository of machine learning databases

[kdd.ics.uci.edu/]. Irvine, CA: University of California, Department of Information and Computer Science,

1998.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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Databases at the University of California, Irvine. The data set is also available on the

book series web site, www.dataminingconsultant.com. Churn, also called attrition,

is a term used to indicate a customer leaving the service of one company in favor

of another company. The data set contains 20 predictors worth of information about

3333 customers, along with the target variable, churn, an indication of whether that

customer churned (left the company) or not.

The variables are as follows:

• State: Categorical, for the 50 states and the District of Columbia.

• Account length: Integer-valued, how long account has been active.

• Area code: Categorical

• Phone number: Essentially a surrogate for customer ID.

• International plan: Dichotomous categorical, yes or no.

• Voice mail plan: Dichotomous categorical, yes or no.

• Number of voice mail messages: Integer-valued.

• Total day minutes: Continuous, minutes customer used service during the day.

• Total day calls: Integer-valued.

• Total day charge: Continuous, perhaps based on above two variables.

• Total eve minutes: Continuous, minutes customer used service during the

evening.

• Total eve calls: Integer-valued.

• Total eve charge: Continuous, perhaps based on above two variables.

• Total night minutes: Continuous, minutes customer used service during the

night.

• Total night calls: Integer-valued.

• Total night charge: Continuous, perhaps based on above two variables.

• Total international minutes: Continuous, minutes customer used service to

make international calls.

• Total international calls: Integer-valued.

• Total international charge: Continuous, perhaps based on above two variables.

• Number of calls to customer service: Integer-valued.

• Churn: Target. Indicator of whether the customer has left the company (true or

false).

To begin, it is often best to simply take a look at the field values for some of

the records. Figure 3.1 shows the variable values for the first 10 records of the churn
data set.

We can begin to get a feel for the data by looking at Figure 3.1. We note, for

example:

• The variable Phone uses only seven digits.

• There are two flag variables.

http://www.dataminingconsultant.com
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(a)

(b)

Figure 3.1 (a,b) Field values of the first 10 records in the churn data set.

• Most of our variables are continuous.

• The response variable Churn is a flag variable having two values, True and

False.

Next, we turn to summarization and visualization (see Appendix). Figure 3.2

shows graphs (either histograms or bar charts) and summary statistics for each vari-

able in the data set, except Phone, which is an identification field. The variable types

for this software (Modeler, by IBM/SPSS) are shown (set for categorical, flag for

flag, and range for continuous). We may note that vmail messages have a spike on the

length, and that most quantitative variables seem to be normally distributed, except

for Intl Calls and CustServ Calls, which are right-skewed (note that the skewness

statistic is larger for these variables).Unique represents the number of distinct field

values. We wonder how it can be that there are 51 distinct values for State, but only

three distinct values for Area Code. Also, the mode of State being West Virginia may

have us scratching our heads a bit. More on this will be discussed later. We are still

just getting to know the data set.

3.3 EXPLORING CATEGORICAL VARIABLES

The bar graph in Figure 3.3 shows the counts and percentages of customers who

churned (true) and who did not churn (false). Fortunately, only a minority (14.49%)

of our customers have left our service. Our task is to identify patterns in the data that
will help to reduce the proportion of churners.

One of the primary reasons for performing EDA is to investigate the variables,

examine the distributions of the categorical variables, look at the histograms of the

numeric variables, and explore the relationships among sets of variables. However,

our overall objective for the data mining project as a whole (not just the EDA phase) is

to develop a model of the type of customer likely to churn (jump from your company’s



3.3 EXPLORING CATEGORICAL VARIABLES 57

(a)

(b)

Figure 3.2 Summarization and visualization of the churn data set.

service to another company’s service). Today’s software packages allow us to become

familiar with the variables, while at the same time allowing us to begin to see which

variables are associated with churn. In this way, we can explore the data while keeping

an eye on our overall goal. We begin by considering the categorical variables, and

their relationship to churn.

The first categorical variable we investigate is International Plan. Figure 3.4

shows a bar chart of the International Plan, with an overlay of churn, and repre-

sents a comparison of the proportion of churners and non-churners, among customers
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who either had selected the International Plan (yes, 9.69% of customers) or had not

selected it (no, 90.31% of customers). The graphic appears to indicate that a greater

proportion of International Plan holders are churning, but it is difficult to be sure.

In order to “increase the contrast” and better discern whether the proportions

differ, we can ask the software (in this case, IBM/SPSS Modeler) to provide the same

size bars for each category. Thus, in Figure 3.5, we see a graph of the very same infor-

mation as in Figure 3.4, except that the bar for the yes category has been “stretched”

out to be the same length as for the no category. This allows us to better discern

whether the churn proportions differ among the categories. Clearly, those who have

selected the International Plan have a greater chance of leaving the company’s service

than do those who do not have the International Plan.

The graphics above tell us that International Plan holders tend to churn more

frequently, but they do not quantify the relationship. In order to quantify the rela-

tionship between International Plan holding and churning, we may use a contingency

table (Table 3.1), as both variables are categorical.

Note that the counts in the first column add up to the total number of

non-selectors of the international plan from Figure 3.4: 2664+ 346= 3010. Sim-

ilarly for the second column. The first row in Table 3.1 shows the counts of those

who did not churn, while the second row shows the counts of those that did churn.

The total column contains the marginal distribution for churn, that is, the fre-

quency distribution for this variable alone. Similarly, the total row represents the

Figure 3.3 About 14.49% of our customers are churners.

Figure 3.4 Comparison bar chart of churn proportions, by international plan participation.

Figure 3.5 Comparison bar chart of churn proportions, by international plan participation,

with equal bar length.
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marginal distribution for International Plan. Note that the marginal distribution for

International Plan concurs with the counts in Figure 3.5.

We may enhance Table 3.1 with percentages, depending on our question of

interest. For example, Table 3.2 adds column percentages, which indicate, for each

cell, the percentage of the column total.

We calculate the column percentages whenever we are interested in compar-

ing the percentages of the row variable for each value of the column variable. For

example, here we are interested in comparing the proportions of churners (row vari-

able) for those who belong or do not belong to the International Plan (column vari-

able). Note that 137/(137+ 186)= 42.4% of the International Plan holders churned,

as compared to only 346/(346+ 2664)= 11.5% of those without the International

Plan. Customers selecting the International Plan are more than three times as likely to

leave the company’s service and those without the plan. Thus, we have now quantified

the relationship that we uncovered graphically earlier.

The graphical counterpart of the contingency table is the clustered bar chart.
Figure 3.6 shows a Minitab bar chart of churn, clustered by International Plan. The

first set of two bars represents those who do not belong to the plan, and is associated

with the “No” column in Table 3.2. The second set of two bars represents those who do

belong to the International Plan, and is associated with the “Yes” column in Table 3.2.

Clearly, the proportion of churners is greater among those belonging to the plan.

Another useful graphic for comparing two categorical variables is the compar-
ative pie chart. Figure 3.7 shows a comparative pie chart of churn, for those who do

not (“no”) and those who do (“yes”) belong to the International Plan. The clustered

bar chart is usually preferred, because it conveys counts as well as proportions, while

the comparative pie chart conveys only proportions.

TABLE 3.1 Contingency table of International Plan with churn

International Plan

No Yes Total

Churn False 2664 186 2850

True 346 137 483

Total 3010 323 3333

TABLE 3.2 Contingency table with column percentages

International Plan

No Yes Total

Churn False Count 2664

Col% 88.5%

Count 186

Col% 57.6%

Count 2850

Col% 85.5%

True Count 346

Col% 11.5%

Count 137

Col% 42.4%

Count 483

Col% 14.5%

Total 3010 323 3333
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Figure 3.6 The clustered bar chart is the graphical counterpart of the contingency table.

Panel variable: International Plan

Yes

Category

False

True

No

Pie chart of churn

Figure 3.7 Comparative pie chart associated with Table 3.2.

Contrast Table 3.2 with Table 3.3, the contingency table with row percentages,

which indicate, for each cell, the percentage of the row total. We calculate the row per-

centages whenever we are interested in comparing the percentages of the column vari-

able for each value of the row variable. Table 3.3 indicates, for example, that 28.4%

of churners belong to the International Plan, compared to 6.5% of non-churners.

Figure 3.8 contains the bar chart of International Plan, clustered by Churn, and

represents the graphical counterpart of the contingency table with row percentages

in Table 3.3. The first set of bars represents non-churners, and is associated with the

“False” row in Table 3.3. The second set of bars represents churners, and is associated

with the “True” row in Table 3.3. Clearly, the proportion of International Plan holders

is greater among the churners. Similarly for Figure 3.9, which shows the comparative
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TABLE 3.3 Contingency table with row percentages

International Plan

No Yes Total

Churn False Count 2664 Row% 93.5% Count 186 Row% 6.5% 2850

True Count 346 Row% 71.6% Count 137 Row% 28.4% 483

Total Count 3010 Row% 90.3% Count 323 Row% 9.7% 3333

Chart of churn, International Plan
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Figure 3.8 Clustered bar chart associated with Table 3.3.

Pie chart of International Plan

False
No

Yes

Category

Panel variable: Churn

True

Figure 3.9 Comparative pie chart associated with Table 3.3.
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bar chart of International Plan holders, by whether or not they have churned (“True”

or “False”).

To summarize, this EDA on the International Plan has indicated that

1. perhaps we should investigate what is it about our international plan that is

inducing our customers to leave;

2. we should expect that, whatever data mining algorithms we use to predict churn,

the model will probably include whether or not the customer selected the Inter-

national Plan.

Let us now turn to the Voice Mail Plan. Figure 3.10 shows, using a bar graph

with equalized lengths, that those who do not have the Voice Mail Plan are more

likely to churn than those who do have the plan. (The numbers in the graph indicate

proportions and counts of those who do and do not have the Voice Mail Plan, without

reference to churning.)

Again, we may quantify this finding by using a contingency table. Because we

are interested in comparing the percentages of the row variable (Churn) for each value

of the column variable (Voice Mail Plan), we choose a contingency table with column

percentages, shown in Table 3.4.

The marginal distribution for Voice Mail Plan (row total) indicates that

842+ 80= 922 customers have the Voice Mail Plan, while 2008+ 403= 2411 do

not. We then find that 403/2411= 16.7% of those without the Voice Mail Plan are

churners, as compared to 80/922= 8.7% of customers who do have the Voice Mail

Plan. Thus, customers without the Voice Mail Plan are nearly twice as likely to churn

as customers with the plan.

Figure 3.10 Those without the voice mail plan are more likely to churn.

TABLE 3.4 Contingency table with column percentages for the Voice Mail Plan

Voice Mail Plan

No Yes Total

Churn False Count 2008

Col% 83.3%

Count 842

Col% 91.3%

Count 2850

Col% 85.5%

True Count 403

Col% 16.7%

Count 80

Col% 8.7%

Count 483

Col% 14.5%

Total 2411 922 3333
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To summarize, this EDA on the Voice Mail Plan has indicated that

1. perhaps we should enhance our Voice Mail Plan still further, or make it easier

for customers to join it, as an instrument for increasing customer loyalty;

2. we should expect that, whatever data mining algorithms we use to predict churn,

the model will probably include whether or not the customer selected the Voice

Mail Plan. Our confidence in this expectation is perhaps not quite as high as for

the International Plan.

We may also explore the two-way interactions among categorical variables with

respect to churn. For example, Figure 3.11 shows a multilayer clustered bar chart of

churn, clustered by both International Plan and Voice Mail Plan.

The statistics associated with Figure 3.11 are shown in Table 3.5. Note

that there are many more customers who have neither plan (1878+ 302= 2180)

than have the international plan only (130+ 101= 231). More importantly, among

customers with no voice mail plan, the proportion of churners is greater for those

who do have an international plan (101/231= 44%) than for those who do not

(302/2180= 14%).There are many more customers who have the voice mail plan

only (786+ 44= 830) than have both plans (56+ 36= 92). Again, however, among

customers with the voice mail plan, the proportion of churners is much greater for

those who also select the international plan (36/92= 39%) than for those who do not

(44/830= 5%).Note also that there is no interaction among the categorical variables.

That is, international plan holders have greater churn regardless of whether they are

Voice Mail plan adopters or not.

Finally, Figure 3.12 shows a directed web graph of the relationships between

International Plan holders, Voice Mail Plan holders, and churners. Web graphs are

graphical representations of the relationships between categorical variables. Note that

three lines lead to the Churn= False node, which is good. However, note that one faint

line leads to the Churn=True node, that of the International Plan holders, indicating
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Figure 3.11 Multilayer clustered bar chart.
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TABLE 3.5 Statistics for multilayer clustered bar chart

International Plan

No
No

Yes
Yes

Churn

FalseTrue

Voice Mail Plan

Figure 3.12 Directed web graph supports earlier findings.

that a greater proportion of International Plan holders choose to churn. This supports

our earlier findings.

3.4 EXPLORING NUMERIC VARIABLES

Next, we turn to an exploration of the numeric predictive variables. Refer back to

Figure 3.2 and for histograms and summary statistics of the various predictors. Note

that many fields show evidence of symmetry, such as account length and all of the
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minutes, charge, and call fields. Fields not showing evidence of symmetry include

voice mail messages and customer service calls. The median for voice mail messages
is zero, indicating that at least half of all customers had no voice mail messages.

This results of course from fewer than half of the customers selecting the Voice Mail

Plan, as we saw above. The mean of customer service calls (1.563) is greater than

the median (1.0), indicating some right-skewness, as also indicated by the maximum

number of customer service calls being nine.

Unfortunately, the usual type of histogram (such as those in Figure 3.2) does

not help us determine whether the predictor variables are associated with the target

variable. To explore whether a predictor is useful for predicting the target variable,

we should use an overlay histogram, which is a histogram where the rectangles are

colored according to the values of the target variable. For example, Figure 3.13 shows

a histogram of the predictor variable customer service calls, with no overlay. We can

see that the distribution is right skewed with a mode of one call, but we have no

information on whether this variable is useful for predicting churn. Next, Figure 3.14

shows a histogram of customer service calls, with an overlay of the target variable

churn.
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Figure 3.13 Histogram of customer service calls with no overlay.

Figure 3.14 hints that the churn proportion may be greater for higher numbers

of customer service calls, but it is difficult to discern this result unequivocally. We

therefore turn to the “normalized” histogram, where every rectangle has the same

height and width, as shown in Figure 3.15. Note that the proportions of churners

versus non-churners in Figure 3.15 is exactly the same as in Figure 3.14; it is just

that “stretching out” the rectangles that have low counts enables better definition and

contrast.

The pattern now becomes crystal clear. Customers who have called customer

service three times or less have a markedly lower churn rate (red part of the rectangle)

than customers who have called customer service four or more times.

This EDA on the customer service calls has indicated that
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Figure 3.14 Histogram of customer service calls with churn overlay.

1. we should carefully track the number of customer service calls made by each

customer. By the third call, specialized incentives should be offered to retain

customer loyalty, because, by the fourth call, the probability of churn increases

greatly;

2. we should expect that, whatever data mining algorithms we use to predict churn,

the model will probably include the number of customer service calls made by

the customer.

Important note: Normalized histograms are useful for teasing out the rela-

tionship between a numerical predictor and the target. However, data analysts should

always provide the companion a non-normalized histogram along with the normal-

ized histogram, because the normalized histogram does not provide any information

on the frequency distribution of the variable. For example, Figure 3.15 indicates that
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Figure 3.15 “Normalized” histogram of customer service calls with churn overlay.
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Figure 3.16 (a) Non-normalized histogram of day minutes. (b) Normalized histogram of day

minutes.

the churn rate for customers logging nine service calls is 100%; but Figure 3.14 shows

that there are only two customers with this number of calls.

Let us now turn to the remaining numerical predictors. The normalized his-

togram of Day Minutes in Figure 3.16b shows that high day-users tend to churn at a

higher rate. Therefore,

1. we should carefully track the number of day minutes used by each customer. As

the number of day minutes passes 200, we should consider special incentives;

2. we should investigate why heavy day-users are tempted to leave;

3. we should expect that our eventual data mining model will include day minutes
as a predictor of churn.

Figure 3.17b shows a slight tendency for customers with higher evening
minutes to churn. Based solely on the graphical evidence, however, we cannot

conclude beyond a reasonable doubt that such an effect exists. Therefore, we shall

hold off on formulating policy recommendations on evening cell-phone use until our

data mining models offer firmer evidence that the putative effect is in fact present.
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Figure 3.17 (a) Non-normalized histogram of evening minutes. (b) Normalized histogram of

evening minutes.

Figures 3.18b indicates that there is no obvious association between churn and

night minutes, as the pattern is relatively flat. In fact, EDA would indicate no obvious
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Figure 3.18 (a) Non-normalized histogram of night minutes. (b) Normalized histogram of

night minutes.

association with the target for any of the remaining numeric variables in the data set

(except one), although showing this is left as an exercise.

Note: The lack of obvious association at the EDA stage between a predictor and
a target variable is not sufficient reason to omit that predictor from the model. For

example, based on the lack of evident association between churn and night minutes,

we will not necessarily expect the data mining models to uncover valuable predictive

information using this predictor. However, we should nevertheless retain the predic-

tor as an input variable for the data mining models, because actionable associations

may still exist for identifiable subsets of the records, and they may be involved in

higher-dimension associations and interactions. In any case, unless there is a good

reason for eliminating the variable before modeling, then we should probably allow

the modeling process to identify which variables are predictive and which are not.
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Figure 3.19 (a) Non-normalized histogram of international calls. (b) Normalized histogram

of international calls.

For example, Figure 3.19a and 3.19b, of the predictor International Calls with

churn overlay, do not indicate strong graphical evidence of the predictive importance

of International Calls. However, a t-test (see Chapter 5) for the difference in mean

number of international calls for churners and non-churners is statistically significant

(Table 3.6, p-value= 0.003; p-values larger than, say, 0.10 are not considered signifi-

cant; see Chapter 5), meaning that this variable is indeed useful for predicting churn:

Churners tend to place a lower mean number of international calls. Thus, had we

omitted International Calls from the analysis based on the seeming lack of graphical
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TABLE 3.6 t-test is significant for difference in mean international calls for churners and
non-churners

evidence, we would have committed a mistake, and our predictive model would not

perform as well.

A hypothesis test, such as this t-test, represents statistical inference and model

building, and as such lies beyond the scope of EDA. We mention it here merely to

underscore the importance of not omitting predictors, merely because their relation-

ship with the target is nonobvious using EDA.

3.5 EXPLORING MULTIVARIATE RELATIONSHIPS

We next turn to an examination of the possible multivariate associations of numeric

variables with churn, using scatter plots. Multivariate graphics can uncover new inter-

action effects which our univariate exploration missed.

Figure 3.20 shows a scatter plot of day minutes versus evenings minutes, with

churners indicated by the darker circles. Note the straight line partitioning off the

upper right section of the graph. Records above this diagonal line, representing cus-

tomers with both high day minutes and high evening minutes, appear to have a higher

proportion of churners than records below the line. The univariate evidence for a high

churn rate for high evening minutes was not conclusive (Figure 3.17b), so it is nice

to have a multivariate graph that supports the association, at least for customers with

high day minutes.

Figure 3.21 shows a scatter plot of customer service calls versus day minutes.

Churners and non-churners are indicated with large and small circles, respectively.

Consider the records inside the rectangle partition shown in the scatter plot, which

indicates a high-churn area in the upper left section of the graph. These records

represent customers who have a combination of a high number of customer ser-

vice calls and a low number of day minutes used. Note that this group of customers

could not have been identified had we restricted ourselves to univariate exploration

(exploring variable by single variable). This is because of the interaction between the

variables.

In general, customers with higher numbers of customer service calls tend to

churn at a higher rate, as we learned earlier in the univariate analysis. However,
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Figure 3.20 Customers with both high day minutes and high evening minutes are at greater

risk of churning.

Figure 3.21 shows that, of these customers with high numbers of customer service

calls, those who also have high day minutes are somewhat “protected” from this high

churn rate. The customers in the upper right of the scatter plot exhibit a lower churn

rate than those in the upper left. But how do we quantify these graphical findings?

3.6 SELECTING INTERESTING SUBSETS OF THE DATA
FOR FURTHER INVESTIGATION

Graphical EDA can uncover subsets of records that call for further investigation, as

the rectangle in Figure 3.21 illustrates. Let us examine the records in the rectangle

more closely. IBM/SPSS Modeler allows the user to click and drag a box around

data points of interest, and select them for further investigation. Here, we select the

records within the rectangular box in the upper left. Figure 3.22 shows that about 65%

(115 of 177) of the selected records are churners. That is, those with high customer

service calls and low day minutes have a 65% probability of churning. Compare this

to the records with high customer service calls and high day minutes (essentially

the data points to the right of the rectangle). Figure 3.23 shows that only about 26%

of customers with high customer service calls and high day minutes are churners.

Thus, it is recommended that we red-flag customers with low day minutes who have

a high number of customer service calls, as they are at much higher risk of leaving
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Figure 3.21 There is an interaction effect between customer service calls and day minutes
with respect to churn.

Figure 3.22 Very high proportion of churners for high customer service calls and low day

minutes.

the company’s service than the customers with the same number of customer service

calls, but higher day minutes.

To summarize, the strategy we implemented here is as follows:

1. Generate multivariate graphical EDA, such as scatter plots with a flag overlay.

2. Use these plots to uncover subsets of interesting records.

3. Quantify the differences by analyzing the subsets of records.

3.7 USING EDA TO UNCOVER ANOMALOUS FIELDS

EDA will sometimes uncover strange or anomalous records or fields that the earlier

data cleaning phase may have missed. Consider, for example, the area code field in the
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Figure 3.23 Much lower proportion of churners for high customer service calls and high day

minutes.

present data set. Although the area codes contain numerals, they can also be used as

categorical variables, as they can classify customers according to geographic location.

We are intrigued by the fact that the area code field contains only three different values

for all the records, 408, 415, and 510 (which all happen to be California area codes),

as shown by Figure 3.24.

Figure 3.24 Only three area codes for all records.

Now, this would not be anomalous if the records indicated that the customers all

lived in California. However, as shown in the contingency table in Figure 3.25 (shown

only up to Georgia, to save space), the three area codes seem to be distributed more or

less evenly across all the states and the District of Columbia. Also, the chi-square test

(see Chapter 6) has a p-value of 0.608, supporting the suspicion that the area codes

are distributed randomly across all the states. Now, it is possible that domain experts

might be able to explain this type of behavior, but it is also possible that the field just

contains bad data.

We should therefore be wary of this area code field, and should not include it

as input to the data mining models in the next phase. Further, the state field may be

in error as well. Either way, further communication with someone familiar with the

data history, or a domain expert, is called for before inclusion of these variables in

the data mining models.

3.8 BINNING BASED ON PREDICTIVE VALUE

Chapter 2 discussed four methods for binning numerical variables. Here we pro-

vide two examples of the fourth method: Binning based on predictive value. Recall

Figure 3.15, where we saw that customers with less than four calls to customer ser-

vice had a lower churn rate than customers who had four or more calls to customer

service. We may therefore decide to bin the customer service calls variable into two

classes, low (fewer than four) and high (four or more). Table 3.7 shows that the churn

rate for customers with a low number of calls to customer service is 11.3%, while the
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Figure 3.25 Anomaly: three area codes distributed randomly across all 50 states.

TABLE 3.7 Binning customer service calls shows difference in churn rates

CustServPlan_Bin

Low High

Churn False Count 2721 Col% 88.7% Count 129 Col% 48.3%

True Count 345 Col% 11.3% Count 138 Col% 51.7%

churn rate for customers with a high number of calls to customer service is 51.7%,

more than four times higher.

This binning of customer service calls created a flag variable with two values,

high and low. Our next example of binning creates an ordinal categorical variable with

three values, low, medium, and high. Recall that we are trying to determine whether

there is a relationship between evening minutes and churn. Figure 3.17b hinted at a

relationship, but inconclusively. Can we use binning to help tease out a signal from

this noise? We reproduce Figure 3.17b here as Figure 3.26, somewhat enlarged, and

with the boundaries between the bins indicated.

Binning is an art, requiring judgment. Where can I insert boundaries between
the bins that will maximize the difference in churn proportions? The first boundary

is inserted at evening minutes= 160, as the group of rectangles to the right of this

boundary seem to have a higher proportion of churners than the group of rectangles

to the left. And the second boundary is inserted at evening minutes= 240 for the

same reason. (Analysts may fine tune these boundaries for maximum contrast, but

for now these boundary values will do just fine; remember that we need to explain
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Figure 3.26 Binning evening minutes helps to tease out a signal from the noise.

TABLE 3.8 Bin values for Evening Minutes

Bin for Categorical Variable Values of Numerical Variable

Evening Minutes_Bin Evening Minutes

Low Evening minutes ≤ 160

Medium 160 < Evening minutes ≤ 240

High Evening minutes > 240

our results to the client, and that nice round numbers are more easily explained.)

These boundaries thus define three bins, or categories, shown in Table 3.8.

Did the binning manage to tease out a signal? We can answer this by

constructing a contingency table of EveningMinutes_Bin with Churn, shown in

Table 3.9.

About half of the customers have medium amounts of evening minutes

(1626/3333= 48.8%), with about one-quarter each having low and high evening

minutes. Recall that the baseline churn rate for all customers is 14.49% (Figure 3.3).

The medium group comes in very close to this baseline rate, 14.1%. However, the

high evening minutes group has nearly double the churn proportion compared to the

low evening minutes group, 19.5–10%. The chi-square test (Chapter 6) is significant,

meaning that these results are most likely real and not due to chance alone. In other

words, we have succeeded in teasing out a signal from the evening minutes versus

churn relationship.
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TABLE 3.9 We have uncovered significant differences in churn rates among the
three categories

EveningMinutes_Bin

Low Medium High

Churn False Count 618

Col% 90.0%

Count 1626

Col% 85.9%

Count 606

Col% 80.5%

True Count 69

Col% 10.0%

Count 138

Col% 14.1%

Count 138

Col% 19.5%

3.9 DERIVING NEW VARIABLES: FLAG VARIABLES

Strictly speaking, deriving new variables is a data preparation activity. However, we

cover it here in the EDA chapter to illustrate how the usefulness of the new derived

variables in predicting the target variable may be assessed. We begin with an example

of a derived variable which is not particularly useful. Figure 3.2 shows a spike in the

distribution of the variable Voice Mail Messages, which makes its analysis problem-

atic. We therefore derive a flag variable (see Chapter 2), VoiceMailMessages_Flag,

to address this problem, as follows:

If Voice Mail Messages> 0 then

VoiceMailMessages_Flag=1;

otherwiseVoiceMailMessages_Flag = 0.

The resulting contingency table is shown in Table 3.10. Compare the results

with those from Table 3.4, the contingency table for the Voice Mail Plan. The results

are exactly the same, which is not surprising, as those without the plan can have no

voice mail messages. Thus, as VoiceMailMessages_Flag has identical values as the

flag variable Voice Mail Plan, it is not deemed to be a useful derived variable.

TABLE 3.10 Contingency table for VoiceMailMessages_Flag

VoiceMailMessages_Flag

0 1

Churn False Count 2008 Col% 83.3% Count 842 Col% 91.3%

True Count 403 Col% 16.7% Count 80 Col% 8.7%

Recall Figure 3.20 (reproduced here as Figure 3.27), showing a scatter plot of

day minutes versus evening minutes, with a straight line separating a group in the

upper right(with both high day minutes and high evening minutes) that apparently

churns at a greater rate. It would be nice to quantify this claim. We do so by selecting

the records in the upper right, and compare their churn rate to that of the other records.

One way to do this in IBM/SPSS Modeler is to draw an oval around the desired

records, which the software then selects (not shown). However, this method is ad
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hoc, and not portable to a different data set (say the validation set). A better idea is

to

1. estimate the equation of the straight line;

2. use the equation to separate the records, via a flag variable.

This method is portable to a validation set or other related data set.

We estimate the equation of the line in Figure 3.27 to be:

ŷ = 400 − 0.6x

That is, for each customer, the estimated day minutes equals 400 min minus 0.6

times the evening minutes. We may then create a flag variable HighDayEveMins_Flag
as follows:

If Day Minutes > 400–0.6 Evening Minutes then

HighDayEveMins_Flag = 1;

otherwiseHighDayEveMins_Flag = 0.

Then each data point above the line will have HighDayEveMins_Flag= 1,

while the data points below the line will have HighDayEveMins_Flag= 0. The

resulting contingency table (Table 3.11) shows the highest churn proportion of any
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Figure 3.27 Use the equation of the line to separate the records via a flag variable.
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TABLE 3.11 Contingency table for HighDayEveMins_Flag

HighDayEveMins_Flag

0 1

Churn False Count 2792 Col% 89.0% Count 58 Col% 29.6%

True Count 345 Col% 11.0% Count 138 Col% 70.4%

variable we have studied thus far, 70.4 versus 11%, a more than sixfold difference.

However, this 70.4% churn rate is restricted to a subset of fewer than 200 records,

fortunately for the company.

A NOTE ABOUT CRISP-DM FOR DATA MINERS: BE STRUCTURED
BUT FLEXIBLE

For EveningMinutes_Bin we referred to the chi-square significance test (Chapter 6),

which really belongs to the modeling phase of data analysis. Also, our derived variable

really belongs to the data preparation phase. These examples illustrate the flexibility

of the cross-industry standard process for data mining (CRISP-DM) standard practice

(or indeed any well-structured standard practice) of data mining. The assorted phases

are interdependent, and should not be viewed as isolated from each other. For example,

deriving variables is a data preparation activity, but derived variables need to be explored

using EDA and (sometimes) significance tests. The data miner needs to be as flexible as

CRISP-DM.

However, some data analysts fall victim to the opposite problem, interminably iter-

ating back and forth between data preparation and EDA, getting lost in the details, and

never advancing toward the research objectives. When this happens, CRISP-DM can serve

as a useful road map, a structure to keep the data miner organized and moving toward the

fulfillment of the research goals.

3.10 DERIVING NEW VARIABLES: NUMERICAL
VARIABLES

Suppose we would like to derive a new numerical variable which combines Customer
Service Calls and International Calls, and whose values will be the mean of the two

fields. Now, as International Calls have a larger mean and standard deviation than

Customer Service Calls, it would be unwise to take the mean of the raw field values,

as International Calls would thereby be more heavily weighted. Instead, when com-

bining numerical variables, we first need to standardize. The new derived variable

therefore takes the form:

CSCInternational_Z = (CSC_Z + International_Z)
2

where CSC_Z represents the z-score standardization of Customer Service Calls and

International_Z represents the z-score standardization of International Calls. The
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Figure 3.28 (a) Non-normalized histogram of CSCInternational_Z. (b) Normalized his-

togram of CSCInternational_Z.

resulting normalized histogram of CSCInternational_Z indicates that it will be useful

for predicting churn, as shown in Figure 3.28b.

3.11 USING EDA TO INVESTIGATE CORRELATED
PREDICTOR VARIABLES

Two variables x and y are linearly correlated if an increase in x is associated with

either an increase in y or a decrease in y. The correlation coefficient r quanti-

fies the strength and direction of the linear relationship between x and y. The

threshold for significance of the correlation coefficient r depends not only on the

sample size but also on data mining, where there are a large number of records

(over 1000), even small values of r, such as −0.1 ≤ r ≤ 0.1 may be statistically

significant.

One should take care to avoid feeding correlated variables to one’s data

mining and statistical models. At best, using correlated variables will overem-

phasize one data component; at worst, using correlated variables will cause

the model to become unstable and deliver unreliable results. However, just
because two variables are correlated does not mean that we should omit
one of them. Instead, while in the EDA stage, we should apply the following

strategy.

STRATEGY FOR HANDLING CORRELATED PREDICTOR VARIABLES
AT THE EDA STAGE

1. Identify any variables that are perfectly correlated (i.e., r = 1.0 or r = −1.0). Do not

retain both variables in the model, but rather omit one.

2. Identify groups of variables that are correlated with each other. Then, later, during the

modeling phase, apply dimension-reduction methods, such as principal components
analysis,2 to these variables.

2For more on dimension reductions and principal components analysis, see Chapter 4.
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Figure 3.29 Matrix plot of day minutes, day calls, and day charge.

Note that this strategy applies to uncovering correlation among the predictors

alone, not between a given predictor and the target variable.

Turning to our data set, for each of day, evening, night, and international,
the data set contains three variables, minutes, calls, and charge. The data descrip-

tion indicates that the charge variable may be a function of minutes and calls, with

the result that the variables would be correlated. We investigate using a matrix plot
(Figure 3.29), which is a matrix of scatter plots for a set of numeric variables, in this

case for day minutes, day calls, and day charge. Table 3.12 contains the correlation

coefficient values and the p-values for each pairwise set of variables.

There does not seem to be any relationship between day minutes and day calls,

nor between day calls and day charge. This we find to be rather odd, as one may have

expected that, as the number of calls increased, the number of minutes would tend to

increase (and similarly for charge), resulting in a positive correlation between these

TABLE 3.12 Correlations and p-values



80 CHAPTER 3 EXPLORATORY DATA ANALYSIS

fields. However, the graphical evidence in Figure 3.29 does not support this, nor do

the correlations in Table 3.12, which are r= 0.07 for both relationships, with large

p-values of 0.697.

However, there is a perfect linear relationship between day minutes and day
charge, indicating that day charge is a simple linear function of day minutes only.

Using Minitab’s regression tool (see Table 3.13), we find that we may express this

function as the estimated regression equation: “Day charge equals 0.000613 plus 0.17

times day minutes.” This is essentially a flat rate model, billing 17 cents per minute

for day use. Note from Table 3.13 that the R-squared statistic is precisely 100%,

indicating a perfect linear relationship.

TABLE 3.13 Minitab regression output for Day Charge versus Day Minutes

Regression Analysis: Day Charge versus Day Mins 

The regression equation is 
Day Charge =0.000613 + 0.170 Day Mins 

Predictor        Coef     SE Coef          T        P 
Constant    0.0006134   0.0001711       3.59    0.000 
Day Mins     0.170000    0.000001  186644.31    0.000 

S = 0.002864    R-Sq = 100.0%    R-Sq(adj) = 100.0% 

As day charge is perfectly correlated with day minutes, we should eliminate

one of the two variables. We do so, arbitrarily choosing to eliminate day charge and

retain day minutes. Investigation of the evening, night, and international components

reflected similar findings, and we thus also eliminate evening charge, night charge,

and international charge. Note that, had we proceeded to the modeling phase with-

out first uncovering these correlations, our data mining and statistical models may

have returned incoherent results, due, for example, to multicollinearity in multiple

regression. We have therefore reduced the number of predictors from 20 to 16 by

eliminating one of each pair of perfectly correlated predictors. A further benefit of

doing so is that the dimensionality of the solution space is reduced so that certain data

mining algorithms may more efficiently find the globally optimal solution.

After dealing with the perfectly correlated predictors, the data analyst should

turn to step 2 of the strategy, and identify any other correlated predictors, for later

handling with principal components analysis. The correlation of each numerical

predictor with every other numerical predictor should be checked, if feasible.

Correlations with small p-values should be identified. A subset of this procedure

is shown here in Table 3.14. Note that the correlation coefficient 0.038 between

account length and day calls has a small p-value of 0.026, telling us that account

length and day calls are positively correlated. The data analyst should note this,

and prepare to apply the principal components analysis during the modeling

phase.
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TABLE 3.14 Account length is positively correlated with day calls

3.12 SUMMARY OF OUR EDA

Let us consider some of the insights we have gained into the churn data set through

the use of EDA. We have examined each of the variables (here and in the exercises),

and have taken a preliminary look at their relationship with churn.

• The four charge fields are linear functions of the minute fields, and should be

omitted.

• The area code field and/or the state field are anomalous, and should be omitted

until further clarification is obtained.

Insights with respect to churn are as follows:

• Customers with the International Plan tend to churn more frequently.

• Customers with the Voice Mail Plan tend to churn less frequently.

• Customers with four or more Customer Service Calls churn more than four

times as often as the other customers.

• Customers with both high Day Minutes and high Evening Minutes tend to churn

at a higher rate than the other customers.

• Customers with both high Day Minutes and high Evening Minutes churn at a

rate about six times greater than the other customers.

• Customers with low Day Minutes and high Customer Service Calls churn at a

higher rate than the other customers.

• Customers with lower numbers of International Calls churn at a higher rate

than do customers with more international calls.

• For the remaining predictors, EDA uncovers no obvious association of churn.

However, these variables are still retained for input to downstream data mining

models and techniques.
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Note the power of EDA. We have not applied any high-powered data mining

algorithms yet on this data set, such as decision trees or neural network algorithms.

Yet, we have still gained considerable insight into the attributes that are associated

with the customers leaving the company, simply by careful application of EDA. These

insights can be easily formulated into actionable recommendations so that the com-

pany can take action to lower the churn rate among its customer base.

THE R ZONE

# Read in the Churn data set

churn <- read.csv(file =
"C:/… /churn.txt",

stringsAsFactors=TRUE)

# Show the first ten records

churn[1:10,]

# Summarize the Churn variable

sum.churn <- summary(churn$Churn)

sum.churn

# Calculate proportion of churners

prop.churn <- sum(churn$Churn ==
"True") / length(churn$Churn)

prop.churn

# Bar chart of variable Churn

barplot(sum.churn,

ylim = c(0, 3000),

main= "Bar Graph of Churners and

Non-Churners",

col = "lightblue")

box(which = "plot",

lty = "solid",

col="black")
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# Make a table for counts of Churn and International Plan

counts <- table(churn$Churn,

churn$Int.l.Plan,

dnn=c("Churn", "International Plan"))

counts

#Overlayed bar chart

barplot(counts,

legend = rownames(counts),

col = c("blue", "red"),

ylim = c(0, 3300),

ylab = "Count",

xlab = "International Plan",

main = "Comparison Bar Chart:

Churn Proportions by

International Plan")

box(which = "plot",

lty = "solid",

col="black")

Yes
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Comparison bar chart:
churn proportions by International Plan
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# Create a table with sums for both variables

sumtable <- addmargins(counts,

FUN = sum)

sumtable

# Create a table of proportions over rows

row.margin <- round(prop.table(counts,

margin = 1),

4)*100

row.margin



84 CHAPTER 3 EXPLORATORY DATA ANALYSIS

# Create a table of proportions over columns

col.margin <- round(prop.table(counts,

margin = 2),

4)*100

col.margin

# Clustered Bar Chart, with legend

barplot(counts,

col = c("blue", "red"),

ylim = c(0, 3300),

ylab = "Count",

xlab = "International Plan",

main = "Churn Count by

International Plan",

beside = TRUE)

legend("topright",

c(rownames(counts)),

col = c("blue", "red"),

pch = 15,

title = "Churn")

box(which = "plot",

lty = "solid",

col="black")
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# Clustered Bar Chart of Churn and International Plan with legend

barplot(t(counts),

col = c("blue", "green"),

ylim = c(0, 3300),

ylab = "Counts",

xlab = "Churn",

main = "International Plan Count by

Churn",

beside = TRUE)

legend("topright",

c(rownames(counts)),

col = c("blue", "green"),

pch = 15,

title = "Int’l Plan")

box(which = "plot",

lty = "solid",

col="black")
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# Histogram of non-overlayed Customer Service Calls

hist(churn$CustServ.Calls,

xlim = c(0,10),

col = "lightblue",

ylab = "Count",

xlab = "Customer Service Calls",

main = "Histogram of Customer Service

Calls")
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# Download and install the R Package ggplot2

install.packages("ggplot2")

# Pick any CRAN mirror

# (see example image)

# Open the new package

library(ggplot2)

# Overlayed bar charts

ggplot() +
geom_bar(data = churn,

aes(x = factor(churn$CustServ.Calls),

fill = factor(churn$Churn)),

position = "stack") +
scale_x_discrete("Customer Service Calls") +
scale_y_continuous("Percent") +
guides(fill=guide_legend(title="Churn")) +
scale_fill_manual(values=c("blue", "red"))
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ggplot() +
geom_bar(data=churn,

aes(x = factor(churn$CustServ.Calls),

fill = factor(churn$Churn)),

position = "fill") +
scale_x_discrete("Customer Ser-

vice Calls") +
scale_y_continuous("Percent") +

guides(fill=guide_legend(title="Churn"))+
scale_fill_manual(values=c("blue", "red"))
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# Two-sample T-Test for Int’l Calls

# Partition data

churn.false <- subset(churn,

churn$Churn ==
"False")

churn.true <- subset(churn,

churn$Churn ==
"True")

# Run the test

t.test(churn.false$Intl.Calls,

churn.true$Intl.Calls)

# Scatterplot of Evening Minutes and Day Minutes, colored
by Churn

plot(churn$Eve.Mins,

churn$Day.Mins,

xlim = c(0, 400),

ylim = c(0, 400),

xlab = "Evening Minutes",

ylab = "Day Minutes",

main = "Scatterplot of Day

and Evening Minutes by

Churn",

col = ifelse(churn$Churn==
"True",

"red",

"blue"))

legend("topright",

c("True",

"False"),

col = c("red",

"blue"),

pch = 1,

title = "Churn")
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# Scatterplot of Day Minutes and Customer Service Calls, colored
by Churn

plot(churn$Day.Mins,

churn$CustServ.Calls,

xlim = c(0, 400),

xlab = "Day Minutes",

ylab = "Customer Service Calls",

main = "Scatterplot of Day Minutes and

Customer Service Calls by Churn",

col = ifelse(churn$Churn=="True",

"red",

"blue"),

pch = ifelse(churn$Churn=="True",

16, 20))

legend("topright",

c("True",

"False"),

col = c("red",

"blue"),

pch = c(16, 20),

title = "Churn")
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# Scatterplot matrix

pairs(∼churn$Day.Mins+
churn$Day.Calls+
churn$Day.Charge) churn$Day .Mins

churn$Day .Calls

churn$Day .Charge
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# Regression of Day Charge vs Day Minutes

fit <- lm(churn$Day.Charge ∼
churn$Day.Mins)

summary(fit)
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# Correlation values, with p-values

days <- cbind(churn$Day.Mins,

churn$Day.Calls,

churn$Day.Charge)

MinsCallsTest <- cor.test(churn$Day.Mins,

churn$Day.Calls)

MinsChargeTest <- cor.test(churn$Day.Mins,

churn$Day.Charge)

CallsChargeTest <- cor.test(churn$Day.Calls,

churn$Day.Charge)

round(cor(days),

4)

MinsCallsTest$p.value

MinsChargeTest$p.value

CallsChargeTest$p.value

# Correlation values and p-values in matrix form

# Collect variables of interest

corrdata <-

cbind(churn$Account.Length,

churn$VMail.Message,

churn$Day.Mins,

churn$Day.Calls,

churn$CustServ.Calls)

# Declare the matrix

corrpvalues <- matrix(rep(0, 25),

ncol = 5)

# Fill the matrix with correlations

for (i in 1:4) {

for (j in (i+1):5) {

corrpvalues[i,j] <-

corrpvalues[j,i] <-

round(cor.test(corrdata[,i],

corrdata[,j])$p.value,

4)

}

}

round(cor(corrdata), 4)

corrpvalues
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EXERCISES

1. Explain the difference between EDA and hypothesis testing, and why analysts may prefer

EDA when doing data mining.

2. Why do we need to perform EDA? Why should not we simply proceed directly to the

modeling phase and start applying our high-powered data mining software?

3. Why do we use contingency tables, instead of just presenting the graphical results?

4. How can we find the marginal distribution of each variable in a contingency table?

5. What is the difference between taking row percentages and taking column percentages in

a contingency table?

6. What is the graphical counterpart of a contingency table?

7. Describe what it would mean for interaction to take place between two categorical vari-

ables, using an example.

8. What type of histogram is useful for examining the relationship between a numerical

predictor and the target?

9. Explain one benefit and one drawback of using a normalized histogram. Should we ever

present a normalized histogram without showing its non-normalized counterpart?

10. Explain whether we should omit a predictor from the modeling stage if it does not show

any relationship with the target variable in the EDA stage, and why.

11. Describe how scatter plots can uncover patterns in two-dimensions that would be invisible

from one-dimensional EDA.

12. Make up a fictional data set (attributes with no records is fine) with a pair of anomalous

attributes. Describe how EDA would help to uncover the anomaly.

13. Explain the objective and the method of binning based on predictive value.

14. Why is binning based on predictive value considered to be somewhat of an art?

15. What step should precede the deriving of a new numerical variable representing the mean

of two other numerical variables?

16. What does it mean to say that two variables are correlated?

17. Describe the possible consequences of allowing correlated variables to remain in the

model.

http://www
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18. A common practice among some analysts when they encounter two correlated predictors

is to omit one of them from the analysis. Is this practice recommended?

19. Describe the strategy for handing correlated predictor variables at the EDA stage.

20. For each of the following descriptive methods, state whether it may be applied to categor-

ical data, continuous numerical data, or both.

a. Bar charts

b. Histograms

c. Summary statistics

d. Cross tabulations

e. Correlation analysis

f. Scatter plots

g. Web graphs

h. Binning.

HANDS-ON ANALYSIS

21. Using the churn data set, develop EDA which shows that the remaining numeric variables

in the data set (apart from those covered in the text above) indicate no obvious association

with the target variable.

Use the adult data set from the book series web site for the following exercises. The target

variable is income, and the goal is to classify income based on the other variables.

22. Which variables are categorical and which are continuous?

23. Using software, construct a table of the first 10 records of the data set, in order to get a

feel for the data.

24. Investigate whether we have any correlated variables.

25. For each of the categorical variables, construct a bar chart of the variable, with an overlay

of the target variable. Normalize if necessary.

a. Discuss the relationship, if any, each of these variables has with the target variables.

b. Which variables would you expect to make a significant appearance in any data mining

classification model we work with?

26. For each pair of categorical variables, construct a cross tabulation. Discuss your salient

results.

27. (If your software supports this.) Construct a web graph of the categorical variables. Fine

tune the graph so that interesting results emerge. Discuss your findings.

28. Report on whether anomalous fields exist in this data set, based on your EDA, which fields

these are, and what we should do about it.

29. Report the mean, median, minimum, maximum, and standard deviation for each of the

numerical variables.

30. Construct a histogram of each numerical variables, with an overlay of the target variable

income. Normalize if necessary.



EXERCISES 91

a. Discuss the relationship, if any, each of these variables has with the target variables.

b. Which variables would you expect to make a significant appearance in any data mining

classification model we work with?

31. For each pair of numerical variables, construct a scatter plot of the variables. Discuss your

salient results.

32. Based on your EDA so far, identify interesting sub-groups of records within the data set

that would be worth further investigation.

33. Apply binning to one of the numerical variables. Do it in such a way as to maximize the

effect of the classes thus created (following the suggestions in the text). Now do it in such

a way as to minimize the effect of the classes so that the difference between the classes is

diminished. Comment.

34. Refer to the previous exercise. Apply the other two binning methods (equal width, and

equal number of records) to this same variable. Compare the results and discuss the dif-

ferences. Which method do you prefer?

35. Summarize your salient EDA findings from the above exercises, just as if you were writing

a report.



C H A P T E R 4
DIMENSION-REDUCTION
METHODS

4.1 NEED FOR DIMENSION-REDUCTION
IN DATA MINING

The databases typically used in data mining may have millions of records and thou-

sands of variables. It is unlikely that all of the variables are independent, with no

correlation structure among them. Data analysts need to guard against multicollinear-
ity, a condition where some of the predictor variables are strongly correlated with

each other. Multicollinearity leads to instability in the solution space, leading to pos-

sible incoherent results, such as in multiple regression, where a multicollinear set

of predictors can result in a regression which is significant overall, even when none

of the individual variables is significant. Even if such instability is avoided, inclusion

of variables which are highly correlated tends to overemphasize a particular compo-

nent of the model, as the component is essentially being double counted.

Bellman1 noted that the sample size needed to fit a multivariate function grows

exponentially with the number of variables. In other words, higher-dimension spaces

are inherently sparse. For example, the empirical rule tells us that, in one-dimension,

about 68% of normally distributed variates lie between one and negative one standard

deviation from the mean; while, for a 10-dimension multivariate normal distribution,

only 2% of the data lies within the analogous hypersphere.2

The use of too many predictor variables to model a relationship with a response

variable can unnecessarily complicate the interpretation of the analysis, and violates

the principle of parsimony, that one should consider keeping the number of predictors

to such a size that would be easily interpreted. Also, retaining too many variables may

lead to overfitting, in which the generality of the findings is hindered because new data

do not behave the same as the training data for all the variables.

1Bellman, R., Adaptive Control Processes: A Guided Tour, Princeton University Press, 1961.
2Pace, R. Kelley and Ronald Berry, 1997. Sparse Spatial Autoregressions, Statistics and Probability Let-
ters, Vol 33, Number 3, May 5, 1997, pp. 291–297.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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Further, analysis solely at the variable-level might miss the fundamental under-

lying relationships among the predictors. For example, several predictors might fall

naturally into a single group, (a factor or a component), which addresses a single

aspect of the data. For example, the variables savings account balance, checking

account balance, home equity, stock portfolio value, and 401k balance might all fall

together under the single component, assets.

In some applications, such as image analysis, retaining full dimensionality

would make most problems intractable. For example, a face classification system

based on 256 × 256 pixel images could potentially require vectors of dimension

65,536.

Humans are innately endowed with visual pattern recognition abilities, which

enable us in an intuitive manner to discern patterns in graphic images at a glance: the

patterns that might elude us if presented algebraically or textually. However, even the

most advanced data visualization techniques do not go much beyond five dimensions.

How, then, can we hope to visualize the relationship among the hundreds of variables

in our massive data sets?

Dimension-reduction methods have the goal of using the correlation structure

among the predictor variables to accomplish the following:

• To reduce the number of predictor items.

• To help ensure that these predictor items are independent.

• To provide a framework for interpretability of the results.

In this chapter, we examine the following dimension-reduction methods:

• Principal components analysis (PCA)

• Factor analysis

• User-defined composites

This next section calls upon knowledge of matrix algebra. For those of you

whose matrix algebra may be rusty, concentrate on the meaning of Results 1–3 (see

below).3 Immediately after, we shall apply all of the following terminologies and

notations in terms of a concrete example, using the real-world data.

4.2 PRINCIPAL COMPONENTS ANALYSIS

PCA seeks to explain the correlation structure of a set of predictor variables, using a

smaller set of linear combinations of these variables. These linear combinations are

called components. The total variability of a data set produced by the complete set of

m variables can often be mostly accounted for by a smaller set of k linear combinations

of these variables, which would mean that there is almost as much information in the

k components as there is in the original m variables. If desired, the analyst can then

replace the original m variables with the k<m components, so that the working data

3Johnson and Wichern, Applied Multivariate Statistical Analysis, 6th edition, Prentice Hall, Upper Saddle

River, New Jersey, 2007.
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set now consists of n records on k components, rather than n records on m variables.

The analyst should note that PCA acts solely on the predictor variables, and ignores

the target variable.

Suppose that the original variables X1,X2, … ,Xm form a coordinate system in

m-dimensional space. The principal components represent a new coordinate system,

found by rotating the original system along the directions of maximum variability.

When preparing to perform data reduction, the analyst should first standardize

the data, so that the mean for each variable is zero, and the standard deviation is

one. Let each variable Xi represent an n × 1 vector, where n is the number of records.

Then, represent the standardized variable as the n × 1 vector Zi, where Zi =
(Xi−𝜇i)

𝜎ii
,

𝜇i is the mean of Xi, and 𝜎ii is the standard deviation of Xi. In matrix notation, this

standardization is expressed as Z = (V1∕2)−1(X − 𝛍), where the “−1” exponent refers

to the matrix inverse, and V1∕2 is a diagonal matrix (nonzero entries only on the

diagonal); the m × m standard deviation matrix is:

V1∕2 =

⎡⎢⎢⎢⎢⎢⎣

𝜎11 0 · · · 0

0 𝜎22 · · · 0

⋮ ⋮ ⋱ ⋮

0 0 · · · 𝜎mm

⎤⎥⎥⎥⎥⎥⎦
Let Σ refer to the symmetric covariance matrix:

Σ =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜎2
11

𝜎2
12

· · · 𝜎2
1m

𝜎2
12

𝜎2
22

· · · 𝜎2
2m

⋮ ⋮ ⋱ ⋮

𝜎2
1m 𝜎2

2m · · · 𝜎2
mm

⎤⎥⎥⎥⎥⎥⎥⎦
,

where 𝜎2
ij, i ≠ j refers to the covariance between Xi and Xj.

𝜎2
ij =

∑n
k=1(xki − 𝜇i)(xkj − 𝜇j)

n

The covariance is a measure of the degree to which two variables vary together. A

positive covariance indicates that, when one variable increases, the other tends to

increase, while a negative covariance indicates that, when one variable increases, the

other tends to decrease. The notation 𝜎2
ii is used to denote the variance of Xi. If Xi

and Xj are independent, then 𝜎2
ij = 0; but 𝜎2

ij = 0 does not imply that Xi and Xj are

independent. Note that the covariance measure is not scaled, so that changing the

units of measure would change the value of the covariance.

The correlation coefficient rij avoids this difficulty by scaling the covariance by

each of the standard deviations:

rij =
𝜎2

ij

𝜎ii𝜎jj
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Then, the correlation matrix is denoted as 𝛒 (rho, the Greek letter for r):

𝛒 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎2
11

𝜎11𝜎11

𝜎2
12

𝜎11𝜎22

· · ·
𝜎2

1m

𝜎11𝜎mm

𝜎2
12

𝜎11𝜎22

𝜎2
22

𝜎22𝜎22

· · ·
𝜎2

2m

𝜎22𝜎mm

⋮ ⋮ ⋱ ⋮

𝜎2
1m

𝜎11𝜎mm

𝜎2
2m

𝜎22𝜎mm
· · ·

𝜎2
mm

𝜎mm𝜎mm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Consider again the standardized data matrix Z = (V1∕2)−1(X − 𝛍). Then, as

each variable has been standardized we have E(Z) = 𝟎, where 0 denotes an n × m
matrix of zeroes, and Z has covariance matrix Cov(Z) = (V1∕2)−1Σ(V1∕2)−1 = 𝛒.

Thus, for the standardized data set, the covariance matrix and the correlation matrix

are the same.

The ith principal component of the standardized data matrix Z = [Z1,Z2,

… ,Zm] is given by: Yi = e′i Z, where ei refers to the ith eigenvector (discussed

below), and e′i refers to the transpose of ei. The principal components Y1,Y2, … ,Yk
are linear combinations of the standardized variables in Z, such that (a) the variances

of the Yi are as large as possible, and (b) the Yi’s are uncorrelated.

The first principal component is the linear combination Y1 = e′
1
Z = e11Z1 +

e21Z2 + · · · + em1Zm that has greater variability than any other possible linear com-

bination of the Z variables. Thus,

• the first principal component is the linear combination Y1 = e′
1
Z that maximizes

Var(Y1) = e′
1
𝜌e1;

• the second principal component is the linear combination Y2 = e′
2
Z that is inde-

pendent of Y1, and maximizes Var(Y2) = e′
2
𝜌e2;

• in general, the ith principal component is the linear combination Yi = e′i Z that

is independent of all the other principal components Yj, j < i, and maximizes

Var(Yi) = e′i𝜌ei.

Eigenvalues. Let B be an m × m matrix, and let I be the m × m identity matrix

(diagonal matrix with 1’s on the diagonal). Then the scalars (numbers of dimension

1 × 1) 𝜆1, 𝜆2, … , 𝜆m are said to be the eigenvalues of B if they satisfy |B − 𝜆I| = 0,

where |Q| denotes the determinant of Q.

Eigenvectors. Let B be an m × m matrix, and let 𝜆 be an eigenvalue of B. Then

nonzero m × 1 vector e is said to be an eigenvector of B, if Be = 𝜆e.

The following results are very important for our PCA analysis.

Result 1
The total variability in the standardized set of predictors equals the sum of

the variances of the Z-vectors, which equals the sum of the variances of

the components, which equals the sum of the eigenvalues, which equals the
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number of predictors. That is,

m∑
i=1

Var(Yi) =
m∑

i=1

Var(Zi) =
m∑

i=1

𝜆i = m.

Result 2
The partial correlation between a given component and a given

predictor variable is a function of an eigenvector and an eigen-

value. Specifically, Corr(Yi,Zj) = eij

√
𝜆i, i, j = 1, 2, … ,m, where

(𝜆1, e1), (𝜆2, e2), … , (𝜆m, em) are the eigenvalue–eigenvector pairs for the

correlation matrix 𝜌, and we note that 𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆m. In other words,

the eigenvalues are ordered by size. (A partial correlation coefficient is

a correlation coefficient that takes into account the effect of all the other

variables.)

Result 3
The proportion of the total variability in Z that is explained by the ith prin-

cipal component is the ratio of the ith eigenvalue to the number of variables,

that is, the ratio
𝜆i

m
.

Next, to illustrate how to apply PCA on real data, we turn to an example.

4.3 APPLYING PCA TO THE HOUSES DATA SET

We turn to the Houses data set,4 which provides census information from all the block
groups from the 1990 California census. For this data set, a block group has an average
of 1425.5 people living in an area that is geographically compact. Block groups were
excluded that contained zero entries for any of the variables. Median house value is
the response variable; the predictor variables are the following:

Median income Population

Housing median age Households

Total rooms Latitude

Total bedrooms Longitude

The original data set had 20,640 records, of which 18,540 were randomly

selected for a training data set, and 2100 held out for a test data set. A quick look at

the variables is provided in Figure 4.1. (“Range” indicates IBM Modeler’s type label

for continuous variables.)

Median house value appears to be in dollars, but median income has been scaled

to a 0–15 continuous scale. Note that longitude is expressed in negative terms, mean-

ing west of Greenwich. Larger absolute values for longitude indicate geographic

locations further west.

4Data set available from StatLib: http://lib.stat.cmu.edu/datasets/houses.zip. Also available at textbook

website: www.DataMiningConsultant.com.

http://lib.stat.cmu.edu/datasets/houses.zip
http://www.DataMiningConsultant.com
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Figure 4.1 A quick look at the houses data set.

Relating this data set to our earlier notation, we have X1 = median income,

X2 = housing median age, … , X8 = longitude, so that m= 8, and n= 18,540. A

glimpse of the first 20 records in the training data set looks like Figure 4.2. So, for

example, for the first block group, the median house value is $425,600, the median
income is 8.3252 (on the census scale), the housing median age is 41, the total rooms
is 880, the total bedrooms is 129, the population is 322, the number of households

Figure 4.2 A glimpse of the first twenty records in the houses data set.
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is 126, the latitude is 37.88 north, and the longitude is 122.23 west. Clearly, this is a

smallish block group with high median house value. A map search reveals that this

block group is centered between the University of California at Berkeley and Tilden

Regional Park.

Note from Figure 4.1 the great disparity in variability among the predictors. The

median income has a standard deviation less than 2, while the total rooms has a stan-

dard deviation over 2100. If we proceeded to apply PCA without first standardizing

the variables, total rooms would dominate median income’s influence, and similarly

across the spectrum of variabilities. Therefore, standardization is called for. The vari-

ables were standardized, and the Z-vectors found, Zi =
(Xi−𝜇i)

𝜎ii
, using the means and

standard deviations from Figure 4.1.

Note that normality of the data is not strictly required to perform non-inferential

PCA (Johnson and Wichern, 2006),5 but that strong departures from normality may

diminish the observed correlations (Hair et al., 2006).6 As data mining applications

usually do not involve inference, we will not worry about normality.

Next, we examine the matrix plot of the predictors in Figure 4.3 to explore

whether correlations exist. Diagonally from left to right, we have the standardized

variables minc_z (median income), hage_z (housing median age), rooms_z (total

rooms), bedrms_z (total bedrooms), popn_z (population), hhlds_z (number of house-

holds), lat_z (latitude), and long_z (longitude). What does the matrix plot tell us about

the correlation among the variables? Rooms, bedrooms, population, and households

all appear to be positively correlated. Latitude and longitude appear to be negatively

correlated. (What does the plot of latitude vs longitude look like? Did you say the

State of California?) Which variable appears to be correlated the least with the other

predictors? Probably housing median age. Table 4.1 shows the correlation matrix æ
for the predictors. Note that the matrix is symmetrical, and that the diagonal elements

all equal one. A matrix plot and the correlation matrix are two ways of looking at the

same thing: the correlation structure among the predictor variables. Note that the cells

for the correlation matrix 𝜌 line up one-to-one with the graphs in the matrix plot.

What would happen if we performed, say, a multiple regression analysis

of median housing value on the predictors, despite the strong evidence for multi-

collinearity in the data set? The regression results would become quite unstable,

with (among other things) tiny shifts in the predictors leading to large changes in the

regression coefficients. In short, we could not use the regression results for profiling.

This is where PCA comes in. PCA can sift through the correlation structure,

and identify the components underlying the correlated variables. Then, the princi-

pal components can be used for further analysis downstream, such as in regression

analysis, classification, and so on.

PCA was carried out on the eight predictors in the house data set. The compo-
nent matrix is shown in Table 4.2. Each of the columns in Table 4.2 represents one of

5Johnson and Wichern, Applied Multivariate Statistical Analysis, 6th edition. Prentice Hall, Upper Saddle

River, New Jersey, 2007.
6Hair, Black, Babin, Anderson, and Tatham, Multivariate Data Analysis, 6th edition, Prentice Hall, Upper

Saddle River, New Jersey, 2006.
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MINC_Z

HAGE_Z

ROOMS_Z

BEDRM_Z

POPN_Z

HHLDS_Z

LAT_Z

LONG_Z

Figure 4.3 Matrix plot of the predictor variables.

the components Yi = e′i Z. The cell entries are called the component weights, and rep-

resent the partial correlation between the variable and the component. Result 2 tells us

that these component weights therefore equal Corr(Yi,Zj) = eij

√
𝜆i, a product involv-

ing the ith eigenvector and eigenvalue. As the component weights are correlations,

they range between one and negative one.

In general, the first principal component may be viewed as the single best

summary of the correlations among the predictors. Specifically, this particular lin-

ear combination of the variables accounts for more variability than any other linear

combination. It has maximized the variance Var(Y1) = e′
1
𝜌e1. As we suspected from

the matrix plot and the correlation matrix, there is evidence that total rooms, total
bedrooms, population, and households vary together. Here, they all have very high

(and very similar) component weights, indicating that all four variables are highly

correlated with the first principal component.

Let us examine Table 4.3, which shows the eigenvalues for each component,

along with the percentage of the total variance explained by that component. Recall

that Result 3 showed us that the proportion of the total variability in Z that is explained
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TABLE 4.2 The component matrix

Component Matrixa

Component

1 2 3 4 5 6 7 8

MINC_Z 0.086 −0.058 0.922 0.370 −0.02 −0.018 0.037 −0.004

HAGE_Z −0.429 0.025 −0.407 0.806 0.014 0.026 0.009 −0.001

ROOMS_Z 0.956 0.100 0.102 0.104 0.120 0.162 −0.119 0.015

BEDRMS_Z 0.970 0.083 −0.121 0.056 0.144 −0.068 0.051 −0.083

POPN_Z 0.933 0.034 −0.121 0.076 −0.327 0.034 0.006 −0.015

HHLDS_Z 0.972 0.086 −0.113 0.087 0.058 −0.112 0.061 0.083

LAT_Z −0.140 0.970 0.017 −0.088 0.017 0.132 0.113 0.005

LONG_Z 0.144 −0.969 −0.062 −0.063 0.037 0.136 0.109 0.007

Extraction method: Principal component analysis.

aEight components extracted.

TABLE 4.3 Eigenvalues and proportion of variance
explained by each component

Initial Eigenvalues

Component Total % of Variance Cumulative%

1 3.901 48.767 48.767

2 1.910 23.881 72.648

3 1.073 13.409 86.057

4 0.825 10.311 96.368

5 0.148 1.847 98.215

6 0.082 1.020 99.235

7 0.047 0.586 99.821

8 0.014 0.179 100.000

by the ith principal component is
𝜆i

m
, the ratio of the ith eigenvalue to the number

of variables. Here, we see that the first eigenvalue is 3.901, and as there are eight

predictor variables, this first component explains 3.901∕8 = 48.767% of the variance,

as shown in Table 4.3 (allowing for rounding). So, a single component accounts for

nearly half of the variability in the set of eight predictor variables, meaning that this
single component by itself carries about half of the information in all eight predictors.

Notice also that the eigenvalues decrease in magnitude, 𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆m, 𝜆1 ≥

𝜆2 ≥ … ≥ 𝜆8, as we noted in Result 2.

The second principal component Y2 is the second-best linear combination of the

variables, on the condition that it is orthogonal to the first principal component. Two

vectors are orthogonal if they are mathematically independent, have no correlation,
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and are at right angles to each other. The second component is derived from the vari-

ability that is left over, once the first component has been accounted for. The third

component is the third-best linear combination of the variables, on the condition that

it is orthogonal to the first two components. The third component is derived from the

variance remaining after the first two components have been extracted. The remaining

components are defined similarly.

4.4 HOW MANY COMPONENTS SHOULD WE
EXTRACT?

Next, recall that one of the motivations for PCA was to reduce the number of distinct

explanatory elements. The question arises, “How do we determine how many compo-

nents to extract?” For example, should we retain only the first principal component,

as it explains nearly half the variability? Or, should we retain all eight components,

as they explain 100% of the variability? Well, clearly, retaining all eight components

does not help us to reduce the number of distinct explanatory elements. As usual,

the answer lies somewhere between these two extremes. Note from Table 4.3 that the

eigenvalues for several of the components are rather low, explaining less than 2% of

the variability in the Z-variables. Perhaps these would be the components we should

consider not retaining in our analysis?

The criteria used for deciding how many components to extract are the

following:

• The Eigenvalue Criterion

• The Proportion of Variance Explained Criterion

• The Minimum Communality Criterion

• The Scree Plot Criterion.

4.4.1 The Eigenvalue Criterion

Recall from Result 1 that the sum of the eigenvalues represents the number of vari-

ables entered into the PCA. An eigenvalue of 1 would then mean that the component

would explain about “one variable’s worth” of the variability. The rationale for using

the eigenvalue criterion is that each component should explain at least one variable’s

worth of the variability, and therefore, the eigenvalue criterion states that only com-

ponents with eigenvalues greater than 1 should be retained. Note that, if there are

fewer than 20 variables, the eigenvalue criterion tends to recommend extracting too

few components, while, if there are more than 50 variables, this criterion may rec-

ommend extracting too many. From Table 4.3, we see that three components have

eigenvalues greater than 1, and are therefore retained. Component 4 has an eigenvalue

of 0.825, which is not too far from one, so that we may decide to consider retaining

this component as well, if other criteria support such a decision, especially in view

of the tendency of this criterion to recommend extracting too few components.
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4.4.2 The Proportion of Variance Explained Criterion

First, the analyst specifies how much of the total variability that he or she would like

the principal components to account for. Then, the analyst simply selects the com-

ponents one by one until the desired proportion of variability explained is attained.

For example, suppose we would like our components to explain 85% of the variabil-

ity in the variables. Then, from Table 4.3, we would choose components 1–3, which

together explain 86.057% of the variability. However, if we wanted our components

to explain 90% or 95% of the variability, then we would need to include compo-

nent 4 along with components 1–3, which together would explain 96.368% of the

variability. Again, as with the eigenvalue criterion, how large a proportion is enough?

This question is akin to asking how large a value of r2 (coefficient of determi-

nation) is enough in the realm of linear regression. The answer depends in part on

the field of study. Social scientists may be content for their components to explain

only 60% or so of the variability, as human response factors are so unpredictable,

while natural scientists might expect their components to explain 90–95% of the

variability, as their measurements are often less variable. Other factors also affect

how large a proportion is needed. For example, if the principal components are being

used for descriptive purposes only, such as customer profiling, then the proportion of

variability explained may be a shade lower than otherwise. However, if the principal

components are to be used as replacements for the original (standardized) data set, and

used for further inference in models downstream, then the proportion of variability

explained should be as much as can conveniently be achieved, given the constraints

of the other criteria.

4.4.3 The Minimum Communality Criterion

For now, we postpone discussion of this criterion until we introduce the concept of

communality below.

4.4.4 The Scree Plot Criterion

A scree plot is a graphical plot of the eigenvalues against the component number.

Scree plots are useful for finding an upper bound (maximum) for the number of com-

ponents that should be retained. See Figure 4.4 for the scree plot for this example.

Most scree plots look broadly similar in shape, starting high on the left, falling rather

quickly, and then flattening out at some point. This is because the first component

usually explains much of the variability, the next few components explain a moder-

ate amount, and the latter components only explain a small amount of the variability.

The scree plot criterion is this: The maximum number of components that should be

extracted is just before where the plot first begins to straighten out into a horizontal

line. (Sometimes, the curve in a scree plot is so gradual that no such elbow point

is evident; in that case, turn to the other criteria.) For example, in Figure 4.4, the

plot straightens out horizontally starting at component 5. The line is nearly horizon-

tal because the components all explain approximately the same amount of variance,
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Figure 4.4 Scree plot. Stop extracting components before the line flattens out.

which is not much. Therefore, the scree plot criterion would indicate that the maxi-

mum number of components we should extract is four, as the fourth component occurs

just before where the line first begins to straighten out.

To summarize, the recommendations of our criteria are as follows:

• The Eigenvalue Criterion:

∘ Retain components 1–3, but do not throw away component 4 yet.

• The Proportion of Variance Explained Criterion

∘ Components 1–3 account for a solid 86% of the variability, and tacking on

component 4 gives us a superb 96% of the variability.

• The Scree Plot Criterion

∘ Do not extract more than four components.

So, we will extract at least three but no more than four components. Which is

it to be, three or four? As in much of data analysis, there is no absolute answer in

this case to the question of how many components to extract. This is what makes data

mining an art as well as a science, and this is another reason why data mining requires

human direction. The data miner or data analyst must weigh all the factors involved

in a decision, and apply his or her judgment, tempered by experience.

In a case like this, where there is no clear-cut best solution, why not try it both

ways and see what happens? Consider Tables 4.4a and 4.4b, which compares the

component matrices when three and four components are extracted, respectively. The

component weights smaller than 0.15 are suppressed to ease the component interpre-

tation. Note that the first three components are each exactly the same in both cases,

and each is the same as when we extracted all eight components, as shown in Table 4.2

above (after suppressing the small weights). This is because each component extracts
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its portion of the variability sequentially, so that later component extractions do not

affect the earlier ones.

TABLE 4.4a Component matrix for extracting three
components

Component Matrixa

Component

1 2 3

MINC_Z 0.922

HAGE_Z −0.429 −0.407

ROOMS_Z 0.956

BEDRMS_Z 0.970

POPN_Z 0.933

HHLDS_Z 0.972

LAT_Z 0.970

LONG_Z −0.969

Extraction method: PCA.

aThree components extracted.

TABLE 4.4b Component matrix for extracting four
components

Component Matrixa

Component

1 2 3 4

MINC_Z 0.922 0.370

HAGE_Z −0.429 −0.407 0.806

ROOMS_Z 0.956

BEDRMS_Z 0.970

POPN_Z 0.933

HHLDS_Z 0.972

LAT_Z 0.970

LONG_Z −0.969

Extraction method: PCA.

aFour components extracted.

4.5 PROFILING THE PRINCIPAL COMPONENTS

The client may be interested in detailed profiles of the principal components the ana-

lyst has uncovered. Let us now examine the salient characteristics of each principal

component, giving each component a title for ease of interpretation.
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• The Size Component. Principal component 1, as we saw earlier, is largely com-

posed of the “block-group-size”-type variables, total rooms, total bedrooms,

population, and households, which are all either large or small together. That

is, large block groups have a strong tendency to have large values for all four

variables, while small block groups tend to have small values for all four vari-

ables. Median housing age is a smaller, lonely counterweight to these four

variables, tending to be low (recently built housing) for large block groups,

and high (older, established housing) for smaller block groups.

• The Geographical Component. Principal component 2 is a “geographical” com-

ponent, composed solely of the latitude and longitude variables, which are

strongly negatively correlated, as we can tell by the opposite signs of their

component weights. This supports our earlier exploratory data analysis (EDA)

regarding these two variables in Figure 4.3 and Table 4.1. The negative corre-

lation is because of the way latitude and longitude are signed by definition, and

because California is broadly situated from northwest to southeast. If Califor-

nia was situated from northeast to southwest, then latitude and longitude would

be positively correlated.

• Income and Age 1. Principal component 3 refers chiefly to the median income
of the block group, with a smaller effect due to the housing median age of the

block group. That is, in the data set, high median income is associated with

more recently built housing, while lower median income is associated with

older housing.

• Income and Age 2. Principal component 4 is of interest, because it is the one

that we have not decided whether or not to retain. Again, it focuses on the

combination of housing median age and median income. Here, we see that,

once the negative correlation between these two variables has been accounted
for, there is left over a positive relationship between these variables. That is,

once the association between, for example, high incomes and recent housing

has been extracted, there is left over some further association between higher

incomes and older housing.

To further investigate the relationship between principal components 3 and 4,

and their constituent variables, we next consider factor scores. Factor scores are esti-

mated values of the factors for each observation, and are based on factor analysis,

discussed in the next section. For the derivation of factor scores, see Johnson and

Wichern.7

Consider Figure 4.5, which provides two matrix plots. The matrix plot on the

left displays the relationships among median income, housing median age, and the

factor scores for component 3, while the matrix plot on the right displays the rela-

tionships among median income, housing median age, and the factor scores for com-
ponent 4. Tables 4.4a and 4.4b showed that components 3 and 4 both included each

of these variables as constituents. However, there seemed to be a large difference in

7Johnson and Wichern, Applied Multivariate Statistical Analysis, 6th edition, Prentice Hall, Upper Saddle

River, New Jersey, 2007.
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Figure 4.5 Correlations between components 3 and 4, and their variables.

the absolute component weights, as for example, 0.922 having a greater amplitude

than −0.407 for the component 3 component weights. Is this difference in magnitude

reflected in the matrix plots?

Consider the left side of Figure 4.5. The strong positive correlation between

component 3 and median income is strikingly evident, reflecting the 0.922 positive

correlation. But the relationship between component 3 and housing median age is

rather amorphous. It would be difficult to estimate the correlation between compo-
nent 3 and housing median age as being −0.407, with only the scatter plot to guide us.

Similarly for the right side of Figure 4.5, the relationship between component 4 and

housing median age is crystal clear, reflecting the 0.806 positive correlation, while the

relationship between component 3 and median income is not entirely clear, reflecting

its lower positive correlation of 0.370. We conclude, therefore, that the component

weight of −0.407 for housing median age in component 3 is not of practical signifi-

cance, and similarly for the component weight for median income in component 4.

This discussion leads us to the following criterion for assessing the component

weights. For a component weight to be considered of practical significance, it should

exceed ±0.50 in magnitude. Note that the component weight represents the correla-

tion between the component and the variable; thus, the squared component weight

represents the amount of the variable’s total variability that is explained by the com-

ponent. Thus, this threshold value of ±0.50 requires that at least 25% of the variable’s

variance be explained by a particular component.

Table 4.5 therefore presents the component matrix from Tables 4.4a and 4.4b,

this time suppressing the component weights below ±0.50 in magnitude. The com-

ponent profiles should now be clear, and uncluttered:

• The Size Component. Principal component 1 represents the “block group size”

component, consisting of four variables: total rooms, total bedrooms, popula-
tion, and households.

• The Geographical Component. Principal component 2 represents the “geo-

graphical” component, consisting of two variables: latitude and longitude.



108 CHAPTER 4 DIMENSION-REDUCTION METHODS

TABLE 4.5 Component matrix of component weights,
suppressing magnitudes below ±0.50

Component Matrixa

Component

1 2 3 4

MINC_Z 0.922

HAGE_Z 0.806

ROOMS_Z 0.956

BEDRMS_Z 0.970

POPN_Z 0.933

HHLDS_Z 0.972

LAT_Z 0.970

LONG_Z −0.969

Extraction method: Principal component analysis.

aFour components extracted.

• Median Income. Principal component 3 represents the “income” component,

and consists of only one variable: median income.

• Housing Median Age. Principal component 4 represents the “housing age”

component, and consists of only one variable: housing median age.

Note that the partition of the variables among the four components is mutually
exclusive, meaning that no variable is shared (after suppression) by any two com-

ponents, and exhaustive, meaning that all eight variables are contained in the four

components. Further, support for this 4− 2− 1− 1 partition of the variables among

the first four components is found in the similar relationship identified among the first

four eigenvalues: 3.901− 1.910− 1.073− 0.825 (see Table 4.3).

4.6 COMMUNALITIES

We are moving toward a decision regarding how many components to retain. One

more piece of the puzzle needs to be set in place: Communality. Now, PCA does not

extract all the variance from the variables, but only that proportion of the variance that

is shared by several variables. Communality represents the proportion of variance of

a particular variable that is shared with other variables.

The communalities represent the overall importance of each of the variables in

the PCA as a whole. For example, a variable with a communality much smaller than

the other variables indicates that this variable shares much less of the common vari-

ability among the variables, and contributes less to the PCA solution. Communalities

that are very low for a particular variable should be an indication to the analyst that

the particular variable might not participate in the PCA solution (i.e., might not be

a member of any of the principal components). Overall, large communality values

indicate that the principal components have successfully extracted a large proportion
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of the variability in the original variables, while small communality values show that

there is still much variation in the data set that has not been accounted for by the

principal components.

Communality values are calculated as the sum of squared component weights,

for a given variable. We are trying to determine whether to retain component 4, the

“housing age” component. Thus, we calculate the commonality value for the variable

housing median age, using the component weights for this variable (hage_z) from

Table 4.2. Two communality values for housing median age are calculated, one for

retaining three components, and the other for retaining four components.

• Communality (housing median age, three components)= (−0.429)2 +
(0.025)2 + (−0.407)2 = 0.350315.

• Communality (housing median age, four components) = (−0.429)2 +
(0.025)2 + (−0.407)2 + (0.806)2 = 0.999951.

Communalities less than 0.5 can be considered to be too low, as this would

mean that the variable shares less than half of its variability in common with the

other variables. Now, suppose that for some reason we wanted or needed to keep

the variable housing median age as an active part of the analysis. Then, extracting

only three components would not be adequate, as housing median age shares only

35% of its variance with the other variables. If we wanted to keep this variable in the

analysis, we would need to extract the fourth component, which lifts the communality

for housing median age over the 50% threshold. This leads us to the statement of the

minimum communality criterion for component selection, which we alluded to earlier.

4.6.1 Minimum Communality Criterion

Suppose that it is required to keep a certain set of variables in the analysis. Then,

enough components should be extracted so that the communalities for each of these

variables exceed a certain threshold (e.g., 50%).

Hence, we are finally ready to decide how many components to retain. We have

decided to retain four components, for the following reasons:

• The Eigenvalue Criterion recommended three components, but did not abso-

lutely reject the fourth component. Also, for small numbers of variables, this

criterion can underestimate the best number of components to extract.

• The Proportion of Variance Explained Criterion stated that we needed to use

four components if we wanted to account for that superb 96% of the variability.

As our ultimate goal is to substitute these components for the original data and
use them in further modeling downstream, being able to explain so much of the

variability in the original data is very attractive.

• The Scree Plot Criterion said not to exceed four components. We have not.

• The Minimum Communality Criterion stated that, if we wanted to keep housing
median age in the analysis, we had to extract the fourth component. As we

intend to substitute the components for the original data, then we need to keep

this variable, and therefore we need to extract the fourth component.
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4.7 VALIDATION OF THE PRINCIPAL COMPONENTS

Recall that the original data set was divided into a training data set and a test data

set. All of the above analysis has been carried out on the training data set. In order

to validate the principal components uncovered here, we now perform PCA on the

standardized variables for the test data set. The resulting component matrix is shown

in Table 4.6, with component weights smaller than ±0.50 suppressed.

TABLE 4.6 Validating the PCA: component matrix of
component weights for test set

Component Matrixa

Component

1 2 3 4

MINC_Z 0.920

HAGE_Z 0.785

ROOMS_Z 0.957

BEDRMS_Z 0.967

POPN_Z 0.935

HHLDS_Z 0.968

LAT_Z 0.962

LONG_Z −0.961

Extraction method: PCA.

aFour components extracted.

Although the component weights do not exactly equal those of the training set,

nevertheless the same four components were extracted, with a one-to-one correspon-

dence in terms of which variables are associated with which component. This may

be considered validation of the PCA performed. Therefore, we shall substitute these

principal components for the standardized variables in the further analysis we under-

take on this data set later on. Specifically, we shall investigate whether the components

are useful for estimating median house value.

If the split sample method described here does not successfully provide vali-

dation, then the analyst should take this as an indication that the results (for the data

set as a whole) are not generalizable, and the results should not be reported as valid.

If the lack of validation stems from a subset of the variables, then the analyst may

consider omitting these variables, and performing the PCA again.

An example of the use of PCA in multiple regression is provided in Chapter 9.

4.8 FACTOR ANALYSIS

Factor analysis is related to principal components, but the two methods have different

goals. Principal components seek to identify orthogonal linear combinations of the

variables, to be used either for descriptive purposes or to substitute a smaller number
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of uncorrelated components for the original variables. In contrast, factor analysis rep-

resents a model for the data, and as such is more elaborate. Keep in mind that the

primary reason we as data miners are learning about factor analysis is so that we may

apply factor rotation (see below).

The factor analysis model hypothesizes that the response vector X1,X2, … ,Xm
can be modeled as linear combinations of a smaller set of k unobserved, “latent”

random variables F1,F2, … ,Fk, called common factors, along with an error term

𝛆 = 𝜀1, 𝜀2, … , 𝜀m. Specifically, the factor analysis model is

X −
m×𝟏

𝛍 = 𝐋
m×k

𝐅
k×1

+ 𝛆
m×𝟏

where X −
m×𝟏

𝛍 is the response vector, centered by the mean vector, 𝐋
m×k

is the matrix

of factor loadings, with lij representing the factor loading of the ith variable on the jth
factor, 𝐅

k×1
represents the vector of unobservable common factors, and 𝛆

m×𝟏
represents

the error vector. The factor analysis model differs from other models, such as the lin-

ear regression model, in that the predictor variables F1,F2, … ,Fk are unobservable.

Because so many terms are unobserved, further assumptions must be made

before we may uncover the factors from the observed responses alone. These assump-

tions are that E(F) = 𝟎, Cov(F) = I, E(𝛆) = 𝟎, and Cov(𝛆) is a diagonal matrix. See

Johnson and Wichern2 for further elucidation of the factor analysis model.

Unfortunately, the factor solutions provided by factor analysis are invariant to

transformations. Two models, X − 𝛍 = LF + 𝛆 and X − 𝛍 = (LT)(TF) + 𝛆, where T
represents an orthogonal transformations matrix, both will provide the same results.

Hence, the factors uncovered by the model are in essence nonunique, without further

constraints. This indistinctness provides the motivation for factor rotation, which we

will examine shortly.

4.9 APPLYING FACTOR ANALYSIS TO THE ADULT
DATA SET

The Adult data set8 was extracted from data provided by the U.S. Census Bureau.

The intended task is to find the set of demographic characteristics that can best pre-

dict whether or not the individual has an income of over $50,000 per year. For this

example, we shall use only the following variables for the purpose of our factor anal-

ysis: age, demogweight (a measure of the socioeconomic status of the individual’s

district), education_num, hours-per-week, and capnet (= capital gain− capital loss).

The training data set contains 25,000 records, and the test data set contains 7561

records.

The variables were standardized, and the Z-vectors found, Zi =
(Xi−𝜇i)

𝜎ii
. The cor-

relation matrix is shown in Table 4.7.

8Blake and Merz, 1998. UCI Repository of machine learning databases [http://www.ics.uci.

edu/’mlearn/MLRepository.html]. Irvine, CA: University of California, Department of Information

and Computer Science. Adult data set donated by Ron Kohavi. Also available at textbook website:

www.DataMiningConsultant.com.

http://www.ics.uci.edu/%E2%80%99mlearn/MLRepository.html%00%00
http://www.ics.uci.edu/%E2%80%99mlearn/MLRepository.html%00%00
http://www.DataMiningConsultant.com
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TABLE 4.7 Correlation matrix for factor analysis example

Correlations

AGE_Z DEM_Z EDUC_Z CAPNET_Z HOURS_Z

AGE_Z 1.000 −0.076b 0.033b 0.070b 0.069b

DEM_Z −0.076b 1.000 −0.044b 0.005 −0.015a

EDUC_Z 0.033b −0.044b 1.000 0.116b 0.146b

CAPNET_Z 0.070b 0.005 0.116b 1.000 0.077b

HOURS_Z 0.069b −0.015a 0.146b 0.077b 1.000

aCorrelation is significant at the 0.05 level (2-tailed).

bCorrelation is significant at the 0.01 level (2-tailed).

Note that the correlations, although statistically significant in several cases, are

overall much weaker than the correlations from the houses data set. A weaker corre-

lation structure should pose more of a challenge for the dimension-reduction method.

Factor analysis requires a certain level of correlation in order to function appro-

priately. The following tests have been developed to ascertain whether there exists

sufficiently high correlation to perform factor analysis.9

• The proportion of variability within the standardized predictor variables which

is shared in common, and therefore might be caused by underlying factors,

is measured by the Kaiser–Meyer–Olkin (KMO) Measure of Sampling Ade-

quacy. Values of the KMO statistic less than 0.50 indicate that factor analysis

may not be appropriate.

• Bartlett’s Test of Sphericity tests the null hypothesis that the correlation matrix

is an identity matrix, that is, that the variables are really uncorrelated. The

statistic reported is the p-value, so that very small values would indicate evi-

dence against the null hypothesis, that is, the variables really are correlated. For

p-values much larger than 0.10, there is insufficient evidence that the variables

are correlated, and so factor analysis may not be suitable.

Table 4.8 provides the results of these statistical tests. The KMO statistic has

a value of 0.549, which is not less than 0.5, meaning that this test does not find the

level of correlation to be too low for factor analysis. The p-value for Bartlett’s Test of

Sphericity rounds to zero, so that the null hypothesis that no correlation exists among

the variables is rejected. We therefore proceed with the factor analysis.

To allow us to view the results using a scatter plot, we decide a priori to extract

only two factors. The following factor analysis is performed using the principal axis
factoring option. In principal axis factoring, an iterative procedure is used to estimate

the communalities and the factor solution. This particular analysis required 152 such

iterations before reaching convergence. The eigenvalues and the proportions of the

variance explained by each factor are shown in Table 4.9.

9Note, however, that statistical tests in the context of huge data sets can be misleading. With huge sample

sizes, even the smallest effect sizes become statistically significant. This is why data mining methods rely

on cross-validation methodologies, not statistical inference.
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TABLE 4.8 Is there sufficiently high correlation to run factor analysis?

KMO and Bartlett’s Test

Kaiser–Meyer–Olkin measure of sampling adequacy 0.549

Bartlett’s test of sphericity Approx. Chi-square 1397.824

df 10

p-Value 0.000

TABLE 4.9 Eigenvalues and proportions of variance
explained, factor analysis

Total Variance Explained

Initial Eigenvalues

Factor Total % of Variance Cumulative%

1 1.277 25.533 25.533

2 1.036 20.715 46.248

3 0.951 19.028 65.276

4 0.912 18.241 83.517

5 0.824 16.483 100.000

Extraction method: Principal axis factoring.

Note that the first two factors extract less than half of the total variability in

the variables, as contrasted with the houses data set, where the first two components

extracted over 72% of the variability. This is due to the weaker correlation structure

inherent in the original data.

The factor loadings 𝐋
m×k

are shown in Table 4.10. Factor loadings are analo-

gous to the component weights in PCA, and represent the correlation between the ith

TABLE 4.10 Factor loadings are much weaker than
previous example

Factor Matrixa

Factor

1 2

AGE_Z 0.590 −0.329

EDUC_Z 0.295 0.424

CAPNET_Z 0.193 0.142

HOURS_Z 0.224 0.193

DEM_Z −0.115 0.013

Extraction method: Principal axis factoring.

aTwo factors extracted. 152 iterations required.
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variable and the jth factor. Notice that the factor loadings are much weaker than the

previous houses example, again due to the weaker correlations among the standard-

ized variables.

The communalities are also much weaker than the houses example, as shown in

Table 4.11. The low communality values reflect the fact that there is not much shared

correlation among the variables. Note that the factor extraction increases the shared

correlation.

TABLE 4.11 Communalities are low, reflecting not
much shared correlation

Communalities

Initial Extraction

AGE_Z 0.015 0.457

EDUC_Z 0.034 0.267

CAPNET_Z 0.021 0.058

HOURS_Z 0.029 0.087

DEM_Z 0.008 0.013

Extraction method: Principal axis factoring.

4.10 FACTOR ROTATION

To assist in the interpretation of the factors, factor rotation may be performed. Factor

rotation corresponds to a transformation (usually orthogonal) of the coordinate axes,

leading to a different set of factor loadings. We may look upon factor rotation as

analogous to a scientist attempting to elicit greater contrast and detail by adjusting

the focus of the microscope.

The sharpest focus occurs when each variable has high factor loadings on a

single factor, with low-to-moderate loadings on the other factors. For the houses
example, this sharp focus occurred already on the unrotated factor loadings (e.g.,

Table 4.5), so rotation was not necessary. However, Table 4.10 shows that we should

perhaps try factor rotation for the adult data set, in order to help improve our inter-

pretation of the two factors.

Figure 4.6 shows the graphical view of the vectors of factors of loadings for

each variable from Table 4.10. Note that most vectors do not closely follow the coor-

dinate axes, which means that there is poor “contrast” among the variables for each

factor, thereby reducing interpretability.

Next, a varimax rotation (discussed shortly) was applied to the matrix of factor

loadings, resulting in the new set of factor loadings found in Table 4.12. Note that

the contrast has been increased for most variables, which is perhaps made clearer by

Figure 4.7, the graphical view of the rotated vectors of factor loadings.

Figure 4.7 shows that the factor loadings have been rotated along the axes of

maximum variability, represented by Factor 1 and Factor 2. Often, the first factor

extracted represents a “general factor,” and accounts for much of the total variability.
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Figure 4.6 Unrotated vectors of factor loadings do not follow coordinate axes.

TABLE 4.12 The factor loadings after varimax rotation

Rotated Factor Matrixa

Factor

1 2

AGE_Z 0.675 0.041

EDUC_Z 0.020 0.516

CAPNET_Z 0.086 0.224

HOURS_Z 0.084 0.283

DEM_Z −0.104 −0.051

Extraction method: Principal axis factoring.

Rotation method: Varimax with Kaiser normalization.

aRotation converged in three iterations.

The effect of factor rotation is to redistribute this first factor’s variability explained

among the second, third, and subsequent factors. For example, consider Table 4.13,

which shows the percent of variance explained by Factors 1 and 2, for the initial

unrotated extraction (left side) and the rotated version (right side).

The sums of squared loadings for Factor 1 for the unrotated case is (using

Table 4.10 and allowing for rounding, as always) 0.5902 + 0.2952 + 0.1932 +
0.2242 + −0.1152 = 0.536.

This represents 10.7% of the total variability, and about 61% of the variance

explained by the first two factors. For the rotated case, Factor 1’s influence has been

partially redistributed to Factor 2 in this simplified example, now accounting for
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Figure 4.7 Rotated vectors of factor loadings more closely follow coordinate axes.

TABLE 4.13 Factor rotation redistributes the percentage of variance explained

Total Variance Explained

Extraction Sums of

Squared Loadings

Rotation Sums of

Squared Loadings

Factor Total % of Variance Cumulative% Total % of Variance Cumulative%

1 0.536 10.722 10.722 0.481 9.616 9.616

2 0.346 6.912 17.635 0.401 8.019 17.635

Extraction method: Principal axis factoring.

9.6% of the total variability and about 55% of the variance explained by the first two

factors.

We now describe three methods for orthogonal rotation, in which the axes are

rigidly maintained at 90∘. The goal when rotating the matrix of factor loadings is to

ease interpretability by simplifying the rows and columns of the column matrix. In

the following discussion, we assume that the columns in a matrix of factor loadings

represent the factors, and that the rows represent the variables, just as in Table 4.10, for

example. Simplifying the rows of this matrix would entail maximizing the loading of a

particular variable on one particular factor, and keeping the loadings for this variable

on the other factors as low as possible (ideal: row of zeroes and ones). Similarly,

simplifying the columns of this matrix would entail maximizing the loading of a

particular factor on one particular variable, and keeping the loadings for this factor

on the other variables as low as possible (ideal: column of zeroes and ones).
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• Quartimax Rotation seeks to simplify the rows of a matrix of factor loadings.

Quartimax rotation tends to rotate the axes so that the variables have high load-

ings for the first factor, and low loadings thereafter. The difficulty is that it

can generate a strong “general” first factor, in which many variables have high

loadings.

• Varimax Rotation prefers to simplify the column of the factor loading matrix.

Varimax rotation maximizes the variability in the loadings for the factors, with

a goal of working toward the ideal column of zeroes and ones for each variable.

The rationale for varimax rotation is that we can best interpret the factors when

they are strongly associated with some variable and strongly not associated with

other variables. Kaiser10 showed that the varimax rotation is more invariant than

the quartimax rotation.

• Equimax Rotation seeks to compromise between simplifying the columns and

the rows.

The researcher may prefer to avoid the requirement that the rotated factors

remain orthogonal (independent). In this case, oblique rotation methods are avail-

able, in which the factors may be correlated with each other. This rotation method is

called oblique because the axes are no longer required to be at 90∘, but may form an

oblique angle. For more on oblique rotation methods, see Harmon.11

4.11 USER-DEFINED COMPOSITES

Factor analysis continues to be controversial, in part due to the lack of invariance

under transformation, and the consequent nonuniqueness of the factor solutions. Ana-

lysts may prefer a much more straightforward alternative: User-Defined Composites.

A user-defined composite is simply a linear combination of the variables, which

combines several variables together into a single composite measure. In the behav-

ior science literature, user-defined composites are known as summated scales (e.g.,

Robinson et al., 1991).12

User-defined composites take the form W = a′Z = a1Z1 + a2Z2 + · · · + akZk,

where
∑k

i=1 ai = 1, k ≤ m, and the Zi are the standardized variables. Whichever form

the linear combination takes, however, the variables should be standardized first, so

that one variable with high dispersion does not overwhelm the others.

The simplest user-defined composite is simply the mean of the variables. In

this case, ai = 1∕k, i = 1, 2, … , k. However, if the analyst has prior information or

expert knowledge available to indicate that the variables should not be all equally

weighted, then each coefficient ai can be chosen to reflect the relative weight of that

variable, with more important variables receiving higher weights.

10Kaiser, H.F., A Second-Generation Little Jiffy, in Psychometrika, 35, 401–415, 1970. Also Kaiser, H.F.,

Little Jiffy, Mark IV, in Educational and Psychology Measurement, 34, 111–117.
11Harman, H.H., Modern Factor Analysis, 3rd edition, University of Chicago Press, Chicago, 1976.
12Robinson, Shaver, and Wrigtsman, Criteria for Scale Selection and Evaluation, in Measures of Person-
ality and Social Psychological Attitudes, Academy Press, San Diego, 1991.
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What are the benefits of utilizing user-defined composites? When compared to

the use of individual variables, user-defined composites provide a way to diminish the

effect of measurement error. Measurement error refers to the disparity between the

observed variable values, and the “true” variable value. Such disparity can be due to

a variety of reasons, including mistranscription and instrument failure. Measurement

error contributes to the background error noise, interfering with the ability of models

to accurately process the signal provided by the data, with the result that truly sig-

nificant relationships may be missed. User-defined composites reduce measurement

error by combining multiple variables into a single measure.

Appropriately constructed user-defined composites allow the analyst to rep-

resent the manifold aspects of a particular concept using a single measure. Thus,

user-defined composites enable the analyst to embrace the range of model character-

istics, while retaining the benefits of a parsimonious model.

Analysts should ensure that the conceptual definition for their user-defined

composites lies grounded in prior research or established practice. The conceptual

definition of a composite refers to the theoretical foundations for the composite. For

example, have other researchers used the same composite, or does this composite

follow from best practices in one’s field of business? If the analyst is aware of no

such precedent for his or her user-defined composite, then a solid rationale should be

provided to support the conceptual definition of the composite.

The variables comprising the user-defined composite should be highly corre-

lated with each other and uncorrelated with other variables used in the analysis. This

unidimensionality should be confirmed empirically, perhaps through the use of PCA,

with the variables having high loadings on a single component and low-to-moderate

loadings on the other components.

4.12 AN EXAMPLE OF A USER-DEFINED COMPOSITE

Consider again the houses data set. Suppose that the analyst had reason to believe

that the four variables, total rooms, total bedrooms, population, and households, were

highly correlated with each other and not with other variables. The analyst could then

construct the following user-defined composite:

W = a′Z = a1(totalrooms) + a2(totalbedrooms) + a3(population) + a2(households)

with ai = 1∕4, i = 1, … , 4, so that Composite W represented the mean of the four

(standardized) variables.

The conceptual definition of Composite W is “block group size,” a natural and

straightforward concept. It is unlikely that all block groups have exactly the same

size, and that therefore, differences in block group size may account for part of the

variability in the other variables. We might expect large block groups tending to have

large values for all four variables, and small block groups tending to have small values

for all four variables.

The analyst should seek out support in the research or business literature for the

conceptual definition of the composite. The evidence for the existence and relevance
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of the user-defined composite should be clear and convincing. For example, for Com-
posite W, the analyst may cite the study from the National Academy of Sciences by

Hope et al. (2003),13 which states that block groups in urban areas average 5.3 km2

in size while block groups outside urban areas averaged 168 km2 in size. As we may

not presume that block groups inside and outside urban areas have exactly similar

characteristics, this may mean that block group size could conceivably be associated

with differences in block group characteristics, including median housing value, the

response variable. Further, the analyst could cite the U.S. Census Bureau’s notice

in the Federal Register (2002)14 that population density was much lower for block

groups whose size was greater than 2 square miles. Hence, block group size may be

considered a “real” and relevant concept to be used in further analysis downstream.

THE R ZONE

# Read in the Houses dataset and prepare the data

houses <- read.csv(file="C:/… /houses.csv",

stringsAsFactors = FALSE, header = FALSE)

names(houses) <- c("MVAL", "MINC", "HAGE", "ROOMS", "BEDRMS", "POPN" ,

"HHLDS", "LAT", "LONG")

# Standardize the variables

houses$MINC_Z <- (houses$MINC - mean(houses$MINC))/(sd(houses$MINC))

houses$HAGE_Z <- (houses$HAGE - mean(houses$HAGE))/(sd(houses$HAGE))

# Do the same for the remaining variables

# Randomly select 90% for the Training dataset

choose <- runif(dim(houses)[1],0, 1)

test.house <- houses[which(choose < .1),]

train.house <- houses[which(choose <= .1),]

# Principal Component Analysis

# Requires library "psych"

library(psych)

pca1 <- principal(train.house[,c(10:17)],

nfactors=8,

rotate="none",

scores=TRUE)

13Hope, Gries, Zhu, Fagan, Redman, Grimm, Nelson, Martin, and Kinzig, Socioeconomics Drive Urban

Plant Diversity, in Proceedings of the National Academy of Sciences, Volume 100, Number 15, pages

8788–8792, July 22, 2003.
14Bureau of the Census, Urban Area Criteria for Census 2000, Federal Register, Volume 67, Number 51,

March 15, 2002.
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# PCA results

# Eigenvalues:

pca1$values

# Loadings matrix,

# variance explained,

pca1$loadings

# Scree plot

plot(pca1$values,

type = "b",

main = "Scree Plot for Houses

Data")
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# Plot factor scores

pairs(∼train.house$MINC+
train.house$HAGE+pca1$scores[,3],

labels = c("Median Income",

"Housing Median Age",

"Component 3 Scores"))
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pairs(∼train.house$MINC+
train.house$HAGE+pca1$scores[,4],

labels = c("Median Income",

"Housing Median Age",

"Component 4 Scores"))
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# Calculate communalities

comm3 <- loadings(pca1)[2,1]^2+
loadings(pca1)[2,2]^2 + loadings(pca1)[2,3]^2

comm4 <- loadings(pca1)[2,1]^2+
loadings(pca1)[2,2]^2+ loadings(pca1)[2,3]^2+
loadings(pca1)[2,4]^2

comm3; comm4

# Validation of the Principal Components

pca2 <-

principal(test.house[,c(10:17)],

nfactors=4,

rotate="none",

scores=TRUE)

pca2$loadings

# Read in and prepare data for factor analysis

adult <- read.csv(file="C:/… /adult.txt",

stringsAsFactors = FALSE)

adult$"capnet"<- adult$capital.gain-adult$capital.loss

adult.s <- adult[,c(1,3,5,13,16)]
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# Standardize the data:

adult.s$AGE_Z <- (adult.s$age - mean(adult.s$age))/(sd(adult.s$age))

adult.s$DEM_Z <- (adult.s$demogweight –

mean(adult.s$demogweight))/(sd(adult.s$demogweight))

adult.s$EDUC_Z <- (adult.s$education.num –

mean(adult.s$education.num))/(sd(adult.s$education.num))

adult.s$CAPNET_Z <- (adult.s$capnet - mean(adult.s$capnet))/(sd(adult.s$capnet))

adult.s$HOURS_Z <- (adult.s$hours.per.week –

mean(adult.s$hours.per.week))/(sd(adult.s$hours.per.week))

# Randomly select a Training dataset

choose <- runif(dim(adult.s)[1],0, 1)

test.adult <- adult.s[which(choose < .1), c(6:10)]

train.adult < adult.s[which(choose >= .1), c(6:10)]

# Bartlett’s test for Sphericity

# Requires package psych

library(psych)

corrmat1 <- cor(train.adult,

method = "pearson")

cortest.bartlett(corrmat1,

n = dim(train.adult)[1])

# Factor analysis with five components

# Requires psych, GPArotation

library(GPArotation)

fa1 <- fa(train.adult, nfactors=5,

fm = "pa", rotate="none")

fa1$values # Eigenvalues

fa1$loadings # Loadings,

# proportion of variance,

# and cumulative variance
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# Factor analysis with two components

fa2 <- fa(train.adult, nfactors=2,

fm = "pa", max.iter = 200,

rotate="none")

fa2$values # Eigenvalues

fa2$loadings # Loadings

fa2$communality # Communality

# Varimax rotation

fa2v <- fa(train.adult,

nfactors = 2,

fm = "pa", max.iter = 200,

rotate="varimax")

fa2v$loadings

fa2v$communality

# User-defined composites

small.houses <- houses[,c(4:7)]

a <- c(1/4, 1/4, 1/4, 1/4)

W <- t(a)*small.houses
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EXERCISES

CLARIFYING THE CONCEPTS

1. Determine whether the following statements are true or false. If false, explain why the

statement is false, and how one could alter the statement to make it true.

a. Positive correlation indicates that, as one variable increases, the other variable

increases as well.

b. Changing the scale of measurement for the covariance matrix, for example, from

meters to kilometers, will change the value of the covariance.

c. The total variability in the data set equals the number of records.

d. The value of the ith principal component equals the ith eigenvalue divided by the

number of variables.

e. The second principal component represents any linear combination of the variables

that accounts for the most variability in the data, once the first principal component

has been extracted.

f. For a component weight to be considered of practical significance, it should exceed

±0.50 in magnitude.

g. The principal components are always mutually exclusive and exhaustive of the vari-

ables.

h. When validating the principal components, we would expect the component weights

from the training and test data sets to have the same signs.

i. For factor analysis to function properly, the predictor variables should not be highly

correlated.

2. For what type of data are the covariance and correlation matrices identical? In this case,

what is Σ?

3. What is special about the first principal component, in terms of variability?

4. Describe the four criteria for choosing how many components to extract. Explain the ratio-

nale for each.

5. Explain the concept of communality, so that someone new to the field could understand

it.

http://www.stat.ucla.edu/research/gpa
http://www.R-project
http://CRAN.R-project.org/package=psychVersion
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6. Explain the difference between PCA and factor analysis. What is a drawback of factor

analysis?

7. Describe two tests for determining whether there exists sufficient correlation within a

data set for factor analysis to proceed. Which results from these tests would allow us to

proceed?

8. Explain why we perform factor rotation. Describe three different methods for factor rota-

tion.

9. What is a user-define composite, and what is the benefit of using it in place of individual

variables?

WORKING WITH THE DATA

The following computer output explores the application of PCA to the Churn data set.15

10. Based on the following information, does there exists an adequate amount of correlation

among the predictors to pursue PCA? Explain how you know this, and how we may be

getting mixed signals.

KMO and Bartlett’s Test

0.512

34.908

55

0.984

Kaiser–Meyer–Olkin measure of sampling

adequacy

Approx. Chi–square

df

Sig.

Bartlett’s test of

sphericity

11. Suppose that we go ahead and perform the PCA, in this case using seven components.

Considering the following information, which variable or variables might we be well

advised to omit from the PCA, and why? If we really need all these variables in the

analysis, then what should we do?

Communalities

1.000 0.606

1.000 0.836

1.000 0.528

1.000 0.954

1.000 0.704

1.000 0.621

1.000 0.543

1.000 0.637

1.000 0.439

1.000 0.588

1.000 0.710

ZACCTLEN

ZVMAILME

ZDAYCALL

ZDAYCHAR

ZEVECALL

ZEVECHAR

ZNITECAL

ZNITECHA

ZINTCALL

ZINTCHAR

ZCSC

Initial Extraction

Extraction method: Principal component analysis.

15Blake and Merz, 1998. UCI Repository of machine learning databases [http://www.ics.uci

.edu/’mlearn/MLRepository.html]. Irvine, CA: University of California, Department of Information and

Computer Science. Also available at textbook website: www.DataMiningConsultant.com.

http://www.ics.uci.edu/%E2%80%99mlearn/MLRepository.html%00%00
http://www.ics.uci.edu/%E2%80%99mlearn/MLRepository.html%00%00
http://www.DataMiningConsultant.com
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12. Based on the following information, how many components should be extracted,

using (a) the eigenvalue criterion and (b) the proportion of variance explained

criterion?

Initial Eigenvalues

Component Total % of Variance Cumulative %

1

2

3

4

5

6

7

8

9

10

11

1.088

1.056

1.040

1.023

1.000

0.989

0.972

0.969

0.963

0.962

0.939

9.890

9.596

9.454

9.296

9.094

8.987

8.834

8.811

8.754

8.747

8.538

9.890

19.486

28.939

38.236

47.329

56.317

65.151

73.961

82.715

91.462

100.000

13. Based on the following scree plot, how many components should be extracted using the

scree plot criterion? Now, based on the three criteria, work toward a decision on the num-

ber of components to extract.

Scree plot

Component number

1110987654321

E
ig

e
n
v
a
lu

e

1.1

1.0

0.9

14. Based on the following rotated component matrix:

a. Provide a quick profile of the first four components.

b. If we extracted an eighth component, describe how the first component would

change.

c. What is your considered opinion on the usefulness of applying PCA on this data

set?
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HANDS-ON ANALYSIS

For Exercises 15–20, work with the baseball data set, available from the textbook web site,

www.DataMiningConsultant.com.

15. First, filter out all batters with fewer than 100 at bats. Next, standardize all the numerical

variables using z-scores.

16. Now, suppose we are interested in estimating the number of home runs, based on the other

numerical variables in the data set. So all the other numeric variables will be our predictors.

Investigate whether sufficient variability exists among the predictors to perform PCA.

17. How many components should be extracted according to

a. The Eigenvalue Criterion?

b. The Proportion of Variance Explained Criterion?

c. The Scree Plot Criterion?

d. The Communality Criterion?

18. Based on the information from the previous exercise, make a decision about how many

components you shall extract.

19. Apply PCA using varimax rotation, with your chosen number of components. Write up a

short profile of the first few components extracted.

20. Construct a useful user-defined composite using the predictors. Describe situations where

the composite would be more appropriate or useful than the principal components, and

vice versa.

Use the wine_quality_training data set, available at the textbook web site, for the remaining

exercises. The data consist of chemical data about some wines from Portugal. The target vari-

able is quality. Remember to omit the target variable from the dimension-reduction analysis.

Unless otherwise indicated, use only the white wines for the analysis.

21. Standardize the predictors.

22. Construct a matrix plot of the predictors. Provide a table showing the correlation coeffi-

cients of each predictor with each other predictor. Color code your table so that the reader

can easily see at a glance which are the strongest correlations. What you are doing here is

doing EDA for the principal components later on. Using the matrix plot and the table of

coefficients, discuss which sets of predictors seem to “vary together.”

23. Suppose we eventually would like to perform linear regression analysis of quality versus

these predictors. Clearly explain why we should beware of using a set of predictors that

are highly correlated.

24. Run a multiple regression of the predictors on quality. Get the variance inflation factor

(VIF) measures of the predictors. Explain what these mean in the context of this problem.

Explain whether they support or undermine the need for PCA in this problem.

25. Clearly explain how PCA can solve the problem of collinear predictors.

26. Determine the optimal number of components to extract, using

a. The Eigenvalue Criterion;

b. The Proportion of Variance Explained Criterion;

c. The Minimum Communality Criterion;

http://www.DataMiningConsultant.com
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d. The Scree Plot Criterion;

e. Try to arrive at a consensus among the four criteria as to the optimal number of com-

ponents to extract.

27. Proceed to apply PCA to the predictors, using varimax rotation. In the output, suppress

factor loadings less than |0.5|.
a. Provide both the unrotated and the rotated component matrices.

b. Use the results in (a) to demonstrate how varimax rotation eases interpretability of the

components.

c. Report detailed profiles of the components, including a descriptive title. It is important

that you be able to explain to your client with crystal clarity what your results mean. It

may be worth your while to do some research on wine.

28. Compare your principal components in one-to-one manner with your EDA earlier.

Discuss.

29. Run a multiple regression of the principal components predictors on quality.

a. Get the VIF measures of the components. Comment.

b. Compare the regression standard error for the two regression models. Comment.

c. Compare the R2 for the two regression models. Comment.

30. Provide a table showing the correlation coefficients of each principal component with each

other principal component. Comment.

31. Discuss the question of whether we should add principal components to increase the pre-

dictive power of the regression model and/or reduce the standard error. Arm yourself for

this discussion by incrementing your optimal number of components by 1, running the

PCA, performing the regression with the additional component, and then comparing your

standard error and R2 to the earlier model.

32. Repeat Exercises 21–31 using the red wines only. Compare your principal component

profiles and the performance of your regression models.
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C H A P T E R 5
UNIVARIATE STATISTICAL
ANALYSIS

5.1 DATA MINING TASKS IN DISCOVERING
KNOWLEDGE IN DATA

In Chapter 1, we were introduced to the six data mining tasks, which are as follows:

• Description

• Estimation

• Prediction

• Classification

• Clustering

• Association.

In the description task, analysts try to find ways to describe patterns and trends

lying within the data. Descriptions of patterns and trends often suggest possible expla-

nations for such patterns and trends, as well as possible recommendations for policy

changes. This description task can be accomplished capably with exploratory data

analysis (EDA), as we saw in Chapter 3. The description task may also be performed

using descriptive statistics, such as the sample proportion or the regression equation,

which we learn about in Chapter 8. Of course, the data mining methods are not

restricted to one task only, which results in a fair amount of overlap among data min-

ing methods and tasks. For example, decision trees may be used for classification,

estimation, or prediction.

5.2 STATISTICAL APPROACHES TO ESTIMATION AND
PREDICTION

If estimation and prediction are considered to be data mining tasks, statistical analysts

have been performing data mining for over a century. In this chapter and Chapter 6,

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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we examine some of the more widespread and traditional methods of estimation and

prediction, drawn from the world of statistical analysis. Here, in this chapter, we

examine univariate methods, statistical estimation, and prediction methods that ana-

lyze one variable at a time. These methods include point estimation and confidence

interval estimation for population means and proportions. We discuss ways of reduc-

ing the margin of error of a confidence interval estimate. Then we turn to hypothesis

testing, examining hypothesis tests for population means and proportions. Then, in

Chapter 6, we consider multivariate methods for statistical estimation and prediction.

5.3 STATISTICAL INFERENCE

Consider our roles as data miners. We have been presented with a data set with which

we are presumably unfamiliar. We have completed the data understanding and data

preparation phases and have gathered some descriptive information using EDA. Next,

we would like to perform univariate estimation and prediction. A widespread tool for

performing estimation and prediction is statistical inference.

Statistical inference consists of methods for estimating and testing hypotheses

about population characteristics based on the information contained in the sample. A

population is the collection of all elements (persons, items, or data) of interest in a

particular study.

For example, presumably, the cell phone company does not want to restrict its

actionable results to the sample of 3333 customers from which it gathered the data.

Rather, it would prefer to deploy its churn model to all of its present and future cell

phone customers, which would therefore represent the population. A parameter is a

characteristic of a population, such as the mean number of customer service calls of

all cell phone customers.

A sample is simply a subset of the population, preferably a representative sub-

set. If the sample is not representative of the population, that is, if the sample charac-

teristics deviate systematically from the population characteristics, statistical infer-
ence should not be applied. A statistic is a characteristic of a sample, such as the

mean number of customer service calls of the 3333 customers in the sample (1.563).

Note that the values of population parameters are unknown for most interest-

ing problems. Specifically, the value of the population mean is usually unknown. For

example, we do not know the true mean number of customer service calls to be made

by all of the company’s cell phone customers. To represent their unknown nature,

population parameters are often denoted with Greek letters. For example, the popu-

lation mean is symbolized using the Greek lowercase letter 𝜇 (pronounced “mew”),

which is the Greek letter for “m” (“mean”).

The value of the population mean number of customer service calls 𝜇 is

unknown for a variety of reasons, including the fact that the data may not yet have

been collected or warehoused. Instead, data analysts would use estimation. For

example, they would estimate the unknown value of the population mean 𝜇 by

obtaining a sample and computing the sample mean x, which would be used to

estimate 𝜇. Thus, we would estimate the mean number of customer service calls for

all customers to be 1.563, because this is the value of our observed sample mean.
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An important caveat is that estimation is valid only as long as the sample is truly

representative of the population. For example, suppose for a moment that the churn
data set represents a sample of 3333 disgruntled customers. Then this sample would

not be representative (one hopes!) of the population of all the company’s customers,

and none of the EDA that we performed in Chapter 3 would be actionable with respect

to the population of all customers.

Analysts may also be interested in proportions, such as the proportion of

customers who churn. The sample proportion p is the statistic used to measure the

unknown value of the population proportion 𝜋. For example, in Chapter 3, we found

that the proportion of churners in the data set was p= 0.145, which could be used to

estimate the true proportion of churners for the population of all customers, keeping

in mind the caveats above.

Point estimation refers to the use of a single known value of a statistic to esti-

mate the associated population parameter. The observed value of the statistic is called

the point estimate. We may summarize estimation of the population mean, standard

deviation, and proportion using Table 5.1.

TABLE 5.1 Use observed sample statistics to estimate unknown population parameters

Sample Statistic …Estimates . . . . Population Parameter

Mean x → 𝜇

Standard deviation s → 𝜎

Proportion p → 𝜋

Estimation need not be restricted to the parameters in Table 5.1. Any statistic

observed from sample data may be used to estimate the analogous parameter in the

population. For example, we may use the sample maximum to estimate the population

maximum, or we could use the sample 27th percentile to estimate the population

27th percentile. Any sample characteristic is a statistic, which, under the appropriate

circumstances, can be used to estimate its respective parameter.

More specifically, for example, we could use the sample churn proportion of

customers who did select the VoiceMail Plan, but did not select the International

Plan, and who made three customer service calls to estimate the population churn

proportion of all such customers. Or, we could use the sample 99th percentile of day

minutes used for customers without the VoiceMail Plan to estimate the population

99th percentile of day minutes used for all customers without the VoiceMail Plan.

5.4 HOW CONFIDENT ARE WE IN OUR ESTIMATES?

Let us face it: Anyone can make estimates. Crystal ball gazers will be happy (for a

price) to provide you with an estimate of the parameter in which you are interested.

The question is: How confident can we be in the accuracy of the estimate?

Do you think that the population mean number of customer service calls made

by all of the company’s customers is exactly the same as the sample mean x = 1.563?

Probably not. In general, because the sample is a subset of the population, inevitably
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the population contains more information than the sample about any given character-

istic. Hence, unfortunately, our point estimates will nearly always “miss” the target

parameter by a certain amount, and thus be in error by this amount, which is probably,

although not necessarily, small.

This distance between the observed value of the point estimate and the

unknown value of its target parameter is called sampling error, defined as|statistic − parameter|. For example, the sampling error for the mean is |x − 𝜇|, the

distance (always positive) between the observed sample mean and the unknown

population mean. As the true values of the parameter are usually unknown, the

value of the sampling error is usually unknown in real-world problems. In fact, for

continuous variables, the probability that the observed value of a point estimate

exactly equals its target parameter is precisely zero. This is because probability

represents area above an interval for continuous variables, and there is no area above

a point.

Point estimates have no measure of confidence in their accuracy; there is no

probability statement associated with the estimate. All we know is that the estimate

is probably close to the value of the target parameter (small sampling error) but that

possibly may be far away (large sampling error). In fact, point estimation has been

likened to a dart thrower, throwing darts with infinitesimally small tips (the point

estimates) toward a vanishingly small bull’s-eye (the target parameter). Worse, the

bull’s-eye is hidden, and the thrower will never know for sure how close the darts are

coming to the target.

The dart thrower could perhaps be forgiven for tossing a beer mug in frustration

rather than a dart. But wait! As the beer mug has width, there does indeed exist a

positive probability that some portion of the mug has hit the hidden bull’s-eye. We

still do not know for sure, but we can have a certain degree of confidence that the

target has been hit. Very roughly, the beer mug represents our next estimation method,

confidence intervals.

5.5 CONFIDENCE INTERVAL ESTIMATION
OF THE MEAN

A confidence interval estimate of a population parameter consists of an interval of

numbers produced by a point estimate, together with an associated confidence level
specifying the probability that the interval contains the parameter. Most confidence

intervals take the general form

point estimate ± margin of error

where the margin of error is a measure of the precision of the interval estimate.

Smaller margins of error indicate greater precision. For example, the t-interval for

the population mean is given by

x ± t𝛼∕2

(
s√
n

)



5.5 CONFIDENCE INTERVAL ESTIMATION OF THE MEAN 135

where the sample mean x is the point estimate and the quantity t𝛼 ∕2(s∕
√

n) repre-

sents the margin of error. The t-interval for the mean may be used when either the

population is normal or the sample size is large.

Under what conditions will this confidence interval provide precise estimation?

That is, when will the margin of error t𝛼 ∕2(s∕
√

n) be small? The quantity s∕
√

n rep-

resents the standard error of the sample mean (the standard deviation of the sampling

distribution of x) and is small whenever the sample size is large or the sample variabil-

ity is small. The multiplier t𝛼 ∕2 is associated with the sample size and the confidence

level (usually 90–99%) specified by the analyst, and is smaller for lower confidence

levels. As we cannot influence the sample variability directly, and we hesitate to lower

our confidence level, we must turn to increasing the sample size should we seek to

provide more precise confidence interval estimation.

Usually, finding a large sample size is not a problem for many data mining sce-

narios. For example, using the statistics in Figure 5.1, we can find the 95% t-interval

for the mean number of customer service calls for all customers as follows:

x ± t𝛼∕2(s∕
√

n)

1.563 ± 1.96(1.315∕
√

3333)
1.563 ± 0.045

(1.518, 1.608)

We are 95% confident that the population mean number of customer service

calls for all customers falls between 1.518 and 1.608 calls. Here, the margin of error

is 0.045 customer service calls.

However, data miners are often called on to perform subgroup analyses (see

also Chapter 24, Segmentation Models.); that is, to estimate the behavior of specific

subsets of customers instead of the entire customer base, as in the example above. For

example, suppose that we are interested in estimating the mean number of customer

service calls for customers who have both the International Plan and the VoiceMail

Plan and who have more than 220 day minutes. This reduces the sample size to

28 (Figure 5.2), which, however, is still large enough to construct the confidence

interval.

There are only 28 customers in the sample who have both plans and who logged

more than 220 minutes of day use. The point estimate for the population mean number

of customer service calls for all such customers is the sample mean 1.607. We may

Figure 5.1 Summary statistics of customer service calls.
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Figure 5.2 Summary statistics of customer service calls for those with both the International

Plan and VoiceMail Plan and with more than 200 day minutes.

find the 95% t-confidence interval estimate as follows:

x ± t𝛼∕2(s∕
√

n)

1.607 ± 2.052(1.892∕
√

28)
1.607 ± 0.734

(0.873, 2.341)

We are 95% confident that the population mean number of customer service

calls for all customers who have both plans and who have more than 220 minutes of

day use falls between 0.873 and 2.341 calls. Here, 0.873 is called the lower bound
and 2.341 is called the upper bound of the confidence interval. The margin of error

for this specific subset of customers is 0.734, which indicates that our estimate of

the mean number of customer service calls for this subset of customers is much less

precise than for the customer base as a whole.

Confidence interval estimation can be applied to any desired target parameter.

The most widespread interval estimates are for the population mean and the popula-

tion proportion.

5.6 HOW TO REDUCE THE MARGIN OF ERROR

The margin of error E for a 95% confidence interval for the population mean 𝜇 is

E = t𝛼 ∕2(s∕
√

n) and may be interpreted as follows:

We can estimate 𝜇 to within E units with 95% confidence.

For example, the margin of error above the number of customer service calls

for all customers equals 0.045 service calls, which may be interpreted as, “We can

estimate the mean number of customer service calls for all customers to within 0.045

calls with 95% confidence.”

Now, the smaller the margin of error, the more precise our estimation is. So the

question arises, how can we reduce our margin of error? Now the margin of error E
contains three quantities, which are as follows:

• t𝛼 ∕2, which depends on the confidence level and the sample size.

• the sample standard deviation s, which is a characteristic of the data, and may

not be changed.
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• n, the sample size.

Thus, we may decrease our margin of error in two ways, which are as follows:

• By decreasing the confidence level, which reduces the value of t𝛼 ∕2, and there-

fore reduces E. Not recommended.

• By increasing the sample size. Recommended. Increasing the sample size is the

only way to decrease the margin of error while maintaining a constant level of

confidence.

For example, had we procured a new sample of 5000 customers, with the same

standard deviation s= 1.315, then the margin of error for a 95% confidence interval

would be

E = t𝛼 ∕2(s∕
√

n) = 1.96(1.315∕
√

5000) = 0.036

Owing to the
√

n in the formula for E, an increase of a in the sample size leads

to a reduction in margin of error of
√

a.

5.7 CONFIDENCE INTERVAL ESTIMATION OF THE
PROPORTION

Figure 3.3 showed that 483 of 3333 customers had churned, so that an estimate of the

population proportion 𝜋 of all of the company’s customers who churn is

p = number who churn

sample size
= x

n
= 483

3333
= 0.1449

Unfortunately, with respect to the population of our entire customer base, we

have no measure of our confidence in the accuracy of this estimate. In fact, it is nearly

impossible that this value exactly equals 𝜋. Thus, we would prefer a confidence inter-
val for the population proportion 𝜋, given as follows:

p ± Z𝛼∕2

√
p ⋅ (1 − p)

n

where the sample proportion p is the point estimate of 𝜋 and the quantity Z𝛼∕2

√
p⋅(1−p)

n
represents the margin of error. The quantity Z𝛼∕2 depends on the confidence level:

for 90% confidence, Z𝛼∕2 = 1.645; for 95% confidence, Z𝛼∕2 = 1.96; and for 99%

confidence, Z𝛼∕2 = 2.576. This Z-interval for 𝜋 may be used whenever both np ≥ 5

and n(1 − p) ≥ 5.

For example, a 95% confidence interval for the proportion 𝜋 of churners among

the entire population of the company’s customers is given by

p ± Z𝛼∕2

√
p ⋅ (1 − p)

n
= 0.1149 ± 1.96

√
(0.1449)(0.8551)

3333

= 0.1149 ± 0.012

= (0.1329, 0.1569)
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We are 95% confident that this interval captures the population proportion 𝜋.

Note that the confidence interval for 𝜋 takes the form

p ± E = 0.1149 ± 0.012

where the margin of error E for a 95% confidence interval for the population mean 𝜋

is E = Z𝛼∕2

√
p⋅(1−p)

n
. The margin of error may be interpreted as follows:

We can estimate 𝜋 to within E with 95% confidence.

In this case, we can estimate the population proportion of churners to with 0.012

(or 1.2%) with 95% confidence. For a given confidence level, the margin of error can

be reduced only by taking a larger sample size.

5.8 HYPOTHESIS TESTING FOR THE MEAN

Hypothesis testing is a procedure where claims about the value of a population param-

eter (such as 𝜇 or 𝜋) may be considered using the evidence from the sample. Two

competing statements, or hypotheses, are crafted about the parameter value, which

are as follows:

• The null hypothesis H0 is the status quo hypothesis, representing what has been

assumed about the value of the parameter.

• The alternative hypothesis or research hypothesis Ha represents an alternative

claim about the value of the parameter.

The two possible conclusions are (i) reject H0 and (b) do not reject H0. A crim-

inal trial is a form of a hypothesis test, with the following hypotheses:

H0∶Defendant is innocent Ha∶Defendant is guilty

Table 5.2 illustrates the four possible outcomes of the criminal trial with respect

to the jury’s decision, and what is true in reality.

• Type I error: Reject H0 when H0 is true. The jury convicts an innocent person.

• Type II error: Do not reject H0 when H0 is false. The jury acquits a guilty

person.

TABLE 5.2 Four possible outcomes of the criminal trial hypothesis test

Reality

H0 true: Defendant did

not commit crime

H0 false: Defendant did

commit crime

Jury’s Decision Reject H0: Find defendant

guilty

Type I error Correct decision

Do not reject H0: Find

defendant not guilty

Correct decision Type II error
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• Correct decisions:

∘ Reject H0 when H0 is false. The jury convicts a guilty person.

∘ Do not reject H0 when H0 is true. The jury acquits an innocent person.

The probability of a Type I error is denoted 𝛼, while the probability of a Type

II error is denoted 𝛽. For a constant sample size, a decrease in 𝛼 is associated with an

increase in 𝛽, and vice versa. In statistical analysis, 𝛼 is usually fixed at some small

value, such as 0.05, and called the level of significance.

A common treatment of hypothesis testing for the mean is to restrict the

hypotheses to the following three forms.

• Left-tailed test. H0∶𝜇 ≥ 𝜇0 versus Ha∶𝜇 < 𝜇0

• Right-tailed test. H0∶𝜇 ≤ 𝜇0 versus Ha∶𝜇 > 𝜇0

• Two-tailed test. H0∶𝜇 = 𝜇0 versus Ha∶𝜇 ≠ 𝜇0

where 𝜇0 represents a hypothesized value of 𝜇.

When the sample size is large or the population is normally distributed, the test

statistic

tdata =
x − 𝜇0

s∕
√

n

follows a t distribution, with n− 1 degrees of freedom. The value of tdata is interpreted

as the number of standard errors above or below the hypothesized mean 𝜇, that the

sample mean x resides, where the standard error equals s∕
√

n. (Roughly, the stan-
dard error represents a measure of spread of the distribution of a statistic.) When the

value of tdata is extreme, this indicates a conflict between the null hypothesis (with

the hypothesized value 𝜇0) and the observed data. As the data represent empirical

evidence whereas the null hypothesis represents merely a claim, such conflicts are

resolved in favor of the data, so that, when tdata is extreme, the null hypothesis H0 is

rejected. How extreme is extreme? This is measured using the p-value.

The p-value is the probability of observing a sample statistic (such as x or tdata)

at least as extreme as the statistic actually observed, if we assume that the null hypoth-

esis is true. As the p-value (“probability value”) represents a probability, its value

must always fall between 0 and 1. Table 5.3 indicates how to calculate the p-value

for each form of the hypothesis test.

TABLE 5.3 How to calculate p-value

Form of Hypothesis Test p-Value

Left-tailed test.

H0∶𝜇 ≥ 𝜇0 versus Ha∶𝜇 < 𝜇0

P(t < tdata)

Right-tailed test.

H0∶𝜇 ≤ 𝜇0 versus Ha∶𝜇 > 𝜇0

P(t > tdata)

Two-tailed test.

H0∶𝜇 = 𝜇0 versus Ha∶𝜇 ≠ 𝜇0

If tdata < 0, then p-value= 2 ⋅ P(t < tdata).
If tdata > 0, then p-value= 2 ⋅ P(t > tdata).



140 CHAPTER 5 UNIVARIATE STATISTICAL ANALYSIS

The names of the forms of the hypothesis test indicate in which tail or tails of

the t distribution the p-value will be found.

A small p-value will indicate conflict between the data and the null hypothesis.

Thus, we will reject H0 if the p-value is small. How small is small? As researchers set

the level of significance 𝛼 at some small value (such as 0.05), we consider the p-value

to be small if it is less than 𝛼. This leads us to the rejection rule:

Reject H0 if the p-value is < 𝛼.

For example, recall our subgroup of customers who have both the International

Plan and the Voice Mail Plan and who have more than 220 day minutes. Suppose

we would like to test whether the mean number of customer service calls of all such

customers differs from 2.4, and we set the level of significance 𝛼 to be 0.05. We would

have a two-tailed hypothesis test:

H0∶𝜇 = 2.4 versus Ha∶𝜇 ≠ 2.4

The null hypothesis will be rejected if the p-value is less than 0.05. Here

we have 𝜇0 = 2.4, and earlier, we saw that x = 1.607, s= 1.892, and n= 28.

Thus,

tdata =
x − 𝜇0

s∕
√

n
= 1.607 − 2.4

1.892∕
√

28
= −2.2178

As tdata < 0, we have

p-value = 2 ⋅ P(t < tdata) = 2 ⋅ P(t < −2.2178) = 2 ⋅ 0.01758 = 0.035

As the p-value of 0.035 is less than the level of significance 𝛼 = 0.05, we reject

H0. The interpretation of this conclusion is that there is evidence at level of signifi-

cance 𝛼 = 0.05 that the population mean number of customer service calls of all such

customers differs from 2.4. Had we not rejected H0, we could simply insert the word

“insufficient” before “evidence” in the previous sentence.

5.9 ASSESSING THE STRENGTH OF EVIDENCE
AGAINST THE NULL HYPOTHESIS

However, there is nothing written in stone saying that the level of significance 𝛼 must

be 0.05. What if we had chosen 𝛼 = 0.01 in this example? Then the p-value 0.035

would not have been less than 𝛼 = 0.01, and we would not have rejected H0. Note that

the hypotheses have not changed and the data have not changed, but the conclusion
has been reversed simply by changing the value of 𝛼.

Further, consider that hypothesis testing restricts us to a simple “yes-or-no”

decision: to either reject H0 or not reject H0. But this dichotomous conclusion pro-

vides no indication of the strength of evidence against the null hypothesis residing in

the data. For example, for level of significance 𝛼 = 0.05, one set of data may return

a p-value of 0.06 while another set of data provides a p-value of 0.96. Both p-values

lead to the same conclusion – do not reject H0. However, the first data set came close

to rejecting H0, and shows a fair amount of evidence against the null hypothesis,
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while the second data set shows no evidence at all against the null hypothesis. A

simple “yes-or-no” decision misses the distinction between these two scenarios.

The p-value provides extra information that a dichotomous conclusion does not take

advantage of.

Some data analysts do not think in terms of whether or not to reject the null

hypothesis so much as to assess the strength of evidence against the null hypothesis.

Table 5.4 provides a thumbnail interpretation of the strength of evidence against H0

for various p-values. For certain data domains, such as physics and chemistry, the

interpretations may differ.

Thus, for the hypothesis test H0∶𝜇 = 2.4 versus Ha∶𝜇 ≠ 2.4, where the

p-value equals 0.035, we would not provide a conclusion as to whether or not to

reject H0. Instead, we would simply state that there is solid evidence against the null
hypothesis.

TABLE 5.4 Strength of evidence against H0 for various p-values

p-Value Strength of Evidence Against H0

p-value ≤ 0.001 Extremely strong evidence

0.001 < p-value ≤ 0.01 Very strong evidence

0.01 < p-value ≤ 0.05 Solid evidence

0.05 < p-value ≤ 0.10 Mild evidence

0.10 < p-value ≤ 0.15 Slight evidence

0.15 < p-value No evidence

5.10 USING CONFIDENCE INTERVALS TO PERFORM
HYPOTHESIS TESTS

Did you know that one confidence interval is worth 1000 hypothesis tests? Because

the t confidence interval and the t hypothesis test are both based on the same distri-

bution with the same assumptions, we may state the following:

A 100(1 − 𝛼)% confidence interval for 𝜇 is equivalent to a two-tailed hypothesis test for

𝜇, with level of significance 𝛼.

Table 5.5 shows the equivalent confidence levels and levels of significance.

TABLE 5.5 Confidence levels and levels of significance for
equivalent confidence intervals and hypothesis tests

Confidence Level 100(1 − 𝛼)% Level of Significance 𝛼

90% 0.10

95% 0.05

99% 0.01
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The equivalency is stated as follows (see Figure 5.3):

Reject H0 Do not reject H0 Reject H0

Upper boundLower bound

Figure 5.3 Reject values of 𝜇0 that would fall outside the equivalent confidence interval.

• If a certain hypothesized value for 𝜇0 falls outside the confidence interval with

confidence level 100(1 − 𝛼)%, then the two-tailed hypothesis test with level of

significance 𝛼 will reject H0 for that value of 𝜇0.

• If the hypothesized value for 𝜇0 falls inside the confidence interval with con-

fidence level 100(1 − 𝛼)%, then the two-tailed hypothesis test with level of

significance 𝛼 will not reject H0 for that value of 𝜇0.

For example, recall that our 95% confidence interval for the population mean

number of customer service calls for all customers who have the International Plan

and the Voice Mail plan and who have more than 220 minutes of day use is

(lower bound, upper bound) = (0.875, 2.339)

We may use this confidence interval to test any number of possible values of 𝜇0,

as long as the test is two-tailed with level of significance 𝛼 = 0.05. For example, use

level of significance 𝛼 = 0.05 to test whether the mean number of customer service

calls for such customers differs from the following values:

a. 0.5

b. 1.0

c. 2.4

The solution is as follows. We have the following hypothesis tests:

a. H0∶𝜇 = 0.5 versus Ha∶𝜇 ≠ 0.5

b. H0∶𝜇 = 1.0 versus Ha∶𝜇 ≠ 1.0

c. H0∶𝜇 = 2.4 versus Ha∶𝜇 ≠ 2.4

We construct the 95% confidence interval, and place the hypothesized values

of 𝜇0 on the number line, as shown in Figure 5.4.

0.875

Reject H0 Reject H0Do not reject H0

2.41.00.5

2.339

Figure 5.4 Placing the hypothesized values of 𝜇0 on the number line in relation to the confi-

dence interval informs us immediately of the conclusion.
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Their placement in relation to the confidence interval allows us to immediately

state the conclusion of the two-tailed hypothesis test with level of significance 𝛼 =
0.05, as shown in Table 5.6.

TABLE 5.6 Conclusions for three hypothesis tests using the confidence interval

Hypotheses Position in Relation to 95%

𝜇0 with 𝛼 = 0.05 Confidence Interval Conclusion

0.5 H0∶𝜇 = 0.5 vs Ha∶𝜇 ≠ 0.5 Outside Reject H0

1.0 H0∶𝜇 = 1.0 vs Ha∶𝜇 ≠ 1.0 Inside Do not reject H0

2.4 H0∶𝜇 = 2.4 vs Ha∶𝜇 ≠ 2.4 Outside Reject H0

5.11 HYPOTHESIS TESTING FOR THE PROPORTION

Hypothesis tests may also be performed about the population proportion 𝜋. The test

statistic is

Zdata =
p − 𝜋0√

(𝜋0(1 − 𝜋0)∕n)

where 𝜋0 is the hypothesized value of 𝜋, and p is the sample proportion

p = number of successes

n

The hypotheses and p-values are shown in Table 5.7.

For example, recall that 483 of 3333 customers in our sample had churned, so

that an estimate of the population proportion 𝜋 of all of the company’s customers who

churn is

p = number who churn

sample size
= x

n
= 483

3333
= 0.1449

Suppose we would like to test using level of significance 𝛼 = 0.10 whether 𝜋

differs from 0.15. The hypotheses are

H0∶𝜋 = 0.15 versus Ha∶𝜋 ≠ 0.15

TABLE 5.7 Hypotheses and p-values for hypothesis tests about 𝝅

Hypotheses with 𝛼 = 0.05 p-Value

Left-tailed test. H0∶𝜋 ≥ 𝜋0 versus Ha∶𝜋 < 𝜋0 P(Z < Zdata)

Right-tailed test. H0∶𝜋 ≤ 𝜋0 versus Ha∶𝜋 > 𝜋0 P(Z > Zdata)

Two-tailed test. H0∶𝜋 = 𝜋0 versus Ha∶𝜋 ≠ 𝜋0 If Zdata < 0, then p-value= 2 ⋅ P(Z < Zdata).
If Zdata > 0, then p-value= 2 ⋅ P(Z > Zdata).
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The test statistic is

Zdata =
p − 𝜋0√

(𝜋0(1 − 𝜋0)∕n)
= 0.1449 − 0.15√

(0.15(0.85)∕3333)
= −0.8246

As Zdata < 0 the p-value= 2 ⋅ P(Z < Zdata) = 2 ⋅ P(Z < −0.8246) = 2 ⋅ 0.2048 =
0.4096.

As the p-value is not less than 𝛼 = 0.10, we would not reject H0. There is

insufficient evidence that the proportion of all our customers who churn differs from

15%. Further, assessing the strength of evidence against the null hypothesis using

Table 5.5 would lead us to state that there is no evidence against H0. Also, given a

confidence interval, we may perform two-tailed hypothesis tests for 𝜋, just as we did

for 𝜇.

REFERENCE

Much more information regarding the topics covered in this chapter may be found in any intro-

ductory statistics textbook, such as Discovering Statistics, 2nd edition, by Daniel T. Larose,

W. H. Freeman, New York, 2013.
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# Input the Churn dataset

churn <- read.csv(file = "C:/… /churn.txt",

stringsAsFactors=TRUE)

# Analyze a subgroup of data

subchurn <- subset(churn,

churn$Int.l.Plan == "yes" &

churn$VMail.Plan == "yes" &

churn$Day.Mins>220)

summary(subchurn$CustServ.Calls)

length(subchurn$CustServ.Calls)
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# One Sample T-test and Confidence Interval for Mean

mean.test <- t.test(x= subchurn$CustServ.Calls,

mu=2.4, conf.level= 0.95)

mean.test$statistic

mean.test$p.value

mean.test$conf.int

# One sample Proportion Test and Confidence Interval

num.churn <- sum(churn$Churn == "True") # Churners

sample.size <- dim(churn)[1] # Sample size

p <- num.churn/sample.size # Point estimate

Z_data <- (p - 0.15) / sqrt((0.15*(1-0.15))/sample.size)

error <- qnorm(0.975, mean = 0, sd = 1)*

sqrt((p*(1-p))/sample.size)

lower.bound <- p – error; upper.bound <- p + error

p.value <- 2*pnorm(Z_data, mean = 0, sd = 1)

Z_data; p.value # Test statistic, p-value

lower.bound; upper.bound # Confidence interval

R REFERENCE

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Aus-

tria: R Foundation for Statistical Computing; 2012. ISBN: 3-900051-07-0, http://www.

R-project.org/.

EXERCISES

CLARIFYING THE CONCEPTS

1. Explain what is meant by statistical inference. Give an example of statistical inference

from everyday life, say, a political poll.

2. What is the difference between a population and a sample?

http://www
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3. Describe the difference between a parameter and a statistic.

4. When should statistical inference not be applied?

5. What is the difference between point estimation and confidence interval estimation?

6. Discuss the relationship between the width of a confidence interval and the confidence

level associated with it.

7. Discuss the relationship between the sample size and the width of a confidence interval.

Which is better, a wide interval or a tight interval? Why?

8. Explain what we mean by sampling error.

9. What is the meaning of the term margin of error?

10. What are the two ways to reduce margin of error, and what is the recommended way?

11. A political poll has a margin of error of 3%. How do we interpret this number?

12. What is hypothesis testing?

13. Describe the two ways a correct conclusion can be made, and the two ways an incorrect

conclusion can be made.

14. Explain clearly why a small p-value leads to rejection of the null hypothesis.

15. Explain why it may not always be desirable to draw a black-and-white, up-or-down con-

clusion in a hypothesis test. What can we do instead?

16. How can we use a confidence interval to conduct hypothesis tests?

WORKING WITH THE DATA

17. The duration customer service calls to an insurance company is normally distributed, with

mean 20 minutes, and standard deviation 5 minutes. For the following sample sizes, con-

struct a 95% confidence interval for the population mean duration of customer service

calls.

a. n= 25

b. n= 100

c. n= 400.

18. For each of the confidence intervals in the previous exercise, calculate and interpret the

margin of error.

19. Refer to the previous exercise. Describe the relationship between margin of error and

sample size.

20. Of 1000 customers who received promotional materials for a marketing campaign, 100

responded to the promotion. For the following confidence levels, construct a confidence

interval for the population proportion who would respond to the promotion.

a. 90%

b. 95%

c. 99%.

21. For each of the confidence intervals in the previous exercise, calculate and interpret the

margin of error.
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22. Refer to the previous exercise. Describe the relationship between margin of error and

confidence level.

23. A sample of 100 donors to a charity has a mean donation amount of $55 with a sample

standard deviation of $25. Test using 𝛼 = 0.05 whether the population mean donation

amount exceeds $50.

a. Provide the hypotheses. State the meaning of 𝜇.

b. What is the rejection rule?

c. What is the meaning of the test statistic tdata?

d. Is the value of the test statistic tdata extreme? How can we tell?

e. What is the meaning of the p-value in this example?

f. What is our conclusion?

g. Interpret our conclusion so that a nonspecialist could understand it.

24. Refer to the hypothesis test in the previous exercise. Suppose we now set 𝛼 = 0.01.

a. What would our conclusion now be? Interpret this conclusion.

b. Note that the conclusion has been reversed simply because we have changed the value

of 𝛼. But have the data changed? No, simply our level of what we consider to be signifi-

cance. Instead, go ahead and assess the strength of evidence against the null hypothesis.

25. Refer to the first confidence interval you calculated for the population mean duration of

customer service calls. Use this confidence interval to test whether this population mean

differs from the following values, using level of significance 𝛼 = 0.05.

a. 15 minutes

b. 20 minutes

c. 25 minutes.

26. In a sample of 100 customers, 240 churned when the company raised rates. Test whether

the population proportion of churners is less than 25%, using level of significance

𝛼 = 0.01.



C H A P T E R 6
MULTIVARIATE STATISTICS

So far we have discussed inference methods for one variable at a time. Data ana-

lysts are also interested in multivariate inferential methods, where the relationships

between two variables, or between one target variable and a set of predictor variables,

are analyzed.

We begin with bivariate analysis, where we have two independent samples and

wish to test for significant differences in the means or proportions of the two sam-

ples. When would data miners be interested in using bivariate analysis? In Chapter

6, we illustrate how the data is partitioned into a training data set and a test data

set for cross-validation purposes. Data miners can use the hypothesis tests shown

here to determine whether significant differences exist between the means of var-

ious variables in the training and test data sets. If such differences exist, then the

cross-validation is invalid, because the training data set is nonrepresentative of the

test data set.

• For a continuous variable, use the two-sample t-test for the difference in means.

• For a flag variable, use the two-sample Z-test for the difference in proportions.

• For a multinomial variable, use the test for the homogeneity of proportions.

Of course, there are presumably many variables in each of the training set and

test set. However, spot-checking of a few randomly chosen variables is usually suffi-

cient.

6.1 TWO-SAMPLE T-TEST FOR DIFFERENCE IN MEANS

To test for the difference in population means, we use the following test statistic:

tdata =
x1 − x2√

(s2
1
∕n1) + (s2

2
∕n2)

which follows an approximate t distribution with degrees of freedom the smaller of

n1 − 1 and n2 − 1, whenever either both populations are normally distributed or both

samples are large.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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For example, we partitioned the churn data set into a training set of 2529 records

and a test set of 804 records (the reader’s partition will differ). We would like to

assess the validity of the partition by testing whether the population mean number of

customer service calls differs between the two data sets. The summary statistics are

given in Table 6.1.

TABLE 6.1 Summary statistics for customer service calls, training data set, and test data set

Data Set Sample Mean Sample Standard Deviation Sample Size

Training set x1 = 1.5714 s1 = 1.3126 n1 = 2529

Test set x2 = 1.5361 s2 = 1.3251 n2 = 804

Now, the sample means do not look very different, but we would like to have

the results of the hypothesis test just to make sure. The hypotheses are

H0∶𝜇1 = 𝜇2 versus Ha∶𝜇1 ≠ 𝜇2

The test statistic is

tdata =
x1 − x2√

(s2
1
∕n1) + (s2

2
∕n2)

= 1.5714 − 1.5361√
(1.31262∕2529) + (1.32512∕804)

= 0.6595

The two-tailed p-value for tdata = 0.6594 is

p − value = 2 ⋅ P(t > 0.6595) = 0.5098

Since the p-value is large, there is no evidence that the mean number of cus-

tomer service calls differs between the training data set and the test data set. For this

variable at least, the partition seems valid.

6.2 TWO-SAMPLE Z-TEST FOR DIFFERENCE IN
PROPORTIONS

Of course not all variables are numeric, like customer service calls. What if we have

a 0/1 flag variable – such as membership in the Voice Mail Plan – and wish to test

whether the proportions of records with value 1 differ between the training data set

and test data set? We could turn to the two-sample Z-test for the difference in propor-

tions. The test statistic is

Zdata =
p1 − p2√

ppooled ⋅ (1 − ppooled)((1∕n1) + (1∕n2))

where ppooled = x1+x2

n1+n2
, and xi and pi represents the number of and proportion of

records with value 1 for sample i, respectively.

For example, our partition resulted in x1 = 707 of n1 = 2529 customers in the

training set belonging to the Voice Mail Plan, while x2 = 215 of n2 = 804 customers
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in the test set belonging, so that p1 = x1

n1
= 707

2529
= 0.2796, p2 = x2

n2
= 215

804
= 0.2674,

and ppooled = x1+x2

n1+n2
= 707+215

2529+804
= 0.2766.

The hypotheses are

H0∶𝜋1 = 𝜋2 versus Ha∶𝜋1 ≠ 𝜋2

The test statistic is

Zdata =
p1 − p2√

ppooled ⋅ (1 − ppooled)((1∕n1) + (1∕n2))

= 0.2796 − 0.2674√
0.2766 ⋅ (0.7234)((1∕2529) + (1∕804))

= 0.6736

The p-value is

p − value = 2 ⋅ P(Z > 0.6736) = 0.5006

Thus, there is no evidence that the proportion of Voice Mail Plan members

differs between the training and test data sets. For this variable, the partition is valid.

6.3 TEST FOR THE HOMOGENEITY OF PROPORTIONS

Multinomial data is an extension of binomial data to k> 2 categories. For example,

suppose a multinomial variable marital status takes the values married, single, and

other. Suppose we have a training set of 1000 people and a test set of 250 people,

with the frequencies shown in Table 6.2.

To determine whether significant differences exist between the multinomial

proportions of the two data sets, we could turn to the test for the homogeneity of

proportions.1 The hypotheses are

H0∶pmarried,training = pmarried,test,

psingle,training = psingle,test,

pother,training = pother,test

Ha∶At least one of the claims in H0 is wrong.

TABLE 6.2 Observed frequencies

Data Set Married Single Other Total

Training set 410 340 250 1000

Test set 95 85 70 250

Total 505 425 320 1250

1Thanks to Dr. Daniel S. Miller for helpful discussions on this topic.
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To determine whether these observed frequencies represent proportions that are

significantly different for the training and test data sets, we compare these observed

frequencies with the expected frequencies that we would expect if H0 were true. For

example, to find the expected frequency for the number of married people in the

training set, we (i) find the overall proportion of married people in both the training

and test sets,
505

1250
, and (ii) we multiply this overall proportion by the number of people

in the training set, 1000, giving us the expected proportion of married people in the

training set to be

Expected frequencymarried,training = (1000)(505)
1250

= 404

We use the overall proportion in (i) because H0 states that the training and test

proportions are equal. Generalizing, for each cell in the table, the expected frequen-

cies are calculated as follows:

Expected frequency = (row total)(column total)
grand total

Applying this formula to each cell in the table gives us the table of expected

frequencies in Table 6.3.

The observed frequencies (O) and the expected frequencies (E) are compared

using a test statistic from the 𝜒2 (chi-square) distribution:

𝜒2
data

=
∑ (O − E)2

E

Large differences between the observed and expected frequencies, and thus a

large value for𝜒2
data

, will lead to a small p-value, and a rejection of the null hypothesis.

Table 6.4 illustrates how the test statistic is calculated.

The p-value is the area to the right of 𝜒2
data

under the 𝜒2 curve with degrees of

freedom equal to (number of rows− 1) (number of columns− 1)= (1)(2)= 2:

p-value = P(𝜒2 > 𝜒2
data

) = P(𝜒2 > 1.15) = 0.5627

Because this p-value is large, there is no evidence that the observed frequencies rep-

resent proportions that are significantly different for the training and test data sets. In

other words, for this variable, the partition is valid.

This concludes our coverage of the tests to apply when checking the validity of

a partition.

TABLE 6.3 Expected frequencies

Data Set Married Single Other Total

Training set 404 340 256 1000

Test set 101 85 64 250

Total 505 425 320 1250
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TABLE 6.4 Calculating the test statistic 𝝌
2
data

Cell Observed Frequency Expected Frequency
(Obs − Exp)2

Exp

Married, training 410 404
(410 − 404)2

404
= 0.09

Married, test 95 101
(95 − 101)2

101
= 0.36

Single, training 340 340
(340 − 340)2

340
= 0

Single, test 85 85
(85 − 85)2

85
= 0

Other, training 250 256
(250 − 256)2

256
= 0.14

Other, test 70 64
(70 − 64)2

64
= 0.56

Sum = 𝜒2
data

= 1.15

6.4 CHI-SQUARE TEST FOR GOODNESS OF FIT OF
MULTINOMIAL DATA

Next, suppose a multinomial variable marital status takes the values married, single,

and other, and suppose that we know that 40% of the individuals in the population
are married, 35% are single, and 25% report another marital status. We are taking

a sample and would like to determine whether the sample is representative of the

population. We could turn to the 𝜒2 (chi-square) goodness of fit test.

The hypotheses for this 𝜒2 goodness of fit test would be as follows:

H0∶pmarried = 0.40, psingle = 0.35, pmarried = 0.25

Ha∶At least one of the proportions in H0 is wrong.

Our sample of size n= 100, yields the following observed frequencies (repre-

sented by the letter “O”):

Omarried = 36, Osingle = 35, Oother = 29

To determine whether these counts represent proportions that are significantly

different from those expressed in H0, we compare these observed frequencies with

the expected frequencies that we would expect if H0 were true. If H0 were true, then

we would expect 40% of our sample of 100 individuals to be married, that is, the

expected frequency for married is

Emarried = n ⋅ pmarried = 100 ⋅ 0.40 = 40

Similarly,

Esingle = n ⋅ psingle = 100 ⋅ 0.35 = 35

Eother = n ⋅ pother = 100 ⋅ 0.25 = 25
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These frequencies are compared using the test statistic:

𝜒2
data

=
∑ (O − E)2

E

Again, large differences between the observed and expected frequencies, and

thus a large value for 𝜒2
data

, will lead to a small p-value, and a rejection of the null

hypothesis. Table 6.5 illustrates how the test statistic is calculated.

The p-value is the area to the right of 𝜒2
data

under the 𝜒2 curve with k− 1 degrees

of freedom, where k is the number of categories (here k= 3):

p − value = P(𝜒2 > 𝜒2
data

) = P(𝜒2 > 1.04) = 0.5945

Thus, there is no evidence that the observed frequencies represent proportions

that differ significantly from those in the null hypothesis. In other words, our sample

is representative of the population.

TABLE 6.5 Calculating the test statistic 𝝌
2
data

Marital Status Observed Frequency Expected Frequency
(Obs − Exp)2

Exp

Married 36 40
(36 − 40)2

40
= 0.4

Single 35 35
(35 − 35)2

35
= 0

Other 29 25
(29 − 25)2

25
= 0.64

Sum = 𝜒2
data

= 1.04

6.5 ANALYSIS OF VARIANCE

In an extension of the situation for the two-sample t-test, suppose that we have a three-

fold partition of the data set, and wish to test whether the mean value of a continuous

variable is the same across all three subsets. We could turn to one-way analysis of

variance (ANOVA). To understand how ANOVA works, consider the following small

example. We have samples from Groups A, B, and C, of four observations each, for

the continuous variable age, shown in Table 6.6.

TABLE 6.6 Sample ages for Groups A, B, and C

Group A Group B Group C

30 25 25

40 30 30

50 50 40

60 55 45
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The hypotheses are

H0∶𝜇A = 𝜇B = 𝜇C

Ha∶Not all the population means are equal.

The sample mean ages are xA = 45, xB = 40, and xC = 35. A comparison dot

plot of the data (Figure 6.1) shows that there is a considerable amount of overlap

among the three data sets. So, despite the difference in sample means, the dotplot

offers little or no evidence to reject the null hypothesis that the population means are

all equal.

Next, consider the following samples from Groups D, E, and F, for the contin-

uous variable age, shown in Table 6.7.

Once again, the sample mean ages are xD = 45, xE = 40, and xF = 35. A com-

parison dot plot of this data (Figure 6.2) illustrates that there is very little overlap

among the three data sets. Thus, Figure 6.2 offers good evidence to reject the null

hypothesis that the population means are all equal.

To recapitulate, Figure 6.1 shows no evidence of difference in group means,

while Figure 6.2 shows good evidence of differences in group means, even though

25

A
B
C

30 35 40 45 50 55 60

Ages of Groups A, B, and C

Figure 6.1 Dotplot of Groups A, B, and C shows considerable overlap.

TABLE 6.7 Sample ages for Groups D, E, and F

Group D Group E Group F

43 37 34

45 40 35

45 40 35

47 43 36

25 30 35 40 45 50 55

D

E

F
60

Ages of Groups D, E, and F

Figure 6.2 Dotplot of Groups D, E, and F shows little overlap.
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the respective sample means are the same in both cases. The distinction stems from

the overlap among the groups, which itself is a result of the spread within each group.

Note that the spread is large for each group in Figure 6.1, and small for each group in

Figure 6.2. When the spread within each sample is large (Figure 6.1), the difference in

sample means seems small. When the spread within each sample is small (Figure 6.2),

the difference in sample means seems large.

ANOVA works by performing the following comparison. Compare

1. the between-sample variability, that is, the variability in the sample means, such

as xA = 45, xB = 40, and xC = 35, with

2. the within-sample variability, that is, the variability within each sample, mea-

sured, for example, by the sample standard deviations.

When (1) is much larger than (2), this represents evidence that the population

means are not equal. Thus, the analysis depends on measuring variability, hence the

term analysis of variance.

Let x represent the overall sample mean, that is, the mean of all observations

from all groups. We measure the between-sample variability by finding the variance

of the k sample means, weighted by sample size, and expressed as the mean square
treatment (MSTR):

MSTR =
∑

ni(xi − x)2

k − 1

We measure the within-sample variability by finding the weighted mean of the

sample variances, expressed as the mean square error (MSE):

MSTE =
∑
(ni − 1)s2

i

nt − k

We compare these two quantities by taking their ratio:

Fdata =
MSTR

MSE

which follows an F distribution, with degrees of freedom df1 = k − 1 and df2 = nt −
k. The numerator of MSTR is the sum of squares treatment, SSTR, and the numerator

of MSE is the sum of squares error, SSE. The total sum of squares (SST) is the sum

of SSTR and SSE. A convenient way to display the above quantities is in the ANOVA

table, shown in Table 6.8.

TABLE 6.8 ANOVA table

Source of Sum of Degrees of Mean

Variation Squares Freedom Square F

Treatment SSTR df1 = k − 1 MSTR = SSTR

df1

Fdata =
MSTR

MSE

Error SSE df2 = nt − k MSE = SSE

df2

Total SST
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The test statistic Fdata will be large when the between-sample variability is

much greater than the within-sample variability, which is indicative of a situation

calling for rejection of the null hypothesis. The p-value is P(F > Fdata); reject the

null hypothesis when the p-value is small, which happens when Fdata is large.

For example, let us verify our claim that Figure 6.1 showed little or no evi-

dence that the population means were not equal. Table 6.9 shows the Minitab ANOVA

results.

TABLE 6.9 ANOVA results for H0 :𝝁A =𝝁B =𝝁C

The p-value of 0.548 indicates that there is no evidence against the null hypoth-

esis that all population means are equal. This bears out our earlier claim. Next let us

verify our claim that Figure 6.2 showed evidence that the population means were not

equal. Table 6.10 shows the Minitab ANOVA results.

TABLE 6.10 ANOVA results for H0 :𝝁D =𝝁E =𝝁F

The p-value of approximately zero indicates that there is strong evidence that

not all the population mean ages are equal, thus supporting our earlier claim. For

more on ANOVA, see Larose (2013).2

Regression analysis represents another multivariate technique, comparing a sin-

gle predictor with the target in the case of Simple Linear Regression, and comparing

a set of predictors with the target in the case of Multiple Regression. We cover these

topics in their own chapters, Chapters 8 and 9, respectively.

REFERENCE

Much more information regarding the topics covered in this chapter may be found in any

introductory statistics textbook, such as Discovering Statistics, second edition, by Daniel

T. Larose, W. H. Freeman, New York, 2013.

2Daniel Larose, Discovering Statistics, Second Edition, W.H. Freeman and Company, Publishers, New

York, 2013.
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THE R ZONE

# Two-Sample T-Test for difference in means

# Input the summary statistics from Table 5.1

xbar1 <- 1.5714

xbar2 <- 1.5361

s1 <- 1.3126; s2 <- 1.3251

n1 <- 2529; n2 <- 804

dfs <- min(n1-1, n2-1)

tdata <- (xbar1 - xbar2) / sqrt((s1 ̂ 2/n1)+(s2 ̂ 2/n2))

pvalue <- 2*pt(tdata, df = dfs, lower.tail=FALSE)

tdata; pvalue # Test statistic and p-value

# Two-Sample Z Test for Difference in Proportions

# Input the summary statistics

# Some of these will override the values

# from the previous example

x1 <- 707

x2 <- 215

n1 <- 2529

n2 <- 804

p1 <- x1 / n1

p2 <- x2 / n2

ppooled <- (x1+x2) / (n1+n2)

zdata <- (p1-p2) / sqrt(ppooled*(1-ppooled)

*((1/n1)+(1/n2)))

pvalue <- 2*pnorm(abs(zdata), lower.tail = FALSE)

zdata; pvalue # Test statistic and p-value

# Chi Square Test for Homogeneity of Proportions

# Recreate Table 5.2

table5.2 <- as.table(rbind(c(410, 340, 250),

c(95, 85, 70)))

dimnames(table5.2) <- list(Data.Set =
c("Training Set", "Test Set"),

Status = c("Married", "Single", "Other"))

Xsq_data <- chisq.test(table5.2)

Xsq_data$statistic # Test statistic

Xsq_data$p.value # p-value

Xsq_data$expected # Expected counts
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# Chi-Square Goodness of Fit of Multinomial Data

# Population proportions

p_status <- c(0.40, 0.35, 0.25)

# Observed frequencies

o_status <- c(36, 35, 29)

chisq.test(o_status, p = p_status)

# ANOVA

a <- c(30, 40, 50, 60); b <- c(25, 30, 50, 55)

c <- c(25, 30, 40, 45)

ab <- append(a,b); datavalues <- append(ab, c)

datalabels <- factor(c(rep("a", length(a)),

rep("b", length(b)), rep("c", length(c))))

anova.results <- aov(datavalues ̃ datalabels)

summary(anova.results)

R REFERENCE

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Aus-

tria: R Foundation for Statistical Computing; 2012. ISBN: 3-900051-07-0, http://www.

R-project.org/.

EXERCISES

1. In Chapter 7, we will learn to split the data set into a training data set and a test data set.

To test whether there exist unwanted differences between the training and test set, which

hypothesis test do we perform, for the following types of variables:

a. Flag variable

b. Multinomial variable

c. Continuous variable

Table 6.11 contains information on the mean duration of customer service calls between

a training and a test data set. Test whether the partition is valid for this variable, using

𝛼 = 0.10.

2. Our partition shows that 800 of the 2000 customers in our test set own a tablet, while 230

of the 600 customers in our training set own a tablet. Test whether the partition is valid for

this variable, using 𝛼 = 0.10.

Table 6.12 contains the counts for the marital status variable for the training and test set

data. Test whether the partition is valid for this variable, using 𝛼 = 0.10.

http://www
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TABLE 6.11 Summary statistics for duration of customer service calls

Data Set Sample Mean Sample Standard Deviation Sample Size

Training set x1 = 20.5 s1 = 5.2 n1 = 2000

Test set x2 = 20.4 s2 = 4.9 n2 = 600

TABLE 6.12 Observed frequencies for marital status

Data Set Married Single Other Total

Training set 800 750 450 2000

Test set 240 250 110 600

Total 1040 1000 560 2600

3. The multinomial variable payment preference takes the values credit card, debit card, and

check. Now, suppose we know that 50% of the customers in our population prefer to pay

by credit card, 20% prefer debit card, and 30% prefer to pay by check. We have taken a

sample from our population, and would like to determine whether it is representative of

the population. The sample of size 200 shows 125 customers preferring to pay by credit

card, 25 by debit card, and 50 by check. Test whether the sample is representative of the

population, using 𝛼 = 0.05.

4. Suppose we wish to test for difference in population means among three groups.

a. Explain why it is not sufficient to simply look at the differences among the sample

means, without taking into account the variability within each group.

b. Describe what we mean by between-sample variability and within-sample variability.

c. Which statistics measure the concepts in (b).

d. Explain how ANOVA would work in this situation.

Table 6.13 contains the amount spent (in dollars) in a random sample of purchases where

the payment was made by credit card, debit card, and check, respectively. Test whether the

population mean amount spent differs among the three groups, using 𝛼 = 0.05. Refer to the

previous exercise. Now test whether the population mean amount spent differs among the three

groups, using 𝛼 = 0.01. Describe any conflict between your two conclusions. Suggest at least

two courses of action to ameliorate the situation.

TABLE 6.13 Purchase amounts for three payment methods

Credit Card Debit Card Check

100 80 50

110 120 70

90 90 80

100 110 80



C H A P T E R 7
PREPARING TO MODEL
THE DATA

7.1 SUPERVISED VERSUS UNSUPERVISED METHODS

Data mining methods may be categorized as either supervised or unsupervised. In

unsupervised methods, no target variable is identified as such. Instead, the data mining

algorithm searches for patterns and structures among all the variables. The most com-

mon unsupervised data mining method is clustering, our topic for Chapters 19–22.

For example, political consultants may analyze congressional districts using cluster-

ing methods, to uncover the locations of voter clusters that may be responsive to a par-

ticular candidate’s message. In this case, all appropriate variables (e.g., income, race,

gender) would be input to the clustering algorithm, with no target variable specified,

in order to develop accurate voter profiles for fund-raising and advertising purposes.

Another data mining method, which may be supervised or unsupervised, is

association rule mining. In market basket analysis, for example, one may simply be

interested in “which items are purchased together,” in which case no target variable

would be identified. The problem here, of course, is that there are so many items

for sale, that searching for all possible associations may present a daunting task, due

to the resulting combinatorial explosion. Nevertheless, certain algorithms, such as

the a priori algorithm, attack this problem cleverly, as we shall see when we cover

association rule mining in Chapter 23.

Most data mining methods are supervised methods, however, meaning that (i)

there is a particular prespecified target variable, and (ii) the algorithm is given many

examples where the value of the target variable is provided, so that the algorithm

may learn which values of the target variable are associated with which values of

the predictor variables. For example, the regression methods of Chapters 8 and 9 are

supervised methods, as the observed values of the response variable y are provided to

the least-squares algorithm, which seeks to minimize the squared distance between

these y values and the y values predicted given the x-vector. All of the classification

methods we examine in Chapters 10–18 are supervised methods, including decision

trees, neural networks, and k-nearest neighbors.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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Note: The terms supervised and unsupervised are widespread in the literature,

and hence used here. However, we do not mean to imply that unsupervised meth-

ods require no human involvement. To the contrary, effective cluster analysis and

association rule mining both require substantial human judgment and skill.

7.2 STATISTICAL METHODOLOGY AND DATA MINING
METHODOLOGY

In Chapters 5 and 6, we were introduced to a wealth of statistical methods for per-

forming inference, that is, for estimating or testing the unknown parameters of a

population of interest. Statistical methodology and data mining methodology differ

in the following two ways:

1. Applying statistical inference using the huge sample sizes encountered in data

mining tends to result in statistical significance, even when the results are not

of practical significance.

2. In statistical methodology, the data analyst has an a priori hypothesis in mind.

Data mining procedures usually do not have an a priori hypothesis, instead

freely trolling through the data for actionable results.

7.3 CROSS-VALIDATION

Unless properly conducted, data mining can become data dredging, whereby the ana-

lyst “uncovers” phantom spurious results, due to random variation rather than real

effects. It is therefore crucial that data miners avoid data dredging. This is accom-

plished through cross-validation.

Cross-validation is a technique for insuring that the results uncovered in an

analysis are generalizable to an independent, unseen, data set. In data mining, the

most common methods are twofold cross-validation and k-fold cross-validation. In

twofold cross-validation, the data are partitioned, using random assignment, into a

training data set and a test data set. The test data set should then have the target

variable omitted. Thus, the only systematic difference between the training data set

and the test data set is that the training data includes the target variable and the test data

does not. For example, if we are interested in classifying income bracket, based on

age, gender, and occupation, our classification algorithm would need a large pool of

records, containing complete (as complete as possible) information about every field,

including the target field, income bracket. In other words, the records in the training
set need to be preclassified. A provisional data mining model is then constructed using

the training samples provided in the training data set.

However, the training set is necessarily incomplete; that is, it does not include

the “new” or future data that the data modelers are really interested in classifying.

Therefore, the algorithm needs to guard against “memorizing” the training set and

blindly applying all patterns found in the training set to the future data. For example,

it may happen that all customers named “David” in a training set may be in the
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high-income bracket. We would presumably not want our final model, to be applied

to the new data, to include the pattern “If the customer’s first name is David, the cus-

tomer has a high income.” Such a pattern is a spurious artifact of the training set and

needs to be verified before deployment.

Therefore, the next step in supervised data mining methodology is to examine

how the provisional data mining model performs on a test set of data. In the test set,

a holdout data set, the values of the target variable are hidden temporarily from the

provisional model, which then performs classification according to the patterns and

structures it learned from the training set. The efficacy of the classifications is then

evaluated by comparing them against the true values of the target variable. The pro-

visional data mining model is then adjusted to minimize the error rate on the test set.

Estimates of model performance for future, unseen data can then be computed

by observing various evaluative measures applied to the test data set. Such model

evaluation techniques are covered in Chapters 15–18. The bottom line is that

cross-validation guards against spurious results, as it is highly unlikely that the same

random variation would be found to be significant in both the training set and the

test set. For example, a spurious signal with 0.05 probability of being observed, if

in fact no real signal existed, would have only 0.052 = 0.0025 probability of being

observed in both the training and test sets, because these data sets are independent.

In other words, the data analyst could report an average 400 results before one would

expect a spurious result to be reported.

But the data analyst must insure that the training and test data sets are indeed

independent, by validating the partition. We validate the partition into training and

test data sets by performing graphical and statistical comparisons between the two

sets. For example, we may find that, even though the assignment of records was made

randomly, a significantly higher proportion of positive values of an important flag

variable were assigned to the training set, compared to the test set. This would bias

our results, and hurt our prediction or classification accuracy on the test data set.

It is especially important that the characteristics of the target variable be as similar

as possible between the training and test data sets. Table 7.1 shows the suggested

hypothesis test for validating the target variable, based on the type of target variable.

In k-fold cross validation, the original data is partitioned into k independent

and similar subsets. The model is then built using the data from k− 1 subsets, using

the kth subset as the test set. This is done iteratively until we have k different models.

The results from the k models are then combined using averaging or voting. A popular

choice for k is 10. A benefit of using k-fold cross-validation is that each record appears

in the test set exactly once; a drawback is that the requisite validation task is made

more difficult.

TABLE 7.1 Suggested hypothesis tests for validating different types of target variables

Type of Target Variable Test from Chapter 5

Continuous Two-sample t-test for difference in means

Flag Two-sample Z test for difference in proportions

Multinomial Test for homogeneity of proportions
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To summarize, most supervised data mining methods apply the following

methodology for building and evaluating a model:

METHODOLOGY FOR BUILDING AND EVALUATING A DATA MODEL

1. Partition the available data into a training set and a test set. Validate the partition.

2. Build a data mining model using the training set data.

3. Evaluate the data mining model using the test set data.

7.4 OVERFITTING

Usually, the accuracy of the provisional model is not as high on the test set as it is

on the training set, often because the provisional model is overfitting on the training

set. Overfitting results when the provisional model tries to account for every possi-

ble trend or structure in the training set, even idiosyncratic ones such as the “David”

example above. There is an eternal tension in model building between model com-

plexity (resulting in high accuracy on the training set) and generalizability to the test

and validation sets. Increasing the complexity of the model in order to increase the

accuracy on the training set eventually and inevitably leads to a degradation in the

generalizability of the provisional model to the test set, as shown in Figure 7.1.

Figure 7.1 shows that as the provisional model begins to grow in complexity

from the null model (with little or no complexity), the error rates on both the training

Optimal level of
model complexity

Error
rate

Complexity of model

Error rate on
training setOverfittingUnderfitting

Error rate on
test set

Figure 7.1 The optimal level of model complexity is at the minimum error rate on the test

set.
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set and the test set fall. As the model complexity increases, the error rate on the train-

ing set continues to fall in a monotone manner. However, as the model complexity

increases, the test set error rate soon begins to flatten out and increase because the

provisional model has memorized the training set rather than leaving room for gen-

eralizing to unseen data. The point where the minimal error rate on the test set is

encountered is the optimal level of model complexity, as indicated in Figure 7.1.

Complexity greater than this is considered to be overfitting; complexity less than this

is considered to be underfitting.

7.5 BIAS–VARIANCE TRADE-OFF

Suppose that we have the scatter plot in Figure 7.2 and are interested in constructing

the optimal curve (or straight line) that will separate the dark gray points from the

light gray points. The straight line has the benefit of low complexity but suffers from

some classification errors (points ending up on the wrong side of the line).

In Figure 7.3, we have reduced the classification error to zero but at the cost of

a much more complex separation function (the curvy line). One might be tempted to

adopt the greater complexity in order to reduce the error rate. However, one should be

careful not to depend on the idiosyncrasies of the training set. For example, suppose

that we now add more data points to the scatter plot, giving us the graph in Figure 7.4.

Note that the low-complexity separator (the straight line) need not change very

much to accommodate the new data points. This means that this low-complexity sep-

arator has low variance. However, the high-complexity separator, the curvy line, must

alter considerably if it is to maintain its pristine error rate. This high degree of change

indicates that the high-complexity separator has a high variance.

Even though the high-complexity model has a low bias (in terms of the error

rate on the training set), it has a high variance; and even though the low-complexity

model has a high bias, it has a low variance. This is what is known as the
bias–variance trade-off. The bias–variance trade-off is another way of describing

the overfitting/underfitting dilemma shown in Figure 7.1. As model complexity

Figure 7.2 Low-complexity separator with high error rate.



7.5 BIAS–VARIANCE TRADE-OFF 165

Figure 7.3 High-complexity separator with low error rate.

Figure 7.4 With more data: low-complexity separator need not change much; high-complex-

ity separator needs much revision.

increases, the bias on the training set decreases but the variance increases. The goal

is to construct a model in which neither the bias nor the variance is too high, but

usually, minimizing one tends to increase the other.

For example, a common method of evaluating how accurate model estimation

is proceeding for a continuous target variable is to use the mean-squared error (MSE).

Between two competing models, one may select the better model as that model with

the lower MSE. Why is MSE such a good evaluative measure? Because it combines

both bias and variance. The MSE is a function of the estimation error (sum of squared

errors, SSE) and the model complexity (e.g., degrees of freedom). It can be shown

(e.g., Hand, Mannila, and Smyth.1) that the MSE can be partitioned using the follow-

ing equation, which clearly indicates the complementary relationship between bias

and variance:

MSE = variance + bias2

1David Hand, Heikki Mannila, and Padhraic Smyth, Principles of Data Mining, MIT Press, Cambridge,

MA, 2001.
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7.6 BALANCING THE TRAINING DATA SET

For classification models, in which one of the target variable classes has much lower

relative frequency than the other classes, balancing is recommended. A benefit of

balancing the data is to provide the classification algorithms with a rich balance of

records for each classification outcome, so that the algorithms have a chance to learn

about all types of records, not just those with high target frequency. For example,

suppose we are running a fraud classification model and our training data set consists

of 100,000 transactions, of which only 1000 are fraudulent. Then, our classification

model could simply predict “non-fraudulent” for all transactions, and achieve 99%

classification accuracy. However, clearly this model is useless.

Instead, the analyst should balance the training data set so that the relative fre-

quency of fraudulent transactions is increased. There are two ways to accomplish this,

which are as follows:

1. Resample a number of fraudulent (rare) records.

2. Set aside a number of non-fraudulent (non-rare) records.

Resampling refers to the process of sampling at random and with replacement

from a data set. Suppose we wished our 1000 fraudulent records to represent 25% of

the balanced training set, rather than the 1% represented by these records in the raw

training data set. Then, we could add 32,000 resampled fraudulent records so that we

had 33,000 fraudulent records, out of a total of 100,000+ 32,000= 132,000 records

in all. This represents
33,000

132,000
= 0.25 or the desired 25%.

How did we arrive at the number of 32,000 additional fraudulent records? By

using the equation

1000 + x = 0.25(100, 000 + x)

and solving for x, the required number of additional records to resample. In general,

this equation is

Rare + x = p(records + x)

and solving for x gives us:

x =
p(records) − rare

1 − p

where x is the required number of resampled records, p represents the desired propor-

tion of rare values in the balanced data set, records represents the number of records in

the unbalanced data set, and rare represents the current number of rare target values.

Some data miners have a philosophical aversion to resampling records to

achieve balance, as they feel this amounts to fabricating data. In this case, a sufficient

number of non-fraudulent transactions would instead be set aside, thereby increasing

the proportion of fraudulent transactions. To achieve a 25% balance proportion, we

would retain only 3000 non-fraudulent records. We would then need to discard from

the analysis 96,000 of the 99,000 non-fraudulent records, using random selection. It

would not be surprising if our data mining models would suffer as a result of starving

them of data in this way. Instead, the data analyst would probably be well-advised
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either to decrease the desired balance proportion to something like 10% or to use

resampling.

When choosing a desired balancing proportion, recall the rationale for doing

so: in order to allow the model a sufficiently rich variety of records to learn how to

classify the rarer value of the target variable across a range of situations. The bal-

ancing proportion can be relatively low (e.g., 10%) if the analyst is confident that the

rare target value is exposed to a sufficiently rich variety of records. The balancing

proportion should be higher (e.g., 25%) if the analyst is not so confident of this.

The test data set should never be balanced. The test data set represents new

data that the models have not seen yet. Certainly, the real world will not balance

tomorrow’s data for the convenience of our classification models; therefore, the test

data set itself should not be balanced. Note that all model evaluation will take place

using the test data set, so that the evaluative measures will all be applied to unbalanced

(real-world-like) data.

Because some predictor variables have higher correlation with the target vari-

able than do other predictor variables, the character of the balanced data will change.

For example, suppose we are working with the Churn data set, and suppose that

churners have higher levels of day minutes than non-churners. Then, when we bal-

ance the data set, the overall mean of day minutes will increase, as we have eliminated

so many non-churner records. Such changes cannot be avoided when balancing data
sets. Thus, direct overall comparisons between the original and balanced data sets

are futile, as changes in character are inevitable. However, apart from these unavoid-

able changes, and although the random sampling tends to protect against systematic

deviations, data analysts should provide evidence that their balanced data sets do not

otherwise differ systematically from the original data set. This can be accomplished

by examining the graphics and summary statistics from the original and balanced data

set, partitioned on the categories of the target variable. If desired, hypothesis tests

such as those in Chapter 6 may be applied. If deviations are uncovered, the balancing

should be reapplied. Cross-validation measures can be applied if the analyst is con-

cerned about these deviations. Multiple randomly selected balanced data sets can be

formed, and the results averaged, for example.

7.7 ESTABLISHING BASELINE PERFORMANCE

In Star Trek IV: The Voyage Home, Captain Kirk travels back in time to the 20th

century, finds himself in need of cash, and pawns his eyeglasses. The buyer offers

him $100, to which Captain Kirk responds, “Is that a lot?” Unfortunately, the Captain

had no frame of reference to compare the $100 to, and so was unable to determine

whether the $100 was a satisfactory offer or not. As data analysts we should do our

best to avoid putting our clients into Captain Kirk’s situation, by reporting results

with no comparison to a baseline. Without comparison to a baseline, a client cannot

determine whether our results are any good.

For example, suppose we naively report that “only” 28.4% of customers adopt-

ing our International Plan (see Table 3.3) will churn. That does not sound too bad,

until we recall that, among all of our customers, the overall churn rate is only 14.49%
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(Figure 3.3). This overall churn rate may be considered our baseline, against which

any further results can be calibrated. Thus, belonging to the International Plan actually

nearly doubles the churn rate, which is clearly not good.

The type of baseline one should use depends on the way the results are reported.

For the churn example, we are interested in decreasing the overall churn rate, which is

expressed as a percentage. So, our objective would be to report a decrease in the over-

all churn rate. Note the difference between an absolute difference in the churn rate

versus a relative difference in the churn rate. Suppose our data mining model resulted

in a predicted churn rate of 9.99%. This represents only a 14.49− 9.99%= 4.5% abso-

lute decrease in the churn rate, but a 4.5%∕14.49% = 31% relative decrease in the

churn rate. The analyst should make it clear for the client which comparison method

is being used.

Suppose our task is estimation, and we are using a regression model. Then, our

baseline model may take the form of a “y model,” that is, a model that simply finds the

mean of the response variable, and predicts that value for every record. Clearly this is

quite naïve, so any data mining model worth its salt should not have a problem beating

this y model. By the same token, if your data mining model cannot outperform the y
model, then something is clearly wrong. (We measure the goodness of a regression

model using the standard error of the estimate s along with r2.)

A more challenging yardstick against which to calibrate your model is to use

existing research or results already existing in the field. For example, suppose the

algorithm your analytics company currently uses succeeds in identifying 90% of all

fraudulent online transactions. Then, your company will probably expect your new

data mining model to outperform this 90% baseline.

THE R ZONE

# Read in the data, partition Training and Testing data

adult <- read.csv(file = "C:/… /adult.txt",

stringsAsFactors=TRUE)

choose <- runif(length(adult$income),

min = 0,

max = 1)

training <- adult[choose <= 0.75,]

testing <- adult[choose > 0.75,]

adult[1:5, c(1,2,3)]

training[1:5, c(1,2,3)]

testing[1:5, c(1,2,3)]



EXERCISES 169

# Remove the target variable, Income, from the testing data

names(testing)

# Target variable is in Column 15

testing <- testing[,-15]

names(testing)

# Target variable is no longer in

# the testing data

# Remove the partitioning variable, Part, from both data sets

# Part is now the 15th variable

testing <- testing[,-15]

names(testing)

names(training)

# Part is the 16th variable

# in the training data set

training <- training[,-16]

names(training)

R REFERENCE

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Aus-

tria: R Foundation for Statistical Computing; 2012. ISBN: 3-900051-07-0, http://www.

R-project.org/. Accessed 2014 Sep 30.

EXERCISES

1. Explain the difference between supervised and unsupervised methods. Which data mining

tasks are associated with unsupervised methods? Supervised? Both?

2. Describe the differences between the training set, test set, and validation set.

3. Should we strive for the highest possible accuracy with the training set? Why or why not?

How about the validation set?

4. How is the bias–variance trade-off related to the issue of overfitting and underfitting? Is

high bias associated with overfitting and underfitting, and why? High variance?

http://www


170 CHAPTER 7 PREPARING TO MODEL THE DATA

5. Explain why we sometimes need to balance the data.

6. Suppose we are running a fraud classification model, with a training set of 10,000 records

of which only 400 are fraudulent. How many fraudulent records need to be resampled if

we would like the proportion of fraudulent records in the balanced data set to be 20%?

7. When should the test data set be balanced?

8. Explain why we should always report a baseline performance, rather than merely citing

the uncalibrated results from our model.

9. Explain the distinction between reporting an absolute difference versus a relative differ-

ence.

10. If we are using a regression model, what form may our baseline model take?
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SIMPLE LINEAR REGRESSION

Regression modeling represents a powerful and elegant method for estimating the

value of a continuous target variable. In this chapter, we introduce regression model-

ing through simple linear regression, where a straight line is used to approximate the

relationship between a single continuous predictor variable and a single continuous

response variable. Later, in Chapter 9, we turn to multiple regression, where several

predictor variables are used to estimate a single response.

8.1 AN EXAMPLE OF SIMPLE LINEAR REGRESSION

To develop the simple linear regression model, consider the Cereals data set,1 an

excerpt of which is presented in Table 8.1. The Cereals data set contains nutritional

information for 77 breakfast cereals, and includes the following variables:

• Cereal name

• Cereal manufacturer

• Type (hot or cold)

• Calories per serving

• Grams of protein

• Grams of fat

• Milligrams of sodium

• Grams of fiber

• Grams of carbohydrates

• Grams of sugar

• Milligrams of potassium

• Percentage of recommended daily allowance of vitamins (0%, 25%, or 100%)

1Cereals data set, in Data and Story Library, http://lib.stat.cmu.edu/DASL. Also available at book web site

www.DataMiningConsultant.com.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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TABLE 8.1 Excerpt from Cereals data set: eight fields, first 16 cereals

Cereal Name Manufacture Sugars Calories Protein Fat Sodium Rating

100% Bran N 6 70 4 1 130 68.4030

100% Natural Bran Q 8 120 3 5 15 33.9837

All-Bran K 5 70 4 1 260 59.4255

All-Bran Extra Fiber K 0 50 4 0 140 93.7049

Almond Delight R 8 110 2 2 200 34.3848

Apple Cinnamon Cheerios G 10 110 2 2 180 29.5095

Apple Jacks K 14 110 2 0 125 33.1741

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

• Weight of one serving

• Number of cups per serving

• Shelf location (1 = bottom, 2 = middle, 3 = top)

• Nutritional rating, as calculated by Consumer Reports.

We are interested in estimating the nutritional rating of a cereal, given its sugar
content. However, before we begin, it is important to note that this data set contains

some missing data. The following four field values are missing:

• Potassium content of Almond Delight

• Potassium content of Cream of Wheat

• Carbohydrates and sugars content of Quaker Oatmeal.

We shall therefore not be able to use the sugar content of Quaker Oatmeal to

help estimate nutrition rating using sugar content, and only 76 cereals are available

for this purpose. Figure 8.1 presents a scatter plot of the nutritional rating versus the

sugar content for the 76 cereals, along with the least-squares regression line.

The regression line is written in the form: ŷ = b0 + b1x, called the regression
equation, where:

• ŷ is the estimated value of the response variable;

• b0 is the y-intercept of the regression line;

• b1 is the slope of the regression line;

• b0 and b1, together, are called the regression coefficients.

The regression equation for the relationship between sugars (x) and nutritional

rating (y) for this sample of cereals is ŷ = 59.853 − 2.4614x. Below we demonstrate

how this equation is calculated. This estimated regression equation can be interpreted

as “the estimated cereal rating equals 59.953 minus 2.4614 times the sugar content in

grams.” The regression line and the regression equation are used as a linear approxi-
mation of the relationship between the x (predictor) and y (response) variables, that is,

between sugar content and nutritional rating. We can then use the regression equation

to make estimates or predictions.
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Figure 8.1 Scatter plot of nutritional rating versus sugar content for 77 cereals.

For example, suppose that we are interested in estimating the nutritional rat-

ing for a new cereal (not in the original data) that contains x = 1 gram of sugar.

Using the regression equation, we find the estimated nutritional rating for a cereal

with 1 gram of sugar to be ŷ = 59.853–2.4614(1) = 57.3916. Note that this esti-

mated value for the nutritional rating lies directly on the regression line, at the location

(x = 1, ŷ = 57.3916), as shown in Figure 8.1. In fact, for any given value of x (sugar

content), the estimated value for y (nutritional rating) lies precisely on the regression

line.

Now, there is one cereal in our data set that does have a sugar content of 1 gram,

Cheerios. Its nutrition rating, however, is 50.765, not 57.3916 as we estimated above

for the new cereal with 1 gram of sugar. Cheerios’ point in the scatter plot is located at

(x = 1, y = 50.765), within the oval in Figure 8.1. Now, the upper arrow in Figure 8.1

is pointing to a location on the regression line directly above the Cheerios point. This

is where the regression equation predicted the nutrition rating to be for a cereal with a

sugar content of 1 gram. The prediction was too high by 57.3916− 50.765= 6.6266

rating points, which represents the vertical distance from the Cheerios data

point to the regression line. This vertical distance of 6.6266 rating points, in

general (y– ŷ), is known variously as the prediction error, estimation error, or

residual.
We of course seek to minimize the overall size of our prediction errors. Least

squares regression works by choosing the unique regression line that minimizes the

sum of squared residuals over all the data points. There are alternative methods of

choosing the line that best approximates the linear relationship between the variables,

such as median regression, although least squares remains the most common method.

Note that we say we are performing a “regression of rating on sugars,” where the y
variable precedes the x variable in the statement.
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8.1.1 The Least-Squares Estimates

Now, suppose our data set contained a sample of 76 cereals different from the

sample in our Cereals data set. Would we expect that the relationship between

nutritional rating and sugar content to be exactly the same as that found above:

Rating= 59.853− 2.4614 Sugars? Probably not. Here, b0 and b1 are statistics, whose

values differ from sample to sample. Like other statistics, b0 and b1 are used to

estimate population parameters, in this case, 𝛽0 and 𝛽1, the y-intercept and slope of

the true regression line. That is, the equation

y = 𝛽0 + 𝛽1x + 𝜀 (8.1)

represents the true linear relationship between nutritional rating and sugar content for

all cereals, not just those in our sample. The error term 𝜀 is needed to account for

the indeterminacy in the model, because two cereals may have the same sugar content

but different nutritional ratings. The residuals (yi − ŷ) are estimates of the error terms,

𝜀i, i = 1, … , n. Equation (8.1) is called the regression equation or the true population

regression equation; it is associated with the true or population regression line.

Earlier, we found the estimated regression equation for estimating the nutri-

tional rating from sugar content to be ŷ = 59.853 − 2.4614(sugars). Where did these

values for b0 and b1 come from? Let us now derive the formulas for estimating the

y-intercept and slope of the estimated regression line, given the data.2

Suppose we have n observations from the model in equation (8.1); that is, we

have

yi = 𝛽0 + 𝛽1xi + 𝜀i, i = 1, … , n

The least-squares line is that line that minimizes the population sum of squared

errors, SSEp =
∑n

i=1 𝜀
2
i . First, we re-express the population SSEs as

SSEp =
n∑

i=1

𝜀2
i =

n∑
i=1

(yi − 𝛽0 − 𝛽1xi)2 (8.2)

Then, recalling our differential calculus, we may find the values of 𝛽0 and 𝛽1 that

minimize
∑n

i=1
𝜀2

i by differentiating equation (8.2) with respect to 𝛽0 and 𝛽1, and

setting the results equal to zero. The partial derivatives of equation (8.2) with respect

to 𝛽0 and 𝛽1 are, respectively:

𝜕SSEp

𝜕𝛽0
= −2

n∑
i=1

(yi − 𝛽0 − 𝛽1xi)

𝜕SSEp

𝜕𝛽1
= −2

n∑
i=1

xi(yi − 𝛽0 − 𝛽1xi)
(8.3)

2These derivations assume calculus, but those whose calculus is rusty may skip ahead a couple of pages

with little loss in understanding.
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We are interested in the values for the estimates b0 and b1, so setting the equations in

(8.3) equal to zero, we have

n∑
i=1

(yi − b0 − b1xi) = 0

n∑
i=1

xi(yi − b0 − b1xi) = 0

Distributing the summation gives us

n∑
i=1

yi − nb0 − b1

n∑
i=1

xi = 0

n∑
i=1

xiyi − b0

n∑
i=1

xi − b1

n∑
i=1

x2
i = 0

which is re-expressed as

b0n + b1

n∑
i=1

xi =
n∑

i=1

yi

b0

n∑
i=1

xi + b1

n∑
i=1

x2
i =

n∑
i=1

xiyi

(8.4)

Solving equation (8.4) for b1 and b0, we have

b1 =

∑
xiyi −

[(∑
xi

)(∑
yi

)]
∕n

∑
x2

i −
(∑

xi

)2

∕n

(8.5)

b0 = y − b1x (8.6)

where n is the total number of observations, x is the mean value for the predictor

variable and y is the mean value for the response variable, and the summations are i
= 1 to n. The equations in (8.5) and (8.6) are therefore the least squares estimates for

𝛽0 and 𝛽1, the values that minimize the SSEs.

We now illustrate how we may find the values b0 = 59.853 and b1 = −2.4614,

using equations (8.5), (8.6), and the summary statistics from Table 8.2, which shows

the values for xi, yi, xiyi, and x2
i , for the Cereals in the data set (note that only 16

of the 77 cereals are shown). It turns out that, for this data set,
∑

xi = 534,
∑

yi =
3234.4309,

∑
xiyi = 19, 186.7401, and

∑
x2

i = 5190.

Plugging into formulas (8.5) and (8.6), we find:

b1 =

∑
xiyi −

[(∑
xi

)(∑
yi

)]
∕n

∑
x2

i −
(∑

xi

)2

∕n
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TABLE 8.2 Summary statistics for finding b0 and b1

Cereal Name X=Sugars Y=Rating X*Y X2

100% Bran 6 68.4030 410.418 36

100% Natural Bran 8 33.9837 271.870 64

All-Bran 5 59.4255 297.128 25

All-Bran Extra Fiber 0 93.7049 0.000 0

Almond Delight 8 34.3848 275.078 64

Apple Cinnamon Cheerios 10 29.5095 295.095 100

Apple Jacks 14 33.1741 464.437 196

Basic 4 8 37.0386 296.309 64

Bran Chex 6 49.1203 294.722 36

Bran Flakes 5 53.3138 266.569 25

Cap’n Crunch 12 18.0429 216.515 144

Cheerios 1 50.7650 50.765 1

Cinnamon Toast Crunch 9 19.8236 178.412 81

Clusters 7 40.4002 282.801 49

Cocoa Puffs 13 22.7364 295.573 169

⋮ ⋮ ⋮
Wheaties Honey Gold 8 36.1876 289.501 64

∑
xi = 534

x = 534∕76

= 7.0263

∑
yi = 3234.4309

y = 3234.4309∕76

= 42.5583

∑
xiyi

= 19, 186.7401

∑
x2

i = 5190

=
19, 186.7401 − (534)(3234.4309)∕76

5190 − (534)2∕76
= −3539.3928

1437.9474

= −2.4614 (8.7)

and

b0 = y − b1x = 42.5583 + 2.4614(7.0263) = 59.853 (8.8)

These values for the slope and y-intercept provide us with the estimated regression

line indicated in Figure 8.1.

The y-intercept b0 is the location on the y-axis where the regression line inter-

cepts the y-axis; that is, the estimated value for the response variable when the pre-

dictor variable equals zero. The interpretation of the value of the y-intercept b0 is

as the estimated value of y, given x = 0. For example, for the Cereals data set,

the y-intercept b0 = 59.853 represents the estimated nutritional rating for cereals

with zero sugar content. Now, in many regression situations, a value of zero for the

predictor variable would not make sense. For example, suppose we were trying to

predict elementary school students’ weight (y) based on the students’ height (x). The

meaning of height= 0 is unclear, so that the denotative meaning of the y-intercept

would not make interpretive sense in this case. However, for our data set, a value
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of zero for the sugar content does make sense, as several cereals contain 0 grams

of sugar.

The slope of the regression line indicates the estimated change in y per unit

increase in x. We interpret b1 = –2.4614 to mean the following: “For each increase

of 1 gram in sugar content, the estimated nutritional rating decreases by 2.4614 rat-

ing points.” For example, Cereal A with five more grams of sugar than Cereal B

would have an estimated nutritional rating 5(2.4614)= 12.307 ratings points lower

than Cereal B.

8.2 DANGERS OF EXTRAPOLATION

Suppose that a new cereal (say, the Chocolate Frosted Sugar Bombs loved by Calvin,

the comic strip character written by Bill Watterson) arrives on the market with a

very high sugar content of 30 grams per serving. Let us use our estimated regression

equation to estimate the nutritional rating for Chocolate Frosted Sugar Bombs:

ŷ = 59.853–2.4614(sugars) = 59.4–2.4614(30) = –13.989.

In other words, Calvin’s cereal has so much sugar that its nutritional rating

is actually a negative number, unlike any of the other cereals in the data set (mini-

mum= 18) and analogous to a student receiving a negative grade on an exam. What is

going on here? The negative estimated nutritional rating for Chocolate Frosted Sugar

Bombs is an example of the dangers of extrapolation.

Analysts should confine the estimates and predictions made using the regres-

sion equation to values of the predictor variable contained within the range of the

values of x in the data set. For example, in the Cereals data set, the lowest sugar

content is 0 grams and the highest is 15 grams, so that predictions of nutritional rat-

ing for any value of x (sugar content) between 0 and 15 grams would be appropriate.

However, extrapolation, making predictions for x-values lying outside this range, can

be dangerous, because we do not know the nature of the relationship between the

response and predictor variables outside this range.

Extrapolation should be avoided if possible. If predictions outside the given

range of x must be performed, the end-user of the prediction needs to be informed that

no x-data is available to support such a prediction. The danger lies in the possibility

that the relationship between x and y, which may be linear within the range of x in

the data set, may no longer be linear outside these bounds.

Consider Figure 8.2. Suppose that our data set consisted only of the data points

in black but that the true relationship between x and y consisted of both the black

(observed) and the gray (unobserved) points. Then, a regression line based solely

on the available (black dot) data would look approximately similar to the regression

line indicated. Suppose that we were interested in predicting the value of y for an

x-value located at the triangle. The prediction based on the available data would then

be represented by the dot on the regression line indicated by the upper arrow. Clearly,

this prediction has failed spectacularly, as shown by the vertical line indicating the

huge prediction error. Of course, as the analyst would be completely unaware of the

hidden data, he or she would hence be oblivious to the massive scope of the error



178 CHAPTER 8 SIMPLE LINEAR REGRESSION

Large prediction error.

Actual value of y.

Predicted value of Y
based on available data.

Figure 8.2 Dangers of extrapolation.

in prediction. Policy recommendations based on such erroneous predictions could

certainly have costly results.

EXTRAPOLATION

• Extrapolation refers to estimates and predictions of the target variable made using

the regression equation with values of the predictor variable outside of the range of

the values of x in the data set.

• The analyst does not know the shape of the relationship between x and y in areas

beyond the range of x. It may no longer be linear.

• Extrapolation should be avoided. If unable to avoid extrapolation, inform the

end-user of the analysis that no x-data is available to support such a prediction.

8.3 HOW USEFUL IS THE REGRESSION? THE
COEFFICIENT OF DETERMINATION, r2

Of course, a least-squares regression line could be found to approximate the relation-

ship between any two continuous variables, regardless of the quality of the relation-

ship between them, but this does not guarantee that the regression will therefore be

useful. The question therefore arises as to how we may determine whether a particular

estimated regression equation is useful for making predictions.

We shall work toward developing a statistic, r2, for measuring the goodness

of fit of the regression. That is, r2, known as the coefficient of determination, mea-

sures how well the linear approximation produced by the least-squares regression line

actually fits the observed data.
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Recall that ŷ represents the estimated value of the response variable, and that

(y − ŷ) represents the prediction error or residual. Consider the data set in Table 8.3,

which shows the distance in kilometers traveled by a sample of 10 orienteering

competitors, along with the elapsed time in hours. For example, the first competitor

traveled 10 kilometers in 2 hours. On the basis of these 10 competitors, the estimated

regression takes the form ŷ = 6 + 2x, so that the estimated distance traveled equals 6

kilometers plus twice the number of hours. You should verify that you can calculate

this estimated regression equation, either using software, or using the equations in

(8.7) and (8.8).

This estimated regression equation can be used to make predictions about the

distance traveled for a given number of hours. These estimated values of y are given

in the Predicted Score column in Table 8.3. The prediction error and squared predic-

tion error may then be calculated. The sum of the squared prediction errors, or the

sum of squares error, SSE=
∑
(y − ŷ)2, represents an overall measure of the error in

prediction resulting from the use of the estimated regression equation. Here we have

SSE = 12. Is this value large? We are unable to state whether this value, SSE = 12,

is large, because at this point we have no other measure to compare it to.

TABLE 8.3 Calculation of the SSE for the orienteering example

Predicted Score Error in Prediction (Error in Prediction)2

Subject X=Time Y=Distance ŷ = 6 + 2x (y − ŷ) (y − ŷ)2

1 2 10 10 0 0

2 2 11 10 1 1

3 3 12 12 0 0

4 4 13 14 −1 1

5 4 14 14 0 0

6 5 15 16 −1 1

7 6 20 18 2 4

8 7 18 20 −2 4

9 8 22 22 0 0

10 9 25 24 1 1

SSE =
∑

(y − ŷ)
2
= 12

Now, imagine for a moment that we were interested in estimating the distance

traveled without knowledge of the number of hours. That is, suppose that we did not

have access to the x-variable information for use in estimating the y-variable. Clearly,

our estimates of the distance traveled would be degraded, on the whole, because less

information usually results in less accurate estimates.

Because we lack access to the predictor information, our best estimate for y is

simply y, the sample mean of the number of hours traveled. We would be forced to use

y = 16 to estimate the number of kilometers traveled for every competitor, regardless

of the number of hours that person had traveled.

Consider Figure 8.3. The estimates for distance traveled when ignoring the time

information is shown by the horizontal line y = 16 Disregarding the time information
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Figure 8.3 Overall, the regression line has smaller prediction error than the sample mean.

entails predicting y = 16 kilometers for the distance traveled, for orienteering com-

petitors who have been hiking only 2 or 3 hours, as well as for those who have been

out all day (8 or 9 hours). This is clearly not optimal.

The data points in Figure 8.3 seem to “cluster” tighter around the estimated

regression line than around the line y = 16, which suggests that, overall, the predic-

tion errors are smaller when we use the x-information than otherwise. For example,

consider competitor #10, who hiked y= 25 kilometers in x= 9 hours. If we ignore the

x-information, then the estimation error would be (y − y) = 25–16 = 9 kilometers.

This prediction error is indicated as the vertical line between the data point for this

competitor and the horizontal line; that is, the vertical distance between the observed

y and the predicted y = 16.

Suppose that we proceeded to find (y − y) for every record in the data set, and

then found the sum of squares of these measures, just as we did for (y − ŷ) when we

calculated the SSE. This would lead us to SST, the sum of squares total:

SST =
n∑

i=1

(y − y)2

SST, also known as the total sum of squares, is a measure of the total variability in

the values of the response variable alone, without reference to the predictor. Note that

SST is a function of the sample variance of y, where the variance is the square of the

standard deviation of y:

SST =
n∑

i=1

(y − y)2 = (n − 1)s2
y = (n − 1)(sy)2

Thus, all three of these measures—SST, variance, and standard deviation—are uni-

variate measures of the variability in y alone (although of course we could find the

variance and standard deviation of the predictor as well).
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Would we expect SST to be larger or smaller than SSE? Using the calcula-

tions shown in Table 8.4, we have SST= 228, which is much larger than SSE= 12.

We now have something to compare SSE against. As SSE is so much smaller than

SST, this indicates that using the predictor information in the regression results in

much tighter estimates overall than ignoring the predictor information. These sums

of squares measure errors in prediction, so that smaller is better. In other words, using

the regression improves our estimates of the distance traveled.

TABLE 8.4 Finding SST for the orienteering example

Student X=Time Y=Distance y (y − y) (y − y)2

1 2 10 16 −6 36

2 2 11 16 −5 25

3 3 12 16 −4 16

4 4 13 16 −3 9

5 4 14 16 −2 4

6 5 15 16 −1 1

7 6 20 16 4 16

8 7 18 16 2 4

9 8 22 16 6 36

10 9 25 16 9 81

SST =
∑

(y − y)
2
= 228

Next, what we would like is a measure of how much the estimated regression

equation improves the estimates. Once again examine Figure 8.3. For hiker #10, the

estimation error when using the regression is (y − ŷ) = 25–24 = 1, while the esti-

mation error when ignoring the time information is (y − y) = 25–16 = 9. Therefore,

the amount of improvement (reduction in estimation error) is (̂y − y) = 24–16 = 8.

Once again, we may proceed to construct a sum of squares statistic based on

(̂y − y). Such a statistic is known as SSR, the sum of squares regression, a measure of

the overall improvement in prediction accuracy when using the regression as opposed

to ignoring the predictor information.

SSR =
n∑

i=1

(̂y − y)2

Observe from Figure 8.2 that the vertical distance (y − y) may be partitioned into two

“pieces,” (̂y − y) and (y − ŷ). This follows from the following identity:

(y − y) = (̂y − y) + (y − ŷ) (8.9)

Now, suppose we square each side, and take the summation. We then obtain3:∑
(yi − y)2 =

∑
(̂yi − y)2 +

∑
(yi − ŷi)2 (8.10)

3The cross-product term 2 ⋅
∑

(̂yi − y)(yi − ŷi) cancels out. For details, see Draper and Smith, Applied
Regression Analysis, 3rd edition, Wiley Publishers, Hoboken, New Jersey, 1998.
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We recognize from equation (8.8) the three sums of squares we have been developing,

and can therefore express the relationship among them as follows:

SST = SSR + SSE (8.11)

We have seen that SST measures the total variability in the response variable. We

may then think of SSR as the amount of variability in the response variable that is

“explained” by the regression. In other words, SSR measures that portion of the vari-

ability in the response variable that is accounted for by the linear relationship between

the response and the predictor.

However, as not all the data points lie precisely on the regression line, this

means that there remains some variability in the y-variable that is not accounted for

by the regression. SSE can be thought of as measuring all the variability in y from

all sources, including random error, after the linear relationship between x and y has

been accounted for by the regression.

Earlier, we found SST= 228 and SSE= 12. Then, using equation (8.11), we can

find SSR to be SSR=SST− SSE= 228− 12= 216. Of course, these sums of squares

must always be nonnegative. We are now ready to introduce the coefficient of determi-
nation, r2, which measures the goodness of fit of the regression as an approximation

of the linear relationship between the predictor and response variables.

r2 = SSR

SST

As r2 takes the form of a ratio of SSR to SST, we may interpret r2 to represent the

proportion of the variability in the y-variable that is explained by the regression; that

is, by the linear relationship between the predictor and response variables.

What is the maximum value that r2 can take? The maximum value for r2 would

occur when the regression is a perfect fit to the data set, which takes place when

each of the data points lies precisely on the estimated regression line. In this optimal

situation, there would be no estimation errors from using the regression, meaning that

each of the residuals would equal zero, which in turn would mean that SSE would

equal zero. From equation (8.11), we have that SST= SSR+ SSE. If SSE= 0, then

SST= SSR, so that r2 would equal SSR/SST= 1. Thus, the maximum value for r2 is

1, which occurs when the regression is a perfect fit.

What is the minimum value that r2 can take? Suppose that the regression

showed no improvement at all, that is, suppose that the regression explained none

of the variability in y. This would result in SSR equaling zero, and consequently, r2

would equal zero as well. Thus, r2 is bounded between 0 and 1, inclusive.

How are we to interpret the value that r2 takes? Essentially, the higher the value

of r2, the better the fit of the regression to the data set. Values of r2 near one denote

an extremely good fit of the regression to the data, while values near zero denote an

extremely poor fit. In the physical sciences, one encounters relationships that elicit

very high values of r2, while in the social sciences, one may need to be content with

lower values of r2, because of person-to-person variability. As usual, the analyst’s

judgment should be tempered with the domain expert’s experience.
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8.4 STANDARD ERROR OF THE ESTIMATE, s

We have seen how the r2 statistic measures the goodness of fit of the regression to the

data set. Next, the s statistic, known as the standard error of the estimate, is a measure

of the accuracy of the estimates produced by the regression. Clearly, s is one of the

most important statistics to consider when performing a regression analysis. To find

the value of s, we first find the mean square error (MSE):

MSE = SSE

(n − m − 1)

where m indicates the number of predictor variables, which is 1 for the simple lin-

ear regression case, and greater than 1 for the multiple regression case (Chapter 9).

Like SSE, MSE represents a measure of the variability in the response variable left

unexplained by the regression.

Then, the standard error of the estimate is given by

s =
√

MSE =
√

SSE

(n − m − 1)

The value of s provides an estimate of the size of the “typical” residual, much as the

value of the standard deviation in univariate analysis provides an estimate of the size

of the typical deviation. In other words, s is a measure of the typical error in esti-

mation, the typical difference between the predicted response value and the actual

response value. In this way, the standard error of the estimate s represents the preci-

sion of the predictions generated by the estimated regression equation. Smaller values

of s are better, and s has the benefit of being expressed in the units of the response

variable y.

For the orienteering example, we have

s =
√

MSE =
√

12

(10 − 1 − 1)
= 1.2

Thus, the typical estimation error when using the regression model to predict distance

is 1.2 kilometers. That is, if we are told how long a hiker has been traveling, then our

estimate of the distance covered will typically differ from the actual distance by about

1.2 kilometers. Note from Table 8.3 that all of the residuals lie between 0 and 2 in

absolute value, so that 1.2 may be considered a reasonable estimate of the typical

residual. (Other measures, such as the mean absolute deviation of the residuals, may

also be considered, but are not widely reported in commercial software packages.)

We may compare s= 1.2 kilometers against the typical estimation error

obtained from ignoring the predictor data, obtained from the standard deviation of

the response,

𝜎y =

√∑n

i=1
(y − y)2

n − 1
= 5.0
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The typical prediction error when ignoring the time data is 5 kilometers. Using the

regression has reduced the typical prediction error from 5 to 1.2 kilometers.

In the absence of software, one may use the following computational formulas

for calculating the values of SST and SSR. The formula for SSR is exactly the same

as for the slope b1, except that the numerator is squared.

SST =
∑

y2 −

(∑
y
)2

n

SSR =

[∑
xy −

(∑
x
)(∑

y
)
∕n

]2

∑
x2 −

(∑
x
)2

∕n

Let us use these formulas for finding the values of SST and SSR for the orienteer-

ing example. You should verify that we have
∑

x = 50,
∑

y = 160,
∑

xy = 908,∑
x2 = 304, and

∑
y2 = 2788.

Then, SST =
∑

y2 −
(∑

y
)2

∕n = 2788 − (160)2∕10 = 2478 − 2560 = 228.

And, SSR =

[∑
xy−

(∑
x
)(∑

y
)
∕n

]2

∑
x2 −

(∑
x
)2

∕n
=
[908 − (50)(160)∕10]2

304 − (50)2∕10
= 1082

54
= 216.

Of course, these are the same values found earlier using the more onerous tab-

ular method. Finally, we calculate the value of the coefficient of determination r2 to

be

r2 = SSR

SST
= 216

228
= 0.9474

In other words, the linear relationship between time and distance accounts for 94.74%

of the variability in the distances traveled. The regression model fits the data very

nicely.

8.5 CORRELATION COEFFICIENT r

A common measure used to quantify the linear relationship between two quantitative

variables is the correlation coefficient. The correlation coefficient r (also known as

the Pearson product moment correlation coefficient) is an indication of the strength

of the linear relationship between two quantitative variables, and is defined as

follows:

r =

∑
(x − x)(y − y)
(n − 1)sxsy

where sx and sy represent the sample standard deviations of the x and y data values,

respectively.
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INTERPRETING CORRELATIONS

• When x and y are positively correlated, as the value of x increases, the value of y
tends to increase as well.

• When x and y are negatively correlated, as the value of x increases, the value of y
tends to decrease.

• When x and y are uncorrelated, as the value of x increases, the value of y tends to

remain unaffected.

The correlation coefficient r always takes on values between 1 and −1, inclu-

sive. Values of r close to 1 indicate that x and y are positively correlated, while values

of r close to −1 indicate that x and y are negatively correlated. However, because

of the large sample sizes associated with data mining, even values of r relatively

small in absolute value may be considered statistically significant. For example, for

a relatively modest-sized data set of about 1000 records, a correlation coefficient of

r= 0.07 would be considered statistically significant. Later in this chapter, we learn

how to construct a confidence interval for determining the statistical significance of

the correlation coefficient r.

The definition formula for the correlation coefficient above may be tedious,

because the numerator would require the calculation of the deviations for both the

x-data and the y-data. We therefore have recourse, in the absence of software, to the

following computational formula for r:

r =

∑
xy−

(∑
x
)(∑

y
)
∕n√∑

x2 −
(∑

x
)2

∕n

√∑
y2 −

(∑
y
)2

∕n

For the orienteering example, we have

r =

∑
xy −

(∑
x
)(∑

y)
)
∕n√∑

x2 −
(∑

x
)2

∕n

√∑
y2 −

(∑
y
)2

∕n

=
908 − (50)(160)∕10√

304 − (50)2∕10
√

2788 − (160)2∕10

= 108√
54
√

228
= 0.9733

We would say that the time spent traveling and the distance traveled are strongly

positively correlated. As the time spent hiking increases, the distance traveled tends

to increase.



186 CHAPTER 8 SIMPLE LINEAR REGRESSION

However, it is more convenient to express the correlation coefficient r as r =
±
√

r2. When the slope b1 of the estimated regression line is positive, then the cor-

relation coefficient is also positive, r =
√

r2; when the slope is negative, then the

correlation coefficient is also negative, r = −
√

r2 In the orienteering example, we

have b1 = 2. This is positive, which means that the correlation coefficient will also

be positive, r =
√

r2 =
√

0.9474 = 0.9733.

It should be stressed here that the correlation coefficient r measures only the

linear correlation between x and y. The predictor and target may be related in a curvi-

linear manner, for example, and r may not uncover the relationship.

8.6 ANOVA TABLE FOR SIMPLE LINEAR REGRESSION

Regression statistics may be succinctly presented in an analysis of variance (ANOVA)

table, the general form of which is shown here in Table 8.5. Here, m represents the

number of predictor variables, so that, for simple linear regression, m= 1.

TABLE 8.5 The ANOVA table for simple linear regression

Source of Variation Sum of Squares Degrees of Freedom Mean Square F

Regression SSR m MSR = SSR

m
F = MSR

MSE

Error (or residual) SSE n − m − 1 MSE = SSE

n − m − 1

Total SST = SSR + SSE n − 1

The ANOVA table conveniently displays the relationships among several statis-

tics, showing, for example, that the sums of squares add up to SST. The mean squares
are presented as the ratios of the items to their left, and, for inference, the test statistic

F is represented as the ratio of the mean squares. Tables 8.6 and 8.7 show the Minitab

regression results, including the ANOVA tables, for the orienteering example and the

cereal example, respectively.

8.7 OUTLIERS, HIGH LEVERAGE POINTS, AND
INFLUENTIAL OBSERVATIONS

Next, we discuss the role of three types of observations that may or may not exert

undue influence on the regression results. These are as follows:

• Outliers

• High leverage points

• Influential observations.

An outlier is an observation that has a very large standardized residual in abso-

lute value. Consider the scatter plot of nutritional rating against sugars in Figure 8.4.
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TABLE 8.6 Results for regression of distance versus time for the
orienteering example

TABLE 8.7 Results for regression of nutritional rating versus sugar content
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 Sugars

Sugars: 0
Sugars: 6

Predicted rating: 59.85
Predicted rating: 45.08

Rating: 93.7 Rating: 68.4

Outlier: All bran extra fiber

Residual: 33.85

Outlier: 100% bran

Residual: 23.32
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Figure 8.4 Identifying the outliers in regression of nutritional rating versus sugars.

The two observations with the largest absolute residuals are identified as All Bran
Extra Fiber and 100% Bran. Note that the vertical distance away from the regression

line (indicated by the vertical arrows) is greater for these two observations than for

any other cereals, indicating the largest residuals.

For example, the nutritional rating for All Bran Extra Fiber (93.7) is much

higher than predicted (59.85), based on its sugar content alone (0 grams). Similarly,

the nutritional rating for 100% Bran (68.4) is much higher than would have been

estimated (45.08) based on its sugar content alone (6 grams).

Residuals may have different variances, so that it is preferable to use the stan-

dardized residuals in order to identify outliers. Standardized residuals are residuals

divided by their standard error, so that they are all on the same scale. Let si,resid denote

the standard error of the ith residual. Then

si,resid = s
√

1 − hi

where hi refers to the leverage of the ith observation (see below).

And the standardized residual equals:

residuali,standardized =
yi − ŷi

si,resid

A rough rule of thumb is to flag observations whose standardized residuals

exceed 2 in absolute value as being outliers. For example, note from Table 8.7 that

Minitab identifies observations 1 and 4 as outliers based on their large standardized

residuals; these are All Bran Extra Fiber and 100% Bran.

In general, if the residual is positive, we may say that the observed y-value

is higher than the regression estimated, given the x-value. If the residual is nega-
tive, we may say that the observed y-value is lower than the regression estimated,
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given the x-value. For example, for All Bran Extra Fiber (which has a positive resid-

ual), we would say that the observed nutritional rating is higher than the regression

estimated, given its sugars value. (This may presumably be because of all that extra

fiber.)

A high leverage point is an observation that is extreme in the predictor space.

In other words, a high leverage point takes on extreme values for the x-variable(s),

without reference to the y-variable. That is, leverage takes into account only the

x-variables, and ignores the y-variable. The term leverage is derived from the physics

concept of the lever, which Archimedes asserted could move the Earth itself if only

it were long enough.

The leverage hi for the ith observation may be denoted as follows:

hi =
1

n
+

(xi − x)2∑
(xi − x)2

For a given data set, the quantities 1∕n and
∑

(xi − x)2 may be considered to be

constants, so that the leverage for the ith observation depends solely on (xi − x)2,

the squared distance between the value of the predictor and the mean value of the

predictor. The farther the observation differs from the mean of the observations, in

the x-space, the greater the leverage. The lower bound on leverage values is 1∕n, and

the upper bound is 1.0. An observation with leverage greater than about 2(m + 1)∕n or

3(m + 1)∕n may be considered to have high leverage (where m indicates the number

of predictors).

For example, in the orienteering example, suppose that there was a new obser-

vation, a real hard-core orienteering competitor, who hiked for 16 hours and traveled

39 kilometers. Figure 8.5 shows the scatter plot, updated with this 11th hiker.
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Figure 8.5 Scatter plot of distance versus time, with new competitor who hiked for 16 hours.
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The Hard-Core Orienteer hiked 39 kilometers in 16 hours. Does he repre-
sent an outlier or a high-leverage point?

Note from Figure 8.5 that the time traveled by the new hiker (16 hours) is

extreme in the x-space, as indicated by the horizontal arrows. This is sufficient to

identify this observation as a high leverage point, without reference to how many

kilometers he or she actually traveled. Examine Table 8.8, which shows the updated

regression results for the 11 hikers. Note that Minitab correctly points out that the

extreme orienteer does indeed represent an unusual observation, because its x-value

gives it large leverage. That is, Minitab has identified the hard-core orienteer as a

high leverage point, because he hiked for 16 hours. It correctly did not consider the

distance (y-value) when considering leverage.

However, the hard-core orienteer is not an outlier. Note from Figure 8.5 that

the data point for the hard-core orienteer lies quite close to the regression line, mean-

ing that his distance of 39 kilometers is close to what the regression equation would

have predicted, given the 16 hours of hiking. Table 8.8 tells us that the standardized

residual is only residuali,standardized = 0.47, which is less than 2, and therefore not an

outlier.

Next, we consider what it means to be an influential observation. In the con-

text of history, what does it mean to be an influential person? A person is influential if
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TABLE 8.8 Updated regression results, including the hard-core hiker

their presence or absence significantly changes the history of the world. In the context

of Bedford Falls (from the Christmas movie It’s a Wonderful Life), George Bailey

(played by James Stewart) discovers that he really was influential when an angel

shows him how different (and poorer) the world would have been had he never been

born. Similarly, in regression, an observation is influential if the regression param-

eters alter significantly based on the presence or absence of the observation in the

data set.

An outlier may or may not be influential. Similarly, a high leverage point may

or may not be influential. Usually, influential observations combine both the char-

acteristics of large residual and high leverage. It is possible for an observation to be

not-quite flagged as an outlier, and not-quite flagged as a high leverage point, but still

be influential through the combination of the two characteristics.

First let us consider an example of an observation that is an outlier but is not

influential. Suppose that we replace our 11th observation (no more hard-core guy)

with someone who hiked 20 kilometers in 5 hours. Examine Table 8.9, which presents

the regression results for these 11 hikers. Note from Table 8.9 that the new observation
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TABLE 8.9 Regression results including person who hiked 20 kilometers in 5 hours

is flagged as an outlier (unusual observation with large standardized residual). This is

because the distance traveled (20 kilometers) is higher than the regression predicted

(16.364 kilometers), given the time (5 hours).

Now, would we consider this observation to be influential? Overall, prob-

ably not. Compare Table 8.9 (the regression output for the new hiker with 5

hours/20 kilometers) and Table 8.6 (the regression output for the original data set)

to assess the effect the presence of this new observation has on the regression

coefficients. The y-intercept changes from b0 = 6.00 to b0 = 6.36, but the slope does

not change at all, remaining at b1 = 2.00, regardless of the presence of the new hiker.

Figure 8.6 shows the relatively mild effect this outlier has on the estimated

regression line, shifting it vertically a small amount, without affecting the slope at

all. Although it is an outlier, this observation is not influential because it has very

low leverage, being situated exactly on the mean of the x-values, so that it has the

minimum possible leverage for a data set of size n= 11.

We can calculate the leverage for this observation (x = 5, y = 20) as follows.

As x = 5, we have

∑
(xi − x)2 = (2 − 5)2 + (2 − 5)2 + (3 − 5)2 + · · · + (9 − 5)2 + (5 − 5)2 = 54.
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Figure 8.6 The mild outlier shifts the regression line only slightly.

Then the leverage for the new observation is

h(5,20) =
1

11
+ (5 − 5)2

54
= 0.0909.

Now that we have the leverage for this observation, we may also find the standardized

residual, as follows. First, we have the standard error of the residual:

s(5,20),resid = 1.71741
√

1 − 0.0909 = 1.6375

So that the standardized residual equals:

residual(5,20),standardized =
yi − ŷi

s(5,20),resid

= 20 − 16.364

1.6375
= 2.22,

as shown in Table 8.9. Note that the value of the standardized residual, 2.22, is only

slightly larger than 2.0, so by our rule of thumb this observation may considered only

a mild outlier.

Cook’s distance is the most common measure of the influence of an observa-

tion. It works by taking into account both the size of the residual and the amount of

leverage for that observation. Cook’s distance takes the following form, for the ith
observation:

Di =
(yi − ŷi)2

(m + 1)s2

[
hi(

1 − hi

)2

]

where (yi − ŷi) represents the ith residual, s represents the standard error of the esti-

mate, hi represents the leverage of the ith observation, and m represents the number

of predictors.

The left-hand ratio in the formula for Cook’s distance contains an element rep-

resenting the residual, while the right-hand ratio contains functions of the leverage.

Thus Cook’s distance combines the two concepts of outlier and leverage into a single
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measure of influence. The value of the Cook’s distance measure for the hiker who

traveled 20 kilometers in 5 hours is as follows:

Di =
(20 − 16.364)2

(1 + 1)1.717412

[
0.0909

(1 − 0.0909)2

]
= 0.2465

A rough rule of thumb for determining whether an observation is influential is if

its Cook’s distance exceeds 1.0. More accurately, one may also compare the Cook’s

distance against the percentiles of the F-distribution with (m, n−m− 1) degrees of

freedom. If the observed value lies within the first quartile of this distribution (lower

than the 25th percentile), then the observation has little influence on the regression;

however, if the Cook’s distance is greater than the median of this distribution, then

the observation is influential. For this observation, the Cook’s distance of 0.2465 lies

within the 22nd percentile of the F2,9 distribution, indicating that while the influence

of the observation is small.

What about the hard-core hiker we encountered earlier? Was that observation

influential? Recall that this hiker traveled 39 kilometers in 16 hours, providing the

11th observation in the results reported in Table 8.8. First, let us find the leverage.

We have n= 11 and m= 1, so that observations having hi >
2(m+1)

n
= 0.36 or

hi >
3(m+1)

n
= 0.55 may be considered to have high leverage. This observation has

hi = 0.7007, which indicates that this durable hiker does indeed have high leverage,

as mentioned earlier with reference to Figure 8.5. Figure 8.5 seems to indicate that this

hiker (x= 16, y= 39) is not however an outlier, because the observation lies near the

regression line. The standardized residual supports this, having a value of 0.46801.

The reader will be asked to verify these values for leverage and standardized residual

in the exercises. Finally, the Cook’s distance for this observation is 0.2564, which is

about the same as our previous example, indicating that the observation is not influen-

tial. Figure 8.7 shows the slight change in the regression with (solid line) and without

(dotted line) this observation.

So we have seen that an observation that is an outlier with low influence, or an

observation that is a high leverage point with a small residual may not be particularly

influential. We next illustrate how a data point that has a moderately high residual

and moderately high leverage may indeed be influential. Suppose that our 11th hiker

had instead hiked for 10 hours, and traveled 23 kilometers. The regression analysis

for these 11 hikers is then given in Table 8.10.

Note that Minitab does not identify the new observation as either an outlier or a

high leverage point. This is because, as the reader is asked to verify in the exercises,

the leverage of this new hiker is hi = 0.36019, and the standardized residual equals

−1.70831.

However, despite lacking either a particularly large leverage or large residual,

this observation is nevertheless influential, as measured by its Cook’s distance of

Di = 0.821457, which is in line with the 62nd percentile of the F1,10 distribution.

The influence of this observation stems from the combination of its moderately

large residual with its moderately large leverage. Figure 8.8 shows the influence this

single hiker has on the regression line, pulling down on the right side to decrease the

slope (from 2.00 to 1.82), and thereby increase the y-intercept (from 6.00 to 6.70).
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Figure 8.7 Slight change in regression line when hard-core hiker added.

TABLE 8.10 Regression results for new observation with time= 10, distance= 23

8.8 POPULATION REGRESSION EQUATION

Least squares regression is a powerful and elegant methodology. However, if the

assumptions of the regression model are not validated, then the resulting inference

and model building are undermined. Deploying a model whose results are based on

unverified assumptions may lead to expensive failures later on. The simple linear
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Figure 8.8 Moderate residual plus moderate leverage= influential observation.

regression model is given as follows. We have a set of n bivariate observations,

with response value yi related to predictor value xi through the following linear

relationship.

THE POPULATION REGRESSION EQUATION

y = 𝛽0 + 𝛽1x + 𝜀

where

• 𝛽0 and 𝛽1 represent the model parameters, for the y-intercept and slope respectively.

These are constants, whose true value remains unknown, and which are estimated

from the data using the least squares estimates.

• 𝜀 represents the error term. As most predictor–response relationships are not deter-

ministic, a certain amount of error will be introduced by any linear approximation

of the actual relationship. Therefore, an error term, modeled by a random variable,

is needed.

THE ASSUMPTIONS ABOUT THE ERROR TERM

• Zero-Mean Assumption. The error term 𝜀 is a random variable, with mean or

expected value equal to zero. In other words, E(𝜀) = 0.

• Constant Variance Assumption. The variance of 𝜀, denoted by 𝜎2, is constant,

regardless of the value of x.

• Independence Assumption. The values of 𝜀 are independent.

• Normality Assumption. The error term 𝜀 is a normally distributed random variable.

In other words, the values of the error term 𝜀i are independent normal random vari-

ables, with mean 0 and variance 𝜎2.
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On the basis of these four assumptions, we can derive four implications for the

behavior of the response variable, y, as follows.

IMPLICATIONS OF THE ASSUMPTIONS FOR THE BEHAVIOR OF THE
RESPONSE VARIABLE y

1. On the basis of the Zero-Mean Assumption, we have

E(y) = E(𝛽0 + 𝛽1x + 𝜀) = E(𝛽0) + E(𝛽1x) + E(𝜀) = 𝛽0 + 𝛽1x

That is, for each value of x, the mean of the y’s lies on the regression line.

2. On the basis of the Constant Variance Assumption, we have the variance of y,

Var(y), given as Var(y) = Var(𝛽0 + 𝛽1x + 𝜀) = Var(𝜀) = 𝜎2. That is, regardless of

which value taken by the predictor x, the variance of the y’s is always constant.

3. On the basis of the Independence Assumption, it follows that, for any particular value

of x, the values of y are independent as well.

4. Based on the normality assumption, it follows that y is also a normally distributed

random variable.

In other words, the values of the response variable yi are independent normal random

variables, with mean 𝛽0 + 𝛽1x and variance 𝜎2.

Figure 8.9 illustrates graphically the normality of the yi, with mean 𝛽0 + 𝛽1x and

constant variance 𝜎2. Suppose we have a data set which includes predictor values at

Distribution
of y at x = 5

E(y) for
x = 5 E(y) for

x = 10
E(y) for
x = 15

Regression line
E(y) = β0 + β1x

Distribution
of y at x = 5

Distribution
of y at x = 5

x = 5

x = 10

x = 15

Figure 8.9 For each value of x, the yi are normally distributed, with mean on the true regres-

sion line, and constant variance.
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x= 5, 10, and 15, among other values. Then, at each of these values of x, the regression

assumptions assert that observed values of y are samples from a normally distributed

population with a mean on the regression line (E(y) = 𝛽0 + 𝛽1x), and constant stan-

dard deviation 𝜎2. Note from Figure 8.9 that each of the normal curves has precisely

the same shape, which indicates that the variance is constant for each value of x.

If one is interested in using regression analysis in a strictly descriptive manner,

with no inference and no model building, then one need not worry quite so much about

assumption validation. This is because the assumptions are about the error term. If

the error term is not involved, then the assumptions are not needed. However, if one

wishes to do inference or model building, then the assumptions must be verified.

8.9 VERIFYING THE REGRESSION ASSUMPTIONS

So, how does one go about verifying the regression assumptions? The two main

graphical methods used to verify regression assumptions are as follows:

a. A normal probability plot of the residuals.

b. A plot of the standardized residuals against the fitted (predicted) values.

A normal probability plot is a quantile–quantile plot of the quantiles of a par-

ticular distribution against the quantiles of the standard normal distribution, for the

purposes of determining whether the specified distribution deviates from normality.

(Similar to a percentile, a quantile of a distribution is a value xp such that p% of the

distribution values are less than or equal to xp.) In a normality plot, the observed val-

ues of the distribution of interest are compared against the same number of values that

would be expected from the normal distribution. If the distribution is normal, then the

bulk of the points in the plot should fall on a straight line; systematic deviations from

linearity in this plot indicate non-normality.

To illustrate the behavior of the normal probability plot for different kinds of

data distributions, we provide three examples. Figures 8.10–8.12 contain the nor-

mal probability plots for 10,000 values drawn from a uniform (0, 1) distribution, a

chi-square (5) distribution, and a normal (0, 1) distribution, respectively.

Note in Figure 8.10 that the bulk of the data do not line up on the straight line,

and that a clear pattern (reverse S curve) emerges, indicating systematic deviation

from normality. The uniform distribution is a rectangular-shaped distribution, whose

tails are much heavier than the normal distribution. Thus, Figure 8.10 is an example

of a probability plot for a distribution with heavier tails than the normal distribution.

Figure 8.11 also contains a clear curved pattern, indicating systematic devia-

tion from normality. The chi-square (5) distribution is right-skewed, so that the curve

pattern apparent in Figure 8.11 may be considered typical of the pattern made by

right-skewed distributions in a normal probability plot.

Finally, in Figure 8.12, the points line up nicely on a straight line, indicating

normality, which is not surprising because the data are drawn from a normal (0, 1)

distribution. It should be remarked that we should not expect real-world data to behave
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Figure 8.11 Probability plot for a chi-square distribution: right-skewed.
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Figure 8.12 Probability plot for a normal distribution: Do not expect real-world data to behave

this nicely.

this nicely. The presence of sampling error and other sources of noise will usually

render our decisions about normality less clear-cut than this.

Note the Anderson–Darling (AD) statistic and p-value reported by Minitab in

each of Figures 8.10–8.12. This refers to the AD test for normality. Smaller values

of the AD statistic indicate that the normal distribution is a better fit for the data.

The null hypothesis is that the normal distribution fits, so that small p-values will

indicate lack of fit. Note that for the uniform and chi-square examples, the p-value

for the AD test is less than 0.005, indicating strong evidence for lack of fit with the

normal distribution. However, the p-value for the normal example is 0.832, indicating

no evidence against the null hypothesis that the distribution is normal.

The second graphical method used to assess the validity of the regression

assumptions is a plot of the standardized residuals against the fits (predicted values).

An example of this type of graph is given in Figure 8.13, for the regression of

distance versus time for the original 10 observations in the orienteering example.

Note the close relationship between this graph and the original scatter plot in

Figure 8.3. The regression line from Figure 8.3 is now the horizontal zero line in

Figure 8.13. Points that were either above/below/on the regression line in Figure 8.3

now lie either above/below/on the horizontal zero line in Figure 8.13.

We evaluate the validity of the regression assumptions by observing whether

certain patterns exist in the plot of the residuals versus fits, in which case one of

the assumptions has been violated, or whether no such discernible patterns exists, in

which case the assumptions remain intact. The 10 data points in Figure 8.13 are really

too few to try to determine whether any patterns exist. In data mining applications, of
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Figure 8.13 Plot of standardized residuals versus predicted values for orienteering example.

course, paucity of data is rarely the issue. Let us see what types of patterns we should

watch out for. Figure 8.14 shows four pattern “archetypes” that may be observed

in residual-fit plots. Plot (a) shows a “healthy” plot, where no noticeable patterns

are observed, and the points display an essentially rectangular shape from left to

right. Plot (b) exhibits curvature, which violates the independence assumption. Plot

(c) displays a “funnel” pattern, which violates the constant variance assumption.

Finally, plot (d) exhibits a pattern that increases from left to right, which violates

the zero-mean assumption.

Why does plot (b) violate the independence assumption? Because the errors are

assumed to be independent, the residuals (which estimate the errors) should exhibit

independent behavior as well. However, if the residuals form a curved pattern, then,

for a given residual, we may predict where its neighbors to the left and right will fall,

within a certain margin of error. If the residuals were truly independent, then such a

prediction would not be possible.

Why does plot (c) violate the constant variance assumption? Note from plot (a)

that the variability in the residuals, as shown by the vertical distance, is fairly con-

stant, regardless of the value of x. However, in plot (c), the variability of the residuals

is smaller for smaller values of x, and larger for larger values of x. Therefore, the

variability is non-constant, which violates the constant variance assumption.

Why does plot (d) violate the zero-mean assumption? The zero-mean assump-

tion states that the mean of the error term is zero, regardless of the value of x. However,

plot (d) shows that, for small values of x, the mean of the residuals is less than 0, while,

for large values of x, the mean of the residuals is greater than 0. This is a violation of

the zero-mean assumption, as well as a violation of the independence assumption.
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Figure 8.14 Four possible patterns in the plot of residuals versus fits.

When examining plots for patterns, beware of the “Rorschach effect” of see-

ing patterns in randomness. The null hypothesis when examining these plots is that

the assumptions are intact; only systematic and clearly identifiable patterns in the

residuals plots offer evidence to the contrary.

Apart from these graphical methods, there are also several diagnostic hypoth-

esis tests that may be carried out to assess the validity of the regression assumptions.

As mentioned above, the AD test may be used to indicate fit of the residuals to a nor-

mal distribution. For assessing whether the constant variance assumption has been

violated, either Bartlett’s test or Levene’s test may be used. For determining whether

the independence assumption has been violated, either the Durban–Watson test or

the runs test may be applied. Information about all of these diagnostic tests may be

found in Draper and Smith (1998).4

Note that these assumptions represent the structure needed to perform infer-

ence in regression. Descriptive methods in regression, such as point estimates, and

simple reporting of such statistics, as the slope, correlation, standard error of the

4Draper and Smith, Applied Regression Analysis, 3rd edition, Wiley Publishers, Hoboken, New Jersey,

1998.
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estimate, and r2, may still be undertaken even if these assumptions are not met, if

the results are cross-validated. What is not allowed by violated assumptions is statis-

tical inference. But we as data miners and big data scientists understand that inference

is not our primary modus operandi. Rather, data mining seeks confirmation through

cross-validation of the results across data partitions. For example, if we are exam-

ining the relationship between outdoor event ticket sales and rainfall amounts, and

if the training data set and test data set both report correlation coefficients of about

−0.7, and there is graphical evidence to back this up, then we may feel confident in

reporting to our client in a descriptive manner that the variables are negatively corre-

lated, even if both variables are not normally distributed (which is the assumption for

the correlation test). We just cannot say that the correlation coefficient has a statisti-

cally significant negative value, because the phrase “statistically significant” belongs

to the realm of inference. So, for data miners, the keys are to (i) cross-validate the

results across partitions, and (ii) restrict the interpretation of the results to descriptive

language, and avoid inferential terminology.

8.10 INFERENCE IN REGRESSION

Inference in regression offers a systematic framework for assessing the significance

of linear association between two variables. Of course, analysts need to keep in mind

the usual caveats regarding the use of inference in general for big data problems.

For very large sample sizes, even tiny effect sizes may be found to be statistically

significant, even when their practical significance may not be clear.

We shall examine five inferential methods in this chapter, which are as follows:

1. The t-test for the relationship between the response variable and the predictor

variable.

2. The correlation coefficient test.

3. The confidence interval for the slope, 𝛽1.

4. The confidence interval for the mean of the response variable, given a particular

value of the predictor.

5. The prediction interval for a random value of the response variable, given a

particular value of the predictor.

In Chapter 9, we also investigate the F-test for the significance of the regres-

sion as a whole. However, for simple linear regression, the t-test and the F-test are

equivalent.

How do we go about performing inference in regression? Take a moment to

consider the form of the true (population) regression equation.

y = 𝛽0 + 𝛽1x + 𝜀

This equation asserts that there is a linear relationship between y on the one hand,

and some function of x on the other. Now, 𝛽1 is a model parameter, so that it is a

constant whose value is unknown. Is there some value that 𝛽1 could take such that, if

𝛽1 took that value, there would no longer exist a linear relationship between x and y?
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Consider what would happen if 𝛽1 was zero. Then the true regression equation would

be as follows:

y = 𝛽0 + (0)x + 𝜀

In other words, when 𝛽1 = 0, the true regression equation becomes:

y = 𝛽0 + 𝜀

That is, a linear relationship between x and y no longer exists. However, if 𝛽1 takes

on any conceivable value other than zero, then a linear relationship of some kind

exists between the response and the predictor. Much of our regression inference in

this chapter is based on this key idea, that the linear relationship between x and y
depends on the value of 𝛽1.

8.11 t-TEST FOR THE RELATIONSHIP BETWEEN
x AND y

Much of the inference we perform in this section refers to the regression of rat-
ing on sugars. The assumption is that the residuals (or standardized residuals) from

the regression are approximately normally distributed. Figure 8.15 shows that this

assumption is validated. There are some strays at either end, but the bulk of the data

lie within the confidence bounds.

The least squares estimate of the slope, b1, is a statistic, because its value

varies from sample to sample. Like all statistics, it has a sampling distribution with
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Figure 8.15 Normal probability plot of the residuals for the regression of rating on sugars.
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a particular mean and standard error. The sampling distribution of b1 has as its mean

the (unknown) value of the true slope 𝛽1, and has as its standard error, the following:

𝜎b1
= 𝜎√∑

x2 −
(∑

x
)2

∕n

Just as one-sample inference about the mean 𝜇 is based on the sampling distribution

of x, so regression inference about the slope 𝛽1 is based on this sampling distribution

of b1. The point estimate of 𝜎b1
is sb1

, given by

sb1
= s√∑

x2 −
(∑

x
)2

∕n

where s is the standard error of the estimate, reported in the regression results. The sb1

statistic is to be interpreted as a measure of the variability of the slope. Large values of

sb1
indicate that the estimate of the slope b1 is unstable, while small values of sb1

indi-

cate that the estimate of the slope b1 is precise. The t-test is based on the distribution

of t = (b1−𝛽1)
sb1

, which follows a t-distribution with n− 2 degrees of freedom. When

the null hypothesis is true, the test statistic t = b1

sb1

follows a t-distribution with n− 2

degrees of freedom. The t-test requires that the residuals be normally distributed.

To illustrate, we shall carry out the t-test using the results from Table 8.7, the

regression of nutritional rating on sugar content. For convenience, Table 8.7 is repro-

duced here as Table 8.11. Consider the row in Table 8.11, labeled “Sugars.”

• Under “Coef” is found the value of b1, −2.4614.

• Under “SE Coef” is found the value of sb1
, the standard error of the slope. Here,

sb1
= 0.2417.

• Under “T” is found the value of the t-statistic; that is, the test statistic for the

t-test, t = b1

sb1

= −2.4614

0.2417
= −10.18.

• Under “P” is found the p-value of the t-statistic. As this is a two-tailed test, this

p-value takes the following form: p-value = P(|t| > |tobs|), where tobs represent

the observed value of the t-statistic from the regression results. Here, p-value =
P(|t| > |tobs|) = P(|t| > |−10.18|) ≈ 0.000, although, of course, no continuous

p-value ever precisely equals zero.

The hypotheses for this hypothesis test are as follows. The null hypothesis

asserts that no linear relationship exists between the variables, while the alternative

hypothesis states that such a relationship does indeed exist.

H0: 𝛽1 = 0 (There is no linear relationship between sugar content and nutri-

tional rating.)

Ha: 𝛽1 ≠ 0 (Yes, there is a linear relationship between sugar content and nutri-

tional rating.)

We shall carry out the hypothesis test using the p-value method, where the null

hypothesis is rejected when the p-value of the test statistic is small. What determines
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TABLE 8.11 Results for regression of nutritional rating versus sugar content

how small is small depends on the field of study, the analyst, and domain experts,

although many analysts routinely use 0.05 as a threshold. Here, we have p-value ≈
0.00, which is surely smaller than any reasonable threshold of significance. We there-

fore reject the null hypothesis, and conclude that a linear relationship exists between

sugar content and nutritional rating.

8.12 CONFIDENCE INTERVAL FOR THE SLOPE OF THE
REGRESSION LINE

Researchers may consider that hypothesis tests are too black-and-white in their con-

clusions, and prefer to estimate the slope of the regression line 𝛽1, using a confidence

interval. The interval used is a t-interval, and is based on the above sampling distri-

bution for b1. The form of the confidence interval is as follows.5

5The notation 100(1 − 𝛼)% notation may be confusing. But suppose we let 𝛼 = 0.05, then the confidence

level will be 100(1 − 𝛼)% = 100(1 − 0.05)% = 95%.
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THE 100(1 − 𝛼)% CONFIDENCE INTERVAL FOR THE TRUE SLOPE 𝛽1
OF THE REGRESSION LINE

We can be 100(1 − 𝛼)% confident that the true slope 𝛽1 of the regression line lies between:

b1 ± (t𝛼∕2,n−2)(sb1
)

where t𝛼∕2,n−2 is based on n− 2 degrees of freedom.

For example, let us construct a 95% confidence interval for the true slope of the

regression line, 𝛽1. We have the point estimate given as b1 = −2.4614. The t-critical
value for 95% confidence and n− 2 = 75 degrees of freedom is t75,95% = 2.0. From

Figure 8.16, we have sb1
= 0.2417. Thus, our confidence interval is as follows:

b1 − (tn−2)(sb1
) = –2.4614–(2.0)(0.2417) = −2.9448, and

b1 + (tn−2)(sb1
) = –2.4614 + (2.0)(0.2417) = −1.9780.

We are 95% confident that the true slope of the regression line lies between −2.9448

and −1.9780. That is, for every additional gram of sugar, the nutritional rating will

decrease by between 1.9780 and 2.9448 points. As the point 𝛽1 = 0 is not contained

within this interval, we can be sure of the significance of the relationship between the

variables, with 95% confidence.
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Figure 8.16 Probability plot of ln rating shows approximate normality.
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8.13 CONFIDENCE INTERVAL FOR THE CORRELATION
COEFFICIENT 𝝆

Let 𝜌 (“rho”) represent the population correlation coefficient between the x and y
variables for the entire population. Then the confidence interval for 𝜌 is as follows.

THE 100(1 − 𝛼)% CONFIDENCE INTERVAL FOR THE POPULATION
CORRELATION COEFFICIENT 𝜌

We can be 100(1 − 𝛼)% confident that the population correlation coefficient 𝜌 lies between:

r ± t𝛼∕2, n−2 ⋅

√
1 − r2

n − 2

where t𝛼∕2,n−2 is based on n− 2 degrees of freedom.

This confidence interval requires that both the x and y variables be normally

distributed. Now, rating is not normally distributed, but the transformed variable

ln rating is normally distributed, as shown in Figure 8.16. However, neither sug-
ars nor any transformation of sugars (see the ladder of re-expressions later in this

chapter) is normally distributed. Carbohydrates, however, shows normality that is

just barely acceptable, with an AD p-value of 0.081, as shown in Figure 8.17. Thus,

the assumptions are met for calculating the confidence interval for the population

correlation coefficient between ln rating and carbohydrates, but not between ln rating
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Figure 8.17 Probability plot of carbohydrates shows barely acceptable normality.



8.13 CONFIDENCE INTERVAL FOR THE CORRELATION COEFFICIENT 𝝆 209

and sugars. Thus, let us proceed to construct a 95% confidence interval for 𝜌, the

population correlation coefficient between ln rating and carbohydrates.

From Table 8.12, the regression output for the regression of ln rating on carbo-
hydrates, we have r2 = 2.5% = 0.025, and the slope b1 is positive, so that the sample

correlation coefficient is r = +
√

r2 = +
√

0.025 = 0.1581. The sample size is n= 76,

so that n – 2= 74. Finally, t𝛼∕2, n−2 = t0.025, 74 refers to the t-critical value with area

0.025 in the tail of the curve with 74 degrees of freedom. This value equals 1.99.6

Thus, our 95% confidence interval for 𝜌 is given by

r ± t𝛼∕2, n−2 ⋅

√
1 − r2

n − 2

= 0.1581 ± 1.99 ⋅

√
1 − 0.025

74

= (−0.0703, 0.3865)

6Use software such as Excel or Minitab to obtain this value, if desired.

TABLE 8.12 Regression of ln rating on carbohydrates



210 CHAPTER 8 SIMPLE LINEAR REGRESSION

We are 95% confident that the population correlation coefficient lies between

−0.0703 and 0.3865. As zero is included in this interval, then we conclude that ln
rating and carbohydrates are not linearly correlated. We generalize this interpretation

method as follows.

USING A CONFIDENCE INTERVAL TO ASSESS CORRELATION

• If both endpoints of the confidence interval are positive, then we conclude with con-

fidence level 100(1 − 𝛼)% that x and y are positively correlated.

• If both endpoints of the confidence interval are negative, then we conclude with con-

fidence level 100(1 − 𝛼)% that x and y are negatively correlated.

• If one endpoint is negative and one endpoint is positive, then we conclude with con-

fidence level 100(1 − 𝛼)% that x and y are not linearly correlated.

8.14 CONFIDENCE INTERVAL FOR THE MEAN VALUE
OF y GIVEN x

Point estimates for values of the response variable for a given value of the predictor

value may be obtained by an application of the estimated regression equation ŷ =
b0 + b1x. Unfortunately, these kinds of point estimates do not provide a probability

statement regarding their accuracy. The analyst is therefore advised to provide for the

end-user two types of intervals, which are as follows:

• A confidence interval for the mean value of y given x.

• A prediction interval for the value of a randomly chosen y, given x.

Both of these intervals require that the residuals be normally distributed.

THE CONFIDENCE INTERVAL FOR THE MEAN VALUE OF y FOR A
GIVEN VALUE OF x

ŷp ± tn−2(s)

√√√√1

n
+

(xp − x)2∑
(xi − x)2

where

xp is the particular value of x for which the prediction is being made,

ŷp is the point estimate of y for a particular value of x,

tn−2 is a multiplier associated with the sample size and confidence level, and s is the

standard error of the estimate.

Before we look at an example of this type of confidence interval, we are first

introduced to a new type of interval, the prediction interval.
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8.15 PREDICTION INTERVAL FOR A RANDOMLY
CHOSEN VALUE OF y GIVEN x

Baseball buffs, which is easier to predict: the mean batting average for an entire team,

or the batting average of a randomly chosen player? Perhaps, you may have noticed

while perusing the weekly batting average statistics that the team batting averages

(which each represent the mean batting average of all the players on a particular

team) are more tightly bunched together than are the batting averages of the individual

players themselves. This would indicate that an estimate of the team batting average

would be more precise than an estimate of a randomly chosen baseball player, given

the same confidence level. Thus, in general, it is easier to predict the mean value of a

variable than to predict a randomly chosen value of that variable.

For another example of this phenomenon, consider exam scores. We would not

think it unusual for a randomly chosen student’s grade to exceed 98, but it would be

quite remarkable for the class mean to exceed 98. Recall from elementary statistics

that the variability associated with the mean of a variable is smaller than the variability

associated with an individual observation of that variable. For example, the standard

deviation of the univariate random variable x is 𝜎, whereas the standard deviation of

the sampling distribution of the sample mean x is 𝜎∕
√

n. Hence, predicting the class

average on an exam is an easier task than predicting the grade of a randomly selected

student.

In many situations, analysts are more interested in predicting an individual

value, rather than the mean of all the values, given x. For example, an analyst may be

more interested in predicting the credit score for a particular credit applicant, rather

than predicting the mean credit score of all similar applicants. Or, a geneticist may

be interested in the expression of a particular gene, rather than the mean expression

of all similar genes.

Prediction intervals are used to estimate the value of a randomly chosen value

of y, given x. Clearly, this is a more difficult task than estimating the mean, resulting

in intervals of greater width (lower precision) than confidence intervals for the mean

with the same confidence level.

THE PREDICTION INTERVAL FOR A RANDOMLY CHOSEN VALUE OF
y FOR A GIVEN VALUE OF x

ŷp ± tn−2(s)

√√√√1 + 1

n
+

(xp − x)2∑
(xi − x)2

Note that this formula is precisely the same as the formula for the confidence

interval for the mean value of y, given x, except for the presence of the “1+” inside

the square root. This reflects the greater variability associated with estimating a single

value of y rather than the mean; it also ensures that the prediction interval is always

wider than the analogous confidence interval.
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Recall the orienteering example, where the time and distance traveled was

observed for 10 hikers. Suppose we are interested in estimating the distance traveled

for a hiker traveling for yp = 5, x = 5 hours. The point estimate is easily obtained

using the estimated regression equation, from Table 8.6: ŷ = 6 + 2(x) = 6 + 2(5) =
16. That is, the estimated distance traveled for a hiker walking for 5 hours is 16 kilo-

meters. Note from Figure 8.3 that this prediction (x = 5, y = 16) falls directly on the

regression line, as do all such predictions.

However, we must ask the question: How sure are we about the accuracy of our

point estimate? That is, are we certain that this hiker will walk precisely 16 kilometers,

and not 15.9 or 16.1 kilometers? As usual with point estimates, there is no measure

of confidence associated with it, which limits the appicability and usefulness of the

point estimate.

We would therefore like to construct a confidence interval. Recall that the

regression model assumes that, at each of the x-values, the observed values of y are

samples from a normally distributed population with a mean on the regression line

(E(y) = 𝛽0 + 𝛽1x), and constant variance 𝜎2, as illustrated in Figure 8.9. The point

estimate represents the mean of this population, as estimated by the data.

Now, in this case, of course, we have only observed a single observation with

the value x= 5 hours. Nevertheless, the regression model assumes the existence of

an entire normally distributed population of possible hikers with this value for time.

Of all possible hikers in this distribution, 95% will travel within a certain bounded

distance (the margin of error) from the point estimate of 16 kilometers. We may there-

fore obtain a 95% confidence interval (or whatever confidence level is desired) for

the mean distance traveled by all possible hikers who walked for 5 hours. We use the

formula provided above, as follows:

ŷp ± tn−2(s)

√√√√1

n
+

(xp − x)2∑
(xi − x)2

where

• ŷp = 16, the point estimate,

• tn−2,𝛼 = t=8,95% = 2.306,

• s= 1.22474, from Table 8.6,

• n= 10,

• xp = 5, and

• x = 5.

We have
∑

(xi − x)2 = (2 − 5)2 + (2 − 5)2 + (3 − 5)2 + · · · + (9 − 5)2 = 54,

and we therefore calculate the 95% confidence interval as follows:

ŷp ± tn−2(s)

√√√√1

n
+

(xp − x)2∑
(xi − x)2

= 16 ± (2.306)(1.22474)
√

1

10
+ (5 − 5)2

54
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= 16 ± 0.893

= (15.107, 16.893)

We are 95% confident that the mean distance traveled by all possible 5-hour hikers

lies between 15.107 and 16.893 kilometers.

However, are we sure that this mean of all possible 5-hour hikers is the quantity

that we really want to estimate? Wouldn’t it be more useful to estimate the distance

traveled by a particular randomly selected hiker? Many analysts would agree, and

would therefore prefer a prediction interval for a single hiker rather than the above

confidence interval for the mean of the hikers.

The calculation of the prediction interval is quite similar to the confidence inter-

val above, but the interpretation is quite different. We have

ŷp ± tn−2(s)

√√√√1 + 1

n
+

(xp − x)2∑
(xi − x)2

= 16 ± (2.306)(1.22474)
√

1 + 1

10
+ (5 − 5)2

54

= 16 ± 2.962

= (13.038, 18.962)

In other words, we are 95% confident that the distance traveled by a randomly cho-

sen hiker who had walked for 5 hours lies between 13.038 and 18.962 kilometers.

Note that, as mentioned earlier, the prediction interval is wider than the confidence

interval, because estimating a single response is more difficult than estimating the

mean response. However, also note that the interpretation of the prediction interval is

probably more useful for the data miner.

We verify our calculations by providing in Table 8.13 the Minitab results for

the regression of distance on time, with the confidence interval and prediction interval

indicated at the bottom (“Predicted Values for New Observations”). The Fit of 16 is

the point estimate, the standard error of the fit equals (s)
√

1

n
+ (xp−x)2∑

(xi − x)2
, the 95%

CI indicates the confidence interval for the mean distance of all 5-hour hikers, and

the 95% PI indicates the prediction interval for the distance traveled by a randomly

chosen 5-hour hiker.

8.16 TRANSFORMATIONS TO ACHIEVE LINEARITY

If the normal probability plot shows no systematic deviations from linearity, and the

residuals-fits plot shows no discernible patterns, then we may conclude that there is

no graphical evidence for the violation of the regression assumptions, and we may

then proceed with the regression analysis. However, what do we do if these graphs
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TABLE 8.13 Regression of distance on time, with confidence interval and prediction
interval shown at the bottom

indicate violations of the assumptions? For example, suppose our normal probability

plot of the residuals looked something such as plot (c) in Figure 8.14, indicating

non-constant variance? Then we may apply a transformation to the response variable

y, such as the ln (natural log, log to the base e) transformation. We illustrate with an

example drawn from the world of board games.

Have you ever played the game of Scrabble®? Scrabble is a game in which the

players randomly select letters from a pool of letter tiles, and build crosswords. Each

letter tile has a certain number of points associated with it. For instance, the letter “E”

is worth 1 point, while the letter “Q” is worth 10 points. The point value of a letter

tile is roughly related to its letter frequency, the number of times the letter appears in

the pool.

Table 8.14 contains the frequency and point value of each letter in the game.

Suppose we were interested in approximating the relationship between frequency

and point value, using linear regression. As always when performing simple linear

regression, the first thing an analyst should do is to construct a scatter plot of the

response versus the predictor, in order to see if the relationship between the two vari-

ables is indeed linear. Figure 8.18 presents a scatter plot of the point value versus the

frequency. Note that each dot may represent more than one letter.
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TABLE 8.14 Frequency in Scrabble®, and Scrabble® point value
of the letters in the alphabet

Letter Frequency in Scrabble® Point Value in Scrabble®

A 9 1

B 2 3

C 2 3

D 4 2

E 12 1

F 2 4

G 3 2

H 2 4

I 9 1

J 1 8

K 1 5

L 4 1

M 2 3

N 6 1

O 8 1

P 2 3

Q 1 10

R 6 1

S 4 1

T 6 1

U 4 1

V 2 4

W 2 4

X 1 8

Y 2 4

Z 1 10

Perusal of the scatter plot indicates clearly that there is a relationship between

point value and letter frequency. However, the relationship is not linear, but rather

curvilinear, in this case quadratic. It would not be appropriate to model the

relationship between point value and letter frequency using a linear approximation

such as simple linear regression. Such a model would lead to erroneous estimates

and incorrect inference. Instead, the analyst may apply a transformation to achieve

linearity in the relationship.

Frederick, Mosteller, and Tukey, in their book Data Analysis and Regression4,

suggest “the bulging rule” for finding transformations to achieve linearity. To under-

stand the bulging rule for quadratic curves, consider Figure 8.19 (after Mosteller and

Tukey4).

Compare the curve seen in our scatter plot, Figure 8.18, to the curves shown in

Figure 8.19. It is most similar to the curve in the lower left quadrant, the one labeled
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Figure 8.18 Scatter plot of points versus frequency in Scrabble®: nonlinear!
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Figure 8.19 The bulging rule: a heuristic for variable transformation to achieve linearity.
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“x down, y down.” Mosteller and Tukey7 propose a “ladder of re-expressions,” which

are essentially a set of power transformations, with one exception, ln(t).

LADDER OF RE-EXPRESSIONS (MOSTELLER AND TUKEY)

The ladder of re-expressions consists of the following ordered set of transformations for

any continuous variable t.

t−3 t−2 t−1 t−1∕2 ln(t)
√

t t1 t2 t3

For our curve, the heuristic from the bulging rule is “x down, y down.” This

means that we should transform the variable x, by going down one or more spots

from x’s present position on the ladder. Similarly, the same transformation is made

for y. The present position for all untransformed variables is t1. Thus, the bulging

rule suggests that we apply either the square root transformation or the natural log

transformation to both letter tile frequency and point value, in order to achieve a linear

relationship between the two variables.

Thus, we apply the square root transformation to both frequency and points,

and consider the scatter plot of sqrt points versus sqrt frequency, given in Figure 8.20.

Unfortunately, the graph indicates that the relationship between sqrt points and sqrt

frequency is still not linear, so that it would still be inappropriate to apply linear

regression. Evidently, the square root transformation was too mild to effect linearity

in this case.
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Figure 8.20 After applying square root transformation, still not linear.

7Mosteller and Tukey, Data Analysis and Regression, Addison-Wesley, Reading, MA, 1977.
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We therefore move one more notch down the ladder of re-expressions,

and apply the natural log transformation to each of frequency and point value,

generating the transformed variables ln points and ln frequency. The scatter plot

of ln points versus ln frequency is shown in Figure 8.21. This scatter plot exhibits

acceptable linearity, although, as with any real-world scatter plot, the linearity is

imperfect. We may therefore proceed with the regression analysis for ln points and

ln frequency.
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Figure 8.21 The natural log transformation has achieved acceptable linearity (single outlier,

E, indicated).

Table 8.15 presents the results from the regression of ln points on ln frequency.

Let us compare these results with the results from the inappropriate regression of

points on frequency, with neither variable transformed, shown in Table 8.16. The

coefficient of determination for the untransformed case is only 45.5%, as compared

to 87.6% for the transformed case, meaning that, the transformed predictor accounts

for nearly twice as much of the variability in the transformed response than in the

case for the untransformed variables.

We can also compare the predicted point value for a given frequency, say fre-

quency = 4 tiles. For the proper regression, the estimated ln points equals 1.94− 1.01

(ln freq)= 1.94− 1.01 (1.386)= 0.5401, giving us an estimated e0.5401 = 1.72 points

for a letter with frequency 4. As the actual point values for letters with this fre-

quency are all either one or two points, this estimate makes sense. However, using

the untransformed variables, the estimated point value for a letter with frequency 4 is

5.73− 0.633 (frequency)= 5.73− 0.633 (4)= 3.198, which is much larger than any

of the actual point values for letter with frequency 4. This exemplifies the danger of

applying predictions from inappropriate models.
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TABLE 8.15 Regression of ln points on ln frequency

TABLE 8.16 Inappropriate regression of points on frequency
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In Figure 8.21 and Table 8.15, there is a single outlier, the letter “E.” As the

standardized residual is positive, this indicates that the point value for E is higher than

expected, given its frequency, which is the highest in the bunch, 12. The residual of

0.5579 is indicated by the dashed vertical line in Figure 8.21. The letter “E” is also the

only “influential” observation, with a Cook’s distance of 0.5081 (not shown), which

just exceeds the 50th percentile of the F1, 25 distribution.

8.17 BOX–COX TRANSFORMATIONS

Generalizing from the idea of a ladder of transformations, to admit powers of

any continuous value, we may apply a Box–Cox transformation.8 A Box–Cox

transformation is of the form:

W =

{(
y𝜆 − 1

)
∕𝜆, for 𝜆 ≠ 0,

ln y, for 𝜆 = 0

For example, we could have 𝜆 = 0.75, giving us the following transformation, W =
(y0.75 − 1)∕0.75. Draper and Smith9 provide a method of using maximum likelihood

to choose the optimal value of 𝜆. This method involves first choosing a set of candidate

values for 𝜆, and finding SSE for regressions performed using each value of 𝜆. Then,

plotting SSE𝜆 versus 𝜆, find the lowest point of a curve through the points in the plot.

This represents the maximum-likelihood estimate of 𝜆.

THE R ZONE

# Read in and prepare Cereals data

cereal <- read.csv(file = "C:/… /cereals.txt",

stringsAsFactors=TRUE, header=TRUE, sep="\t")

# Save Rating and Sugar as new variables

sugars <- cereal$Sugars; rating <- cereal$Rating

which(is.na(sugars)) # Record 58 is missing

sugars <- na.omit(sugars) # Delete missing value

rating <- rating[-58] # Delete Record 58 from Rating to match

8Box and Cox, An Analysis of Transformations, Journal of the Royal Statistical Society, Series B, Volume

26, pages 2211—243, 1964. (This formula above is valid only for y > 0.)
9Draper and Smith, Applied Regression Analysis, 3rd edition, Wiley Publishers, Hoboken, New Jersey,

1998.
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# Run regression analysis

lm1<-

lm(rating∼sugars)

# Display summaries

summary(lm1)

anova(lm1)

# Plot data with regression line

plot(sugars, rating,

main = "Cereal Rating by Sugar Content",

xlab = "Sugar Content", ylab = "Rating",

pch = 16, col = "blue")

abline(lm1, col = "red")
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# Residuals, r2, standardized residuals, leverage

lm1$residuals # All residuals

lm1$residuals[12] # Residual of Cheerios, Record 12

a1 <- anova(lm1)

# Calculate r^2

r2.1 <- a1$"Sum Sq"[1] / (a1$"Sum Sq"[1] +
a1$"Sum Sq"[2])

std.res1 <- rstandard(lm1) # Standardized residuals

lev <- hatvalues(lm1) # Leverage
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# Orienteering example

# Input the data

x <- c(2,… ,9)

y <- c(10, … , 25)

o.data <- data.frame(cbind(

"Time" = x,

"Distance" = y))

lm2 <- lm(Distance ∼
Time, data = o.data)

a2 <- anova(lm2)

# Directly calculate r^2

r2.2 <- a2$"Sum Sq"[1] /

(a2$"Sum Sq"[1] +
a2$"Sum Sq"[2])

# MSE

mse <- a2$"Mean Sq"[2]

s <- sqrt(mse) # s

# Std dev of Y

sd(o.data$Distance)

r <- sign(lm2$coefficients[2])* sqrt(r2.2) # r

# Regression using other hikers

# Hard-core hiker

hardcore <- cbind("Time" = 16,

"Distance" = 39)

o.data <- rbind(o.data, hardcore)

lm3 <- lm(Distance ∼ Time,

data = o.data)

summary(lm3); anova(lm3)

hatvalues(lm3)

# Leverage

rstandard(lm3)

# Standardized residual

cooks.distance(lm3)

# Cook’s Distance

# 5-hour, 20-km hiker

o.data[11,] <- cbind("Time" = 5, "Distance" = 20)

lm4 <- lm(Distance ∼ Time, data = o.data)

summary(lm4); anova(lm4); rstandard(lm4) ;

hatvalues(lm4) ; cooks.distance(lm4)

# 10-hour, 23-km hiker

o.data[11,] <- cbind("Time" = 10, "Distance" = 23)

lm5 <- lm(Distance ∼ Time, data = o.data)

summary(lm5); anova(lm5); hatvalues(lm5);

rstandard(lm5); cooks.distance(lm5)
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# Verify the assumptions

par(mfrow=c(2,2)); plot(lm2)

# Normal probability plot: top-right

# Residuals vs Fitted: top-left

# Square root of absolute value

# of standardized residuals:

# bottom-left

# Reset the plot space

par(mfrow=c(1,1))
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# Plot Standardized residuals by fitted values

plot(lm2$fitted.values, rstandard(lm2),

pch = 16, col = "red",

main = "Standardized

Residuals by Fitted Values",

ylab = "Standardized Residuals",

xlab = "Fitted Values")

abline(0,0)
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# Check residuals are Normally distributed

# Normal Q-Q Plot

qqnorm(lm1$residuals, datax = TRUE)

qqline(lm1$residuals, datax = TRUE)

# Anderson-Darling test

# Requires “nortest” package

library(“nortest”)

ad.test(lm1$residuals)
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# t-test

summary(lm1)

# t-test is in the ‘sugars’ row

# CI for Beta coefficients

confint(lm1, level = 0.95)

# Regression for Carbohydrates and Natural Log
of Rating

carbs <- cereal$"Carbo"[−58]

lrating <- log(rating)

ad.test(lrating); ad.test(carbs)

lm6 <- lm(lrating∼carbs)

summary(lm6)

a6 <- anova(lm6); a6

# CI for r

alpha <- 0.05

n <- length(lrating)

r2.6 <- a6$"Sum Sq"[1] / (a6$"Sum Sq"[1] +
a6$"Sum Sq"[2])

r <- sign(lm6$coefficients[2])*sqrt(r2.6)

sr <- sqrt((1-r^2)/(n-2))

lb <- r - qt(p=alpha/2, df = n-2, lower.tail = FALSE)*sr

ub <- r + qt(p=alpha/2, df = n-2, lower.tail = FALSE)*sr

lb;ub
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# Confidence and Prediction Intervals

newdata <- data.frame(cbind(Distance = 5, Time = 5))

conf.int <- predict(lm2, newdata,

interval = "confidence")

pred.int <- predict(lm2, newdata,

interval = "prediction")

conf.int; pred.int

# Assess Normality in Scrabble example

# Scrabble data

s.freq <- c(9, … 1); s.point <- c(1, … 10)

scrabble <- data.frame("Frequency" = s.freq,

"Points" = s.point)

plot(scrabble,

main = "Scrabble Points vs Frequency",

xlab = "Frequency", ylab = "Points",

col = "red", pch = 16,

xlim = c(0, 13), ylim = c(0,10))

sq.scrabble <- sqrt(scrabble)

plot(sq.scrabble,

main = "Square Root of Scrabble Points

vs Frequency",

xlab = "Sqrt Frequency", ylab = "Sqrt

Points", col = "red", pch = 16)

ln.scrabble <- log(scrabble)

plot(ln.scrabble, main = "Natural Log of

Scrabble Points vs Frequency",

xlab = "Ln Frequency", ylab = "Ln

Points", col = "red", pch = 16)
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# Run regression on Scrabble data, transformed and untransformed

lm7 <- lm(Points ∼
Frequency,

data = ln.scrabble)

summary(lm7)

anova(lm7)

rstandard(lm7)

lm8 <- lm(Points ∼
Frequency,

data = scrabble)

summary(lm8)

anova(lm8)

# Box-Cox Transformation

# Requires MASS package

library(MASS)

bc <- boxcox(lm8)
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EXERCISES

CLARIFYING THE CONCEPTS

1. Indicate whether the following statements are true or false. If false, alter the statement to

make it true.

a. The least-squares line is that line that minimizes the sum of the residuals.

b. If all the residuals equal zero, then SST=SSR.

c. If the value of the correlation coefficient is negative, this indicates that the variables

are negatively correlated.

d. The value of the correlation coefficient can be calculated, given the value of r2 alone.

e. Outliers are influential observations.

f. If the residual for an outlier is positive, we may say that the observed y-value is higher

than the regression estimated, given the x-value.

g. An observation may be influential even though it is neither an outlier nor a high lever-

age point.

h. The best way of determining whether an observation is influential is to see whether

its Cook’s distance exceeds 1.0.

i. If one is interested in using regression analysis in a strictly descriptive manner, with

no inference and no model building, then one need not worry quite so much about

assumption validation.

j. In a normality plot, if the distribution is normal, then the bulk of the points should fall

on a straight line.

k. The chi-square distribution is left-skewed.

l. Small p-values for the Anderson–Darling test statistic indicate that the data are

right-skewed.

m. A funnel pattern in the plot of residuals versus fits indicates a violation of the inde-

pendence assumption.

2. Describe the difference between the estimated regression line and the true regression line.

3. Calculate the estimated regression equation for the orienteering example, using the data

in Table 8.3. Use either the formulas or software of your choice.

4. Where would a data point be situated that has the smallest possible leverage?

http://CRAN.R-project.org/package=nortest
http://www
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5. Calculate the values for leverage, standardized residual, and Cook’s distance for the

hard-core hiker example in the text.

6. Calculate the values for leverage, standardized residual, and Cook’s distance for the 11th

hiker who had hiked for 10 hours and traveled 23 kilometers. Show that, while it is neither

an outlier nor of high leverage, it is nevertheless influential.

7. Match each of the following regression terms with its definition.

Regression Term Definition

a. Influential observation Measures the typical difference between the predicted

response value and the actual response value.

b. SSE Represents the total variability in the values of the

response variable alone, without reference to the

predictor.

c. r2 An observation that has a very large standardized

residual in absolute value.

d. Residual Measures the strength of the linear relationship between

two quantitative variables, with values ranging from −1

to 1.

e. s An observation that significantly alters the regression

parameters based on its presence or absence in the data

set.

f. High leverage point Measures the level of influence of an observation, by

taking into account both the size of the residual and the

amount of leverage for that observation.

g. r Represents an overall measure of the error in prediction

resulting from the use of the estimated regression

equation.

h. SST An observation that is extreme in the predictor space,

without reference to the response variable.

i. Outlier Measures the overall improvement in prediction

accuracy when using the regression as opposed to

ignoring the predictor information.

j. SSR The vertical distance between the predicted response

and the actual response.

k. Cook’s distance The proportion of the variability in the response that is

explained by the linear relationship between the

predictor and response variables.

8. Explain in your own words the implications of the regression assumptions for the behavior

of the response variable y.

9. Explain what statistics from Table 8.11 indicate to us that there may indeed be a linear

relationship between x and y in this example, even though the value for r2 is less than 1%.

10. Which values of the slope parameter indicate that no linear relationship exist between the

predictor and response variables? Explain how this works.
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11. Explain what information is conveyed by the value of the standard error of the slope esti-

mate.

12. Describe the criterion for rejecting the null hypothesis when using the p-value method

for hypothesis testing. Who chooses the value of the level of significance, 𝛼? Make up a

situation (one p-value and two different values of 𝛼) where the very same data could lead

to two different conclusions of the hypothesis test. Comment.

13. (a) Explain why an analyst may prefer a confidence interval to a hypothesis test. (b)

Describe how a confidence interval may be used to assess significance.

14. Explain the difference between a confidence interval and a prediction interval. Which

interval is always wider? Why? Which interval is probably, depending on the situation,

more useful to the data miner? Why?

15. Clearly explain the correspondence between an original scatter plot of the data and a plot

of the residuals versus fitted values.

16. What recourse do we have if the residual analysis indicates that the regression assumptions

have been violated? Describe three different rules, heuristics, or family of functions that

will help us.

17. A colleague would like to use linear regression to predict whether or not customers will

make a purchase, based on some predictor variable. What would you explain to your

colleague?

WORKING WITH THE DATA

For Exercises 18–23, refer to the scatterplot of attendance at football games versus winning

percentage of the home team in Figure 8.22.

18. Describe any correlation between the variables. Interpret this correlation.

19. Estimate as best you can the values of the regression coefficients b0 and b1.

20. Will the p-value for the hypothesis test for the existence of a linear relationship between

the variables be small or large? Explain.

21. Will the confidence interval for the slope parameter include zero or not? Explain.

22. Will the value of s be closer to 10, 100, 1000, or 10,000? Why?

23. Is there an observation that may look as though it is an outlier? Explain.

For Exercises 24 and 25, use the scatter plot in Figure 8.23 to answer the questions.

24. Is it appropriate to perform linear regression? Why or why not?

25. What type of transformation or transformations is called for? Use the bulging rule.

For Exercises 26–30, use the output from the regression of z mail messages on z day calls
(from the Churn data set) in Table 8.17 to answer the questions.

26. Is there evidence of a linear relationship between z vmail messages (z-scores of the num-

ber of voice mail messages) and z day calls (z-scores of the number of day calls made)?

Explain.

27. Use the data in the ANOVA table to find or calculate the following quantities:
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Figure 8.22 Scatter plot of attendance versus winning percentage.
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Figure 8.23 Scatter plot.

a. SSE, SSR, and SST.

b. Coefficient of determination, using the quantities in (a). Compare with the number

reported by Minitab.

c. Correlation coefficient r.

d. Use SSE and the residual error degrees of freedom to calculate s, the standard error of

the estimate. Interpret this value.

28. Assuming normality, construct and interpret a 95% confidence interval for the population

correlation coefficient.
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TABLE 8.17 Regression of z vmail messages on z day calls

The regression equation is 
zvmail messages = 0.0000 - 0.0095 z day calls 

Predictor        Coef  SECoef      T      P 
Constant      0.00000  0.01732   0.00  1.000 
z day calls  -0.00955  0.01733  -0.55  0.582 

S = 1.00010   R-Sq = 0.0%   R-Sq(adj) = 0.0% 

Analysis of Variance 

Source            DF        SS     MS     F      P 
Regression         1     0.304  0.304  0.30  0.582 
Residual Error  3331  3331.693  1.000 
Total           3332  3331.997 

TABLE 8.18 Regression of an unspecified y on an unspecified x

The regression equation is 
Y = 0.783 + 0.0559 X 

Predictor     Coef  SE Coef      T      P 
Constant   0.78262  0.03791  20.64  0.000 
Y          0.05594  0.03056   1.83  0.067 

S = 0.983986   R-Sq = 0.3%   R-Sq(adj) = 0.2% 

29. Discuss the usefulness of the regression of z mail messages on z day calls.

30. As it has been standardized, the response z vmail messages has a standard deviation of

1.0. What would be the typical error in predicting z vmail messages if we simply used the

sample mean response and no information about day calls? Now, from the printout, what

is the typical error in predicting z vmail messages, given z day calls? Comment.

For Exercises 31–38, use the output from the regression of an unspecified y on an unspecified

x in Table 8.18 to answer the questions.

31. Carefully state the regression equation, using words and numbers.

32. Interpret the value of the y-intercept b0.

33. Interpret the value of the slope b1.

34. Interpret the value of the standard error of the estimate, s.
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35. Suppose we let 𝛼 = 0.10. Perform the hypothesis test to determine if a linear relationship

exists between x and y. Assume the assumptions are met.

36. Calculate the correlation coefficient r.

37. Assume normality. Construct a 90% confidence interval for the population correlation

coefficient. Interpret the result.

38. Compare your results for the hypothesis test and the confidence interval. Comment.

HANDS-ON ANALYSIS

Open the Baseball data set, a collection of batting statistics for 331 baseball play-

ers who played in the American League in 2002, available on the book website,

www.DataMiningConsultant.com. Suppose we are interested in whether there is a rela-

tionship between batting average and the number of home runs a player hits. Some fans might

argue, for example, that those who hit lots of home runs also tend to make a lot of strike outs,

so that their batting average is lower. Let us check it out, using a regression of the number

of home runs against the player’s batting average (hits divided by at bats). Because baseball

batting averages tend to be highly variable for low numbers of at bats, we restrict our data

set to those players who had at least 100 at bats for the 2002 season. This leaves us with 209

players. Use this data set for Exercises 39–61.

39. Construct a scatter plot of home runs versus batting average.

40. Informally, is there evidence of a relationship between the variables?

41. What would you say about the variability of the number of home runs, for those with

higher batting averages?

42. Refer to the previous exercise. Which regression assumption might this presage difficulty

for?

43. Perform a regression of home runs on batting average. Obtain a normal probability plot of

the standardized residuals from this regression. Does the normal probability plot indicate

acceptable normality, or is there skewness? If skewed, what type of skewness?

44. Construct a plot of the residuals versus the fitted values (fitted values refers to the y’s).

What pattern do you see? What does this indicate regarding the regression assumptions?

45. Take the natural log of home runs, and perform a regression of ln home runs on batting
average. Obtain a normal probability plot of the standardized residuals from this regres-

sion. Does the normal probability plot indicate acceptable normality?

46. Construct a plot of the residuals versus the fitted values. Do you see strong evidence that

the constant variance assumption has been violated? (Remember to avoid the Rorschach

effect.) Therefore conclude that the assumptions are validated.

47. Write the population regression equation for our model. Interpret the meaning of 𝛽0

and 𝛽1.

48. State the regression equation (from the regression results) in words and numbers.

49. Interpret the value of the y-intercept b0.

50. Interpret the value of the slope b1.

http://www.DataMiningConsultant.com
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51. Estimate the number of home runs (not ln home runs) for a player with a batting average
of 0.300.

52. What is the size of the typical error in predicting the number of home runs, based on the

player’s batting average?

53. What percentage of the variability in the ln home runs does batting average account for?

54. Perform the hypothesis test for determining whether a linear relationship exists between

the variables.

55. Construct and interpret a 95% confidence interval for the unknown true slope of the regres-

sion line.

56. Calculate the correlation coefficient. Construct a 95% confidence interval for the popula-

tion correlation coefficient. Interpret the result.

57. Construct and interpret a 95% confidence interval for the mean number of home runs for

all players who had a batting average of 0.300.

58. Construct and interpret a 95% prediction interval for a randomly chosen player with a

0.300 batting average. Is this prediction interval useful?

59. List the outliers. What do all these outliers have in common? For Orlando Palmeiro,

explain why he is an outlier.

60. List the high leverage points. Why is Greg Vaughn a high leverage point? Why is Bernie

Williams a high leverage point?

61. List the influential observations, according to Cook’s distance and the F criterion.

Next, subset the Baseball data set so that we are working with batters who have at least 100 at

bats. Use this data set for Exercises 62–71.

62. We are interested in investigating whether there is a linear relationship between the num-

ber of times a player has been caught stealing and the number of stolen bases the player

has. Construct a scatter plot, with “caught” as the response. Is there evidence of a linear

relationship?

63. On the basis of the scatter plot, is a transformation to linearity called for? Why or why

not?

64. Perform the regression of the number of times a player has been caught stealing versus

the number of stolen bases the player has.

65. Find and interpret the statistic that tells you how well the data fit the model.

66. What is the typical error in predicting the number of times a player is caught stealing,

given his number of stolen bases?

67. Interpret the y-intercept. Does this make any sense? Why or why not?

68. Inferentially, is there a significant relationship between the two variables? What tells you

this?

69. Calculate and interpret the correlation coefficient.

70. Clearly interpret the meaning of the slope coefficient.
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71. Suppose someone said that knowing the number of stolen bases a player has explains most

of the variability in the number of times the player gets caught stealing. What would you

say?

For Exercises 72–85, use the Cereals data set.

72. We are interested in predicting nutrition rating based on sodium content. Construct the

appropriate scatter plot. Note that there is an outlier. Identify this outlier. Explain why

this cereal is an outlier.

73. Perform the appropriate regression.

74. Omit the outlier. Perform the same regression. Compare the values of the slope and

y-intercept for the two regressions.

75. Using the scatter plot, explain why the y-intercept changed more than the slope when the

outlier was omitted.

76. Obtain the Cook’s distance value for the outlier. Is it influential?

77. Put the outlier back in the data set for the rest of the analysis. On the basis of the scatter

plot, is there evidence of a linear relationship between the variables? Discuss. Characterize

their relationship, if any.

78. Construct the graphics for evaluating the regression assumptions. Are they validated?

79. What is the typical error in predicting rating based on sodium content?

80. Interpret the y-intercept. Does this make any sense? Why or why not?

81. Inferentially, is there a significant relationship between the two variables? What tells you

this?

82. Calculate and interpret the correlation coefficient.

83. Clearly interpret the meaning of the slope coefficient.

84. Construct and interpret a 95% confidence interval for the true nutrition rating for all cereals

with a sodium content of 100.

85. Construct and interpret a 95% confidence interval for the nutrition rating for a randomly

chosen cereal with sodium content of 100.

Open the California data set (Source: US Census Bureau, www.census.gov, and available on

the book website, www.DataMiningConsultant.com), which consists of some census informa-

tion for 858 towns and cities in California. This example will give us a chance to investigate

handling outliers and high leverage points as well as transformations of both the predictor and

the response. We are interested in approximating the relationship, if any, between the percent-

age of townspeople who are senior citizens and the total population of the town. That is, do the

towns with higher proportions of senior citizens (over 64 years of age) tend to be larger towns

or smaller towns? Use the California data set for Exercises 86–92.

86. Construct a scatter plot of percentage over 64 versus popn. Is this graph very helpful in

describing the relationship between the variables?

87. Identify the four cities that appear larger than the bulk of the data in the scatter plot.

88. Apply the ln transformation to the predictor, giving us the transformed predictor variable

ln popn. Note that the application of this transformation is due solely to the skewness

inherent in the variable itself (shown by the scatter plot), and is not the result of any

http://www.census.gov
http://www.DataMiningConsultant.com
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regression diagnostics. Perform the regression of percentage over 64 on ln popn, and

obtain the regression diagnostics.

89. Describe the pattern in the normal probability plot of the residuals. What does this mean?

90. Describe the pattern in the plot of the residuals versus the fitted values. What does this

mean? Are the assumptions validated?

91. Perform the regression of ln pct (ln of percentage over 64) on ln popn, and obtain the

regression diagnostics. Explain how taking the ln of percentage over 64 has tamed the

residuals versus fitted values plot.

92. Identify the set of outliers in the lower right of the residuals versus fitted values plot. Have

we uncovered a natural grouping? Explain how this group would end up in this place in

the graph.



C H A P T E R 9
MULTIPLE REGRESSION
AND MODEL BUILDING

9.1 AN EXAMPLE OF MULTIPLE REGRESSION

Chapter 8 examined regression modeling for the simple linear regression case of a

single predictor and a single response. Clearly, however, data miners and predictive

analysts are usually interested in the relationship between the target variable and a set

of (two or more) predictor variables. Most data mining applications enjoy a wealth of

data, with some data sets including hundreds or thousands of variables, many of which

may have a linear relationship with the target (response) variable. Multiple regression
modeling provides an elegant method of describing such relationships. Compared to

simple linear regression, multiple regression models provide improved precision for

estimation and prediction, analogous to the improved precision of regression esti-

mates over univariate estimates. A multiple regression model uses a linear surface,

such as a plane or hyperplane, to approximate the relationship between a continu-

ous response (target) variable, and a set of predictor variables. While the predictor

variables are typically continuous, categorical predictor variables may be included as

well, through the use of indicator (dummy) variables.

In simple linear regression, we used a straight line (of dimension 1) to approx-

imate the relationship between the response and one predictor. Now, suppose we

would like to approximate the relationship between a response and two continuous

predictors. In this case, we would need a plane to approximate such a relationship,

because a plane is linear in two dimensions.

For example, returning to the cereals data set, suppose we are interested in

trying to estimate the value of the target variable, nutritional rating, but this time

using two variables, sugars and fiber, rather than sugars alone as in Chapter 8.1 The

three-dimensional scatter plot of the data is shown in Figure 9.1. High fiber levels

seem to be associated with high nutritional rating, while high sugar levels seem to be

associated with low nutritional rating.

1Quaker Oats, whose sugars value is missing, is not included in this analysis.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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Figure 9.1 A plane approximates the linear relationship between one response and two con-

tinuous predictors.

These relationships are approximated by the plane that is shown in Figure 9.1,

in a manner analogous to the straight-line approximation for simple linear regression.

The plane tilts downward to the right (for high sugar levels) and toward the front (for

low fiber levels).

We may also examine the relationship between rating and its predictors, sugars,

and fiber, one at a time, as shown in Figure 9.2. This more clearly illustrates the

negative relationship between rating and sugars and the positive relationship between

rating and fiber. The multiple regression should reflect these relationships.

Let us examine the results (Table 9.1) of a multiple regression of nutritional

rating on both predictor variables. The regression equation for multiple regression

with two predictor variables takes the form:

ŷ = b0 + b1x1 + b2x2

For a multiple regression with m variables, the regression equation takes the form:

ŷ = b0 + b1x1 + b2x2 + · · · + bmxm

From Table 9.1, we have

• x1 = sugars,

• x2 = fiber,

• b0 = 52.174,

• b1 = −2.2436,

• b2 = 2.8665.
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Figure 9.2 Individual variable scatter plots of rating versus sugars and fiber.

Thus, the regression equation for this example is

ŷ = 52.174 − 2.2436(sugars) + 2.8665(fiber)

That is, the estimated nutritional rating equals 52.174 minus 2.2436 times the grams

of sugar plus 2.8665 times the grams of fiber. Note that the coefficient for sugars

is negative, indicating a negative relationship between sugars and rating, while the

coefficient for fiber is positive, indicating a positive relationship. These results concur

with the characteristics of the graphs in Figures 9.1 and 9.2. The straight lines shown

in Figure 9.2 represent the value of the slope coefficients for each variable, −2.2436

for sugars and 2.8665 for fiber.

The interpretations of the slope coefficients b1 and b2 are slightly different than

for the simple linear regression case. For example, to interpret b1 = −2.2436, we say

that “the estimated decrease in nutritional rating for a unit increase in sugar content

is 2.2436 points, when fiber content is held constant.” Similarly, we interpret b2 =
2.8665 as follows: “the estimated increase in nutritional rating for a unit increase in

fiber content is 2.8408 points, when sugar content is held constant.” In general, for

a multiple regression with m predictor variables, we would interpret coefficient bi as

follows: “the estimated change in the response variable for a unit increase in variable

xi is bi, when all other predictor variables are held constant.”

Recall that errors in prediction are measured by the residual, y − ŷ. In simple

linear regression, this residual represented the vertical distance between the actual

data point and the regression line. In multiple regression, the residual is repre-

sented by the vertical distance between the data point and the regression plane or

hyperplane.
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TABLE 9.1 Results from regression of nutritional rating on sugars and fiber

For example, Spoon Size Shredded Wheat has x1 = 0 grams of sugar, x2 = 3

grams of fiber, and a nutritional rating of 72.8018. The estimated regression equation

would predict, however, that the nutritional rating for this cereal would be

ŷ = 52.174 − 2.2436 (0) + 2.8665 (3) = 60.7735

Therefore, we have a residual for Spoon Size Shredded Wheat of y − ŷ =
72.8018–60.7735 = 12.0283, illustrated in Figure 9.3. As the residual is positive,

the data value lies above the regression plane.

Each observation has its own residual, which, taken together, leads to the cal-

culation of the sum of squares error (SSE) as an overall measure of the estimation

errors. Just as for the simple linear regression case, we may again calculate the three

sums of squares, as follows:

• SSE =
∑

(y − ŷ)
2
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Fiber

Sugars

Residual = 12.0283

Actual rating = 72.8018

Predicted rating
= 60.7735

Figure 9.3 Estimation error is the vertical distance between the actual data point and the

regression plane or hyperplane.

• SSR =
∑

(̂y − y)
2

• SST =
∑

(y − y)
2

We may again present the regression statistics succinctly in a convenient anal-

ysis of variance (ANOVA) table, shown here in Table 9.2, where m represents the

number of predictor variables. Finally, for multiple regression, we have the so-called

multiple coefficient of determination,2 which is simply

R2 = SSR

SST

For multiple regression, R2 is interpreted as the proportion of the variability in the

target variable that is accounted for by its linear relationship with the set of predictor

variables.

TABLE 9.2 The ANOVA table for multiple regression

Source of

Variation

Sum of

Squares

Degrees of

Freedom

Mean

Square F

Regression SSR m MSR = SSR

m
F = MSR

MSE

Error (or residual) SSE n − m − 1 MSE = SSE

n − m − 1

Total SST = SSR + SSE n − 1

2By convention, R2 for multiple regression is indicated using a capital R.



9.1 AN EXAMPLE OF MULTIPLE REGRESSION 241

From Table 9.1, we can see that the value of R2 is 81.6%, which means that

81.6% of the variability in nutritional rating is accounted for by the linear relationship

(the plane) between rating and the set of predictors, sugar content and fiber content.

Now, would we expect R2 to be greater than the value for the coefficient of determi-

nation we got from the simple linear regression of nutritional rating on sugars alone?

The answer is yes. Whenever a new predictor variable is added to the model, the

value of R2 always goes up. If the new variable is useful, the value of R2 will increase

significantly; if the new variable is not useful, the value of R2 may barely increase

at all.

Table 8.7, here reproduced as Table 9.3, provides us with the coefficient of

determination for the simple linear regression case, r2 = 58.4%. Thus, by adding the

new predictor, fiber content, to the model, we can account for an additional 81.6 −
58.4% = 23.2% of the variability in the nutritional rating. This seems like a significant

increase, but we shall defer this determination until later.

The typical error in estimation is provided by the standard error of the estimate,

s. The value of s here is about 6.13 rating points. Therefore, our estimation of the

nutritional rating of the cereals, based on sugar and fiber content, is typically in error

by about 6.13 points. Now, would we expect this error to be greater or less than the

value for s obtained by the simple linear regression of nutritional rating on sugars

alone? In general, the answer depends on the usefulness of the new predictor. If the

new variable is useful, then s will decrease, but if the new variable is not useful for

TABLE 9.3 Results for regression of nutritional rating versus sugar content alone
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predicting the target variable, then s may in fact increase. This type of behavior makes

s, the standard error of the estimate, a more attractive indicator than R2 of whether a

new variable should be added to the model, because R2 always increases when a new

variable is added, regardless of its usefulness.

Table 9.3 shows that the value for s from the regression of rating on sugars alone

was about 9.17. Thus, the addition of fiber content as a predictor decreased the typical

error in estimating nutritional content from 9.17 points to 6.13 points, a decrease of

3.04 points. Thus, adding a second predictor to our regression analysis decreased the

prediction error (or, equivalently, increased the precision) by about three points.

Next, before we turn to inference in multiple regression, we first examine the

details of the population multiple regression equation.

9.2 THE POPULATION MULTIPLE REGRESSION
EQUATION

We have seen that, for simple linear regression, the regression model takes the form:

y = 𝛽0 + 𝛽1x + 𝜀, (9.1)

with 𝛽0 and 𝛽1 as the unknown values of the true regression coefficients, and 𝜀 the

error term, with its associated assumption discussed in Chapter 8. The multiple regres-

sion model is a straightforward extension of the simple linear regression model in

equation (9.1), as follows.

THE POPULATION MULTIPLE REGRESSION EQUATION

y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + · · · + 𝛽mxm + 𝜀

where 𝛽0, 𝛽1, … , 𝛽m represent the model parameters. These are constants, whose true value

remains unknown, and which are estimated from the data using the least-squares estimates.

𝜀 represents the error term.

The Assumptions About The Error Term

1. Zero-Mean Assumption. The error term 𝜀 is a random variable, with mean or

expected value equal to zero. In other words, E(𝜀) = 0.

2. Constant Variance Assumption. The variance of 𝜀, denoted by 𝜎2, is constant,

regardless of the value of x1, x2, … , xm.

3. Independence Assumption. The values of 𝜀 are independent.

4. Normality Assumption. The error term 𝜀 is a normally distributed random variable.

In other words, the values of the error term 𝜀i are independent normal random vari-

ables, with mean 0 and variance 𝜎2.

Just as we did for the simple linear regression case, we can derive four impli-

cations for the behavior of the response variable, y, as follows.
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IMPLICATIONS OF THE ASSUMPTIONS FOR THE BEHAVIOR OF THE
RESPONSE VARIABLE y

1. On the basis of Zero-Mean Assumption, we have:

E(y) = E(𝛽0 + 𝛽1x1 + 𝛽2x2 + · · · + 𝛽mxm + 𝜀)
= E(𝛽0) + E(𝛽1x1) + · · · + E(𝛽mxm) + E(𝜀)
= 𝛽0 + 𝛽1x1 + 𝛽2x2 + · · · + 𝛽mxm

That is, for each set of values for x1, x2, … , xm, the mean of the y’s lies on the regres-

sion line.

2. On the basis of Constant Variance Assumption, we have the variance of y, Var(y),

given as Var(y) = Var(𝛽0 + 𝛽1x1 + 𝛽2x2 + · · · + 𝛽mxm + 𝜀) = Var(𝜀) = 𝜎2.

That is, regardless of which values are taken by the predictors x1, x2, … , xm, the

variance of the y’s is always constant.

3. On the basis of Independence Assumption, it follows that, for any particular set of

values for x1, x2, … , xm, the values of y are independent as well.

4. On the basis of normality assumption, it follows that y is also a normally distributed

random variable.

In other words, the values of the response variable yi are independent normal random

variables, with mean 𝛽0 + 𝛽1x1 + 𝛽2x2 + · · · + 𝛽mxm and variance 𝜎2.

9.3 INFERENCE IN MULTIPLE REGRESSION

We shall examine five inferential methods in this chapter, which are as follows:

1. The t-test for the relationship between the response variable y and a particu-

lar predictor variable xi, in the presence of the other predictor variables, x(i),
where x(i) = x1, x2, … , xi−1, xi+1, … , xm denotes the set of all predictors, not

including xi.

2. The F-test for the significance of the regression as a whole.

3. The confidence interval, 𝛽i, for the slope of the ith predictor variable.

4. The confidence interval for the mean of the response variable y, given a set of

particular values for the predictor variables x1, x2, … , xm.

5. The prediction interval for a random value of the response variable y, given a

set of particular values for the predictor variables x1, x2, … , xm.

9.3.1 The t-Test for the Relationship Between y and xi

The hypotheses for this test are given by

H0∶ 𝛽i = 0

Ha∶ 𝛽i ≠ 0
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The models implied by these hypotheses are given by

Under H0∶ 𝛽0 + 𝛽1x1 + · · · + 0 + · · · + 𝛽mxm + 𝜀

Under Ha∶ 𝛽0 + 𝛽1x1 + · · · + 𝛽ixi + · · · + 𝛽mxm + 𝜀

Note that the only difference between the two models is the presence or absence of

the ith term. All other terms are the same in both models. Therefore, interpretations of

the results for this t-test must include some reference to the other predictor variables

being held constant.

Under the null hypothesis, the test statistic t = bi

sbi

follows a t distribution with

n−m− 1 degrees of freedom, where sbi
refers to the standard error of the slope for

the ith predictor variable. We proceed to perform the t-test for each of the predictor

variables in turn, using the results displayed in Table 9.1.

9.3.2 t-Test for Relationship Between Nutritional Rating and
Sugars

• H0∶ 𝛽1 = 0 Model∶ y = 𝛽0 + 𝛽2(fiber) + 𝜀

• Ha∶ 𝛽1 ≠ 0 Model∶ y = 𝛽0 + 𝛽1(sugars) + 𝛽2(fiber) + 𝜀

• In Table 9.1, under “Coef” in the “Sugars” row is found the value,

b1 = −2.2436.

• Under “SE Coef” in the “Sugars” row is found the value of the standard error

of the slope for sugar content, sb1
= 0.1632.

• Under “T” is found the value of the t-statistic; that is, the test statistic for the

t-test, t = b1

sb1

= −2.2436

0.1632
= −13.75.

• Under “P” is found the p-value of the t-statistic. As this is a two-tailed test,

this p-value takes the following form: p-value = P(|t| > |tobs|), where tobs rep-

resents the observed value of the t-statistic from the regression results. Here,

p-value = P(|t| > |tobs)| = P(|t| > |−13.75|) ≈ 0.000, although, of course, no

continuous p-value ever precisely equals zero.

The p-value method is used, whereby the null hypothesis is rejected when the

p-value of the test statistic is small. Here, we have p-value ≅ 0, which is smaller than

any reasonable threshold of significance. Our conclusion is therefore to reject the

null hypothesis. The interpretation of this conclusion is that there is evidence for a

linear relationship between nutritional rating and sugar content, in the presence of
fiber content.

9.3.3 t-Test for Relationship Between Nutritional Rating and
Fiber Content

• H0∶ 𝛽2 = 0 Model∶ y = 𝛽0 + 𝛽1(sugars) + 𝜀

• Ha∶ 𝛽2 ≠ 0 Model∶ y = 𝛽0 + 𝛽1(sugars) + 𝛽2(fiber) + 𝜀
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• In Table 9.1, under “Coef” in the “Fibers” row is found the value, b2 = −2.8665.

• Under “SE Coef” in the “Fiber” row is found the value of the standard error of

the slope for fiber, sb1
= 0.2979.

• Under “T” is found the test statistic for the t-test, t = b2

sb2

= 2.8665

0.2979
= 9.62.

• Under “P” is found the p-value of the t-statistic. Again, p-value ≈ 0.000.

Thus, our conclusion is again to reject the null hypothesis. We interpret this to

mean that there is evidence for a linear relationship between nutritional rating and

fiber content, in the presence of sugar content.

9.3.4 The F-Test for the Significance of the Overall
Regression Model

Next, we introduce the F-test for the significance of the overall regression model.

Figure 9.4 illustrates the difference between the t-test and the F-test. One may apply a

separate t-test for each predictor x1, x2, or x3, examining whether a linear relationship

exists between the target variable y and that particular predictor. However, the F-test
considers the linear relationship between the target variable y and the set of predictors
(e.g., {x1, x2, x3}), taken as a whole.

t-test

t-test

t-test

F-test

y

y

x1

x3

x2

{ x1, x2, x3 }

Figure 9.4 The F-test considers the relationship between the target and the set of predictors,

taken as a whole.
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The hypotheses for the F-test are given by

H0∶ 𝛽1 = 𝛽2 = … = 𝛽m = 0

Ha∶ At least one of the 𝛽i does not equal 0

The null hypothesis asserts that there is no linear relationship between the target vari-

able y, and the set of predictors, x1, x2, … , xm. Thus, the null hypothesis states that

the coefficient 𝛽i for each predictor xi exactly equals zero, leaving the null model to

be

Model under H0∶ y = 𝛽0 + 𝜀

The alternative hypothesis does not assert that all the regression coefficients differ

from zero. For the alternative hypothesis to be true, it is sufficient for a single, unspec-

ified, regression coefficient to differ from zero. Hence, the alternative hypothesis for

the F-test does not specify a particular model, because it would be true if any, some,

or all of the coefficients differed from zero.

As shown in Table 9.2, the F-statistic consists of a ratio of two means squares,

the mean square regression (MSR) and the mean square error (MSE). A mean square
represents a sum of squares divided by the degrees of freedom associated with that

sum of squares statistic. As the sums of squares are always nonnegative, then so

are the mean squares. To understand how the F-test works, we should consider the

following.

The MSE is always a good estimate of the overall variance (see model assump-

tion 2) 𝜎2, regardless of whether the null hypothesis is true or not. (In fact, recall that

we use the standard error of the estimate, s =
√

MSE, as a measure of the usefulness

of the regression, without reference to an inferential model.) Now, the MSR is also a

good estimate of 𝜎2, but only on the condition that the null hypothesis is true. If the

null hypothesis is false, then MSR overestimates 𝜎2.

So, consider the value of F = MSR∕MSE, with respect to the null hypothesis.

Suppose MSR and MSE are close to each other, so that the value of F is small

(near 1.0). As MSE is always a good estimate of 𝜎2, and MSR is only a good

estimate of 𝜎2 when the null hypothesis is true, then the circumstance that MSR

and MSE are close to each other will only occur when the null hypothesis is true.

Therefore, when the value of F is small, this is evidence that the null hypothesis

is true.

However, suppose that MSR is much greater than MSE, so that the value of F
is large. MSR is large (overestimates 𝜎2) when the null hypothesis is false. There-

fore, when the value of F is large, this is evidence that the null hypothesis is false.

Therefore, for the F-test, we shall reject the null hypothesis when the value of the test

statistic F is large.

The observed F-statistic F = Fobs = MSR∕MSE follows an Fm,n−m−1 distribu-

tion. As all F values are nonnegative, the F-test is a right-tailed test. Thus, we will

reject the null hypothesis when the p-value is small, where the p-value is the area in
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the tail to the right of the observed F statistic. That is, p-value = P(Fm,n−m−1 > Fobs),
and we reject the null hypothesis when P(Fm,n−m−1 > Fobs) is small.

9.3.5 F-Test for Relationship Between Nutritional Rating and
{Sugar and Fiber}, Taken Together

• H0∶ 𝛽1 = 𝛽2 = 0 Model ∶ y = 𝛽0 + 𝜀.

• Ha∶ At least one of 𝛽1 and 𝛽2 does not equal 0

• The model implied by Ha is not specified, and may be any one of the following:

∘ y = 𝛽0 + 𝛽1(sugars) + 𝜀

∘ y = 𝛽0 + 𝛽2(fiber) + 𝜀

∘ y = 𝛽0 + 𝛽1(sugars) + 𝛽2(fiber) + 𝜀.

• In Table 9.1, under “MS” in the “Regression” row of the “Analysis of Variance”

table, is found the value of MSR, 6094.3.

• Under “MS” in the “Residual Error” row of the “Analysis of Variance” table is

found the value of MSE, 37.5.

• Under “F” in the “Regression” row of the “Analysis of Variance” table is found

the value of the test statistic F = MSR

MSE
= 6094.3

37.5
= 162.32.

• The degrees of freedom for the F-statistic are given in the column marked “DF,”

so that we have m = 2, and n − m − 1 = 73.

• Under “P” in the “Regression” row of the “Analysis of Variance” table

is found the p-value of the F-statistic. Here, the p-value is P(Fm,n−m−1 >

Fobs) = P(F2,75 > 162.32) ≈ 0.000, although again no continuous p-value

ever precisely equals zero.

This p-value of approximately zero is less than any reasonable threshold of sig-

nificance. Our conclusion is therefore to reject the null hypothesis. The interpretation

of this conclusion is the following. There is evidence for a linear relationship between

nutritional rating on the one hand, and the set of predictors, sugar content and fiber

content, on the other. More succinctly, we may simply say that the overall regression

model is significant.

9.3.6 The Confidence Interval for a Particular Coefficient, 𝜷 i

Just as for simple linear regression, we may construct a 100(1 − 𝛼)% confidence inter-

val for a particular coefficient, 𝛽i, as follows. We can be 100(1 − 𝛼)% confident that

the true value of a particular coefficient 𝛽i lies within the following interval:

bi ± (tn−m−1)(sbi
)

where tn−m−1 is based on n − m − 1 degrees of freedom, and sbi
represents the stan-

dard error of the ith coefficient estimate.

For example, let us construct a 95% confidence interval for the true value of

the coefficient 𝛽1 for x1, sugar content. From Table 9.1, the point estimate is given as
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b1 = −2.2436. The t-critical value for 95% confidence and n − m − 1 = 73 degrees

of freedom is tn−m−1 = 1.99. The standard error of the coefficient estimate is sb1
=

0.1632. Thus, our confidence interval is as follows:

b1 ± tn−m−1(sb1
)

= −2.2436 ± 1.99(0.1632)
= (−2.57,−1.92)

We are 95% confident that the value for the coefficient 𝛽1 lies between −2.57 and

−1.92. In other words, for every additional gram of sugar, the nutritional rating will

decrease by between 1.92 and 2.57 points, when fiber content is held constant. For

example, suppose a nutrition researcher claimed that nutritional rating would fall two

points for every additional gram of sugar, when fiber is held constant. As −2.0 lies

within the 95% confidence interval, then we would not reject this hypothesis, with

95% confidence.

9.3.7 The Confidence Interval for the Mean Value of y, Given
x1, x2, … , xm

We may find confidence intervals for the mean value of the target variable y, given a

particular set of values for the predictors x1, x2, … , xm. The formula is a multivari-

ate extension of the analogous formula from Chapter 8, requires matrix multiplica-

tion, and may be found in Draper and Smith.3 For example, the bottom of Table 9.1

(“Values of Predictors for New Observations”) shows that we are interested in finding

the confidence interval for the mean of the distribution of all nutritional ratings, when

the cereal contains 5.00 grams of sugar and 5.00 grams of fiber.

The resulting 95% confidence interval is given, under “Predicted Values for

New Observations,” as “95% CI”= (53.062, 57.516). That is, we can be 95% confi-

dent that the mean nutritional rating of all cereals with 5.00 grams of sugar and 5.00

grams of fiber lies between 55.062 points and 57.516 points.

9.3.8 The Prediction Interval for a Randomly Chosen Value
of y, Given x1, x2, … , xm

Similarly, we may find a prediction interval for a randomly selected value of the

target variable, given a particular set of values for the predictors x1, x2, … , xm. We

refer to Table 9.1 for our example of interest: 5.00 grams of sugar and 5.00 grams

of fiber. Under “95% PI,” we find the prediction interval to be (42,876, 67.702). In

other words, we can be 95% confident that the nutritional rating for a randomly chosen

cereal with 5.00 grams of sugar and 5.00 grams of fiber lies between 42.876 points

and 67.702 points. Again, note that the prediction interval is wider than the confidence

interval, as expected.

3Draper and Smith, Applied Regression Analysis, John Wiley and Sons, New York, 1998.
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9.4 REGRESSION WITH CATEGORICAL PREDICTORS,
USING INDICATOR VARIABLES

Thus far, our predictors have all been continuous. However, categorical predictor vari-

ables may also be used as inputs to regression models, through the use of indicator

variables (dummy variables). For example, in the cereals data set, consider the vari-

able shelf, which indicates which supermarket shelf the particular cereal was located

on. Of the 76 cereals, 19 were located on shelf 1, 21 were located on shelf 2, and 36

were located on shelf 3.

A dot plot of the nutritional rating for the cereals on each shelf is provided in

Figure 9.5, with the shelf means indicated by the triangles. Now, if we were to use only

the categorical variables (such as shelf and manufacturer) as predictors, then we could

perform ANOVA.4 However, we are interested in using the categorical variable shelf
along with continuous variables such as sugar content and fiber content. Therefore,

we shall use multiple regression analysis with indicator variables.

On the basis of comparison dot plot in Figure 9.5, does there seem to be evi-

dence that shelf location affects nutritional rating? It would seem that shelf 2 cereals,

with their average nutritional rating of 34.97, seem to lag somewhat behind the cere-

als on shelf 1 and shelf 3, with their respective average nutritional ratings of 45.90

and 45.22. However, it is not clear whether this difference is significant. Further, this

dot plot does not take into account the other variables, such as sugar content and fiber

20
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Figure 9.5 Is there evidence that shelf location affects nutritional rating?

4See Chapter 5, or Larose, Discovering Statistics, Second Edition, W.H. Freeman and Company, Publish-

ers, New York, 2013.
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content; it is unclear how any “shelf effect” would manifest itself, in the presence of

these other variables.

For use in regression, a categorical variable with k categories must be trans-

formed into a set of k− 1 indicator variables. An indicator variable, also known

as a flag variable, or a dummy variable, is a binary 0/1 variable, which takes the

value 1 if the observation belongs to the given category, and takes the value 0

otherwise.

For the present example, we define the following indicator variables:

Shelf 1 =

{
1 if cereal located on shelf 1

0 otherwise

Shelf 2 =

{
1 if cereal located on shelf 2

0 otherwise

Table 9.4 indicates the values taken by these indicator variables, for cereals located on

shelves 1, 2, and 3, respectively. Note that it is not necessary to define a third indicator

variable “shelf 3,” because cereals located on shelf 3 will have zero values for each of

the shelf 1 and shelf 2 indicator variables, and this is sufficient to distinguish them. In

fact, one should not define this third dummy variable because the resulting covariate

matrix will be singular, and the regression will not work. The category that is not

assigned an indicator variable is denoted the reference category. Here, shelf 3 is the

reference category. Later, we shall measure the effect of the location of a given cereal

(e.g., on shelf 1) on nutritional rating, with respect to (i.e., with reference to) shelf 3,

the reference category.

So, let us construct a multiple regression model using only the two indicator

variables shown in Table 9.4. In this case, our regression equation is

ŷ = b0 + b3(shelf 1) + b4(shelf 2)

Before we run the regression, let us think about what the regression coefficient values

might be. On the basis of Figure 9.5, we would expect b4 to be negative, because

the shelf 2 cereals have a lower mean rating, compared to shelf 3 cereals. We might

also expect b3 to be essentially negligible but slightly positive, reflecting the slightly

greater mean rating for shelf 1 cereals, compared to with shelf 3 cereals.

Table 9.5 contains the results of the regression of nutritional rating on shelf 1

and shelf 2 only. Note that the coefficient for the shelf 2 dummy variable is −10.247,

TABLE 9.4 Values taken by the indicator variables, for
cereals located on shelves 1, 2, and 3, respectively

Cereal

Location

Value of Variable

Shelf 1

Value of Variable

Shelf 2

Shelf 1 1 0

Shelf 2 0 1

Shelf 3 0 0
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TABLE 9.5 Results of regression of nutritional rating on shelf
location only

which is equal (after rounding) to the difference in the mean nutritional ratings

between cereals on shelves 2 and 3: 34.97− 45.22. Similarly, the coefficient for the

shelf 1 dummy variable is 0.679, which equals (after rounding) the difference in the

mean ratings between cereals on shelves 1 and 3: 45.90− 45.22. These values fulfill

our expectations, based on Figure 9.5.

Next, let us proceed to perform multiple regression, for the linear rela-

tionship between nutritional rating and sugar content, fiber content, and shelf

location, using the two dummy variables from Table 9.4. The regression equation is

given as

ŷ = b0 + b1(sugars) + b2(fiber) + b3(shelf 1) + b4(shelf 2)

For cereals located on shelf 1, regression equation looks like the following:

ŷ = b0 + b1(sugars) + b2(fiber) + b3(1) + b4(0)
= (b0 + b3) + b1(sugars) + b2(fiber)

For cereals located on shelf 2, the regression equation is

ŷ = b0 + b1(sugars) + b2(fiber) + b3(0) + b4(1)
= (b0 + b4) + b1(sugars) + b2(fiber)

Finally, for cereals located on shelf 3, the regression equation is as follows:

ŷ = b0 + b1(sugars) + b2(fiber) + b3(0) + b4(0)
= b0 + b1(sugars) + b2(fiber)

Note the relationship of the model equations to each other. The three models represent

parallel planes, as illustrated in Figure 9.6. (Note that the planes do not, of course,

directly represent the shelves themselves, but the fit of the regression model to the
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Figure 9.6 The use of indicator variables in multiple regression leads to a set of parallel planes

(or hyperplanes).

nutritional rating, for the cereals on the various shelves.) The results for the regression

of nutritional rating on sugar content, fiber content, and shelf location are provided

in Table 9.6. The general form of the regression equation looks like:

ŷ = 50.525 − 2.3183(sugars) + 3.1314(fiber) + 2.101(shelf 1) + 3.915(shelf 2)

Thus, the regression equation for cereals located on the various shelves is given as

the following:

Shelf 1 ∶ ŷ = 50.525 − 2.3183(sugars) + 3.1314(fiber) + 2.101(1)
= 52.626 − 2.3183(sugars) + 3.1314(fiber)

Shelf 2 ∶ ŷ = 50.525 − 2.3183(sugars) + 3.1314(fiber) + 3.915(1)
= 54.44 − 2.3183(sugars) + 3.1314(fiber)

Shelf 3 ∶ ŷ = 50.525 − 2.3183(sugars) + 3.1314(fiber)

Note that these estimated regression equations are exactly the same, except for the

y-intercept. This means that cereals on each shelf are modeled as following the exact

same slope in the sugars dimension (−2.3183) and the exact same slope in the fiber

dimension (3.1314), which gives us the three parallel planes shown in Figure 9.6.

The only difference lies in the value of the y-intercept for the cereals on the three

shelves.

The reference category in this case is shelf 3. What is the vertical distance

between the shelf 3 plane and, for example, the shelf 1 plane? Note from the deriva-

tions above that the estimated regression equation for the cereals on shelf 1 is given

as

ŷ = (b0 + b3) + b1(sugars) + b2(fiber)
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TABLE 9.6 Results for the regression of nutritional rating on sugar content, fiber content,
and shelf location

so that the y-intercept is b0 + b3. We also have the estimated regression equation for

the cereals on shelf 3 to be

ŷ = b0 + b1(sugars) + b2(fiber)

Thus, the difference between the y-intercepts is (b0 + b3) − b0 = b3. We can verify

this by noting that (b0 + b3) − b0 = 52.626 − 50.525 = 2.101, which is the value of

b3 reported in Table 9.6. The vertical distance between the planes representing shelves

1 and 3 is everywhere 2.101 rating points, as shown in Figure 9.7.

Of particular importance is the interpretation of this value for b3. Now, the

y-intercept represents the estimated nutritional rating when both sugars and fiber

equal zero. However, as the planes are parallel, the difference in the y-intercepts

among the shelves remains constant throughout the range of sugar and fiber values.

Thus, the vertical distance between the parallel planes, as measured by the coefficient

for the indicator variable, represents the estimated effect of the particular indicator

variable on the target variable, with respect to the reference category.

In this example, b3 = 2.101 represents the estimated difference in nutritional

rating for cereals located on shelf 1, compared to the cereals on shelf 3. As b3 is

positive, this indicates that the estimated nutritional rating for shelf 1 cereals is higher.

We thus interpret b3 as follows: The estimated increase in nutritional rating for cereals

located on shelf 1, as compared to cereals located on shelf 3, is b3 = 2.101 points,

when sugars and fiber content are held constant. It is similar for the cereals on shelf 2.
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Figure 9.7 The indicator variables coefficients estimate the difference in the response value,

compared to the reference category.

We have the estimated regression equation for these cereals as:

ŷ = (b0 + b4) + b1(sugars) + b2(fiber)

so that the difference between the y-intercepts for the planes representing shelves 2

and 3 is (b0 + b4) − b0 = b4. We thus have (b0 + b4) − b0 = 54.44 − 50.525 = 3.915,

which is the value for b4 reported in Table 9.6. That is, the vertical distance between

the planes representing shelves 2 and 3 is everywhere 3.915 rating points, as shown in

Figure 9.7. Therefore, the estimated increase in nutritional rating for cereals located

on shelf 2, as compared to cereals located on shelf 3, is b4 = 3.915 points, when

sugars and fiber content are held constant.

We may then infer the estimated difference in nutritional rating between shelves

2 and 1. This is given as (b0 + b4) − (b0 + b3) = b4 − b3 = 3.915 − 2.101 = 1.814

points. The estimated increase in nutritional rating for cereals located on shelf 2, as

compared to cereals located on shelf 1, is 1.814 points, when sugars and fiber content

are held constant.

Now, recall Figure 9.5, where we encountered evidence that shelf 2 cereals

had the lowest nutritional rating, with an average of about 35, compared to average

ratings of 46 and 45 for the cereals on the other shelves. How can this knowledge be

reconciled with the dummy variable results, which seem to show the highest rating

for shelf 2?

The answer is that our indicator variable results are accounting for the presence

of the other variables, sugar content and fiber content. It is true that the cereals on shelf

2 have the lowest nutritional rating; however, as shown in Table 9.7, these cereals also

have the highest sugar content (average 9.62 grams, compared to 5.11 and 6.53 grams

for shelves 1 and 3) and the lowest fiber content (average 0.91 grams, compared to

1.63 and 3.14 grams for shelves 1 and 3). Because of the negative correlation between

sugar and rating, and the positive correlation between fiber and rating, the shelf 2

cereals already have a relatively low estimated nutritional rating based on these two

predictors alone.
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TABLE 9.7 Using sugars and fiber only, the regression model underestimates the
nutritional rating of shelf 2 cereals

Shelf Mean Sugars Mean Fiber Mean Rating Mean Estimated Ratinga Mean Error

1 5.11 1.63 45.90 45.40 −0.50

2 9.62 0.91 34.97 33.19 −1.78

3 6.53 3.14 45.22 46.53 +1.31

aRating estimated using sugars and fiber only, and not shelf location.5

Table 9.7 shows the mean fitted values (estimated ratings) for the cereals on

the various shelves, when sugar and fiber content are included in the model, but shelf

location is not included as a predictor. Note that, on average, the nutritional rating of

the shelf 2 cereals is underestimated by 1.78 points. However, the nutritional rating of

the shelf 3 cereals is overestimated by 1.31 points. Therefore, when shelf location is

introduced into the model, these over-/underestimates can be compensated for. Note

from Table 9.7 that the relative estimation error difference between shelves 2 and

3 is 1.31+ 1.78= 3.09. Thus, we would expect that if shelf location were going to

compensate for the underestimate of shelf 2 cereals relative to shelf 3 cereals, it would

add a factor in the neighborhood of 3.09 ratings points. Recall from Figure 9.6 that

b4 = 3.915, which is in the ballpark of 3.09. Also, note that the relative estimation

error difference between shelves 1 and 3 is 1.31+ 0.50= 1.81. We would expect that

the shelf indicator variable compensating for this estimation error would be not far

from 1.81, and, indeed, we have the relevant coefficient as b3 = 2.101.

This example illustrates the flavor of working with multiple regression, in that

the relationship of the set of predictors with the target variable is not necessarily

dictated by the individual bivariate relationships the target variable has with each

of the predictors. For example, Figure 9.5 would have led us to believe that shelf

2 cereals would have had an indicator variable adjusting the estimated nutritional

rating downward. But the actual multiple regression model, which included sugars,

fiber, and shelf location, had an indicator variable adjusting the estimated nutritional

rating upward, because of the effects of the other predictors.

Consider again Table 9.6. Note that the p-values for the sugars coefficient and

the fiber coefficient are both quite small (near zero), so that we may include both

of these predictors in the model. However, the p-value for the shelf 1 coefficient is

somewhat large (0.246), indicating that the relationship between this variable is not

statistically significant. In other words, in the presence of sugars and fiber content,

the difference in nutritional rating between shelf 1 cereals and shelf 3 cereals is not

significant. We may therefore consider eliminating the shelf 1 indicator variable from

the model. Suppose we go ahead and eliminate the shelf 1 indicator variable from

the model, because of its large p-value, but retain the shelf 2 indicator variable. The

results from the regression of nutritional rating on sugar content, fiber content, and

shelf 2 (compared to shelf 3) location are given in Table 9.8.

5To do this, store the predicted rating values from the regression of rating on sugars and fiber, and then

find the mean predicted rating value, by shelf location.
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TABLE 9.8 Results from regression of nutritional rating on sugars, fiber,
and the shelf 2 indicator variable

Note from Table 9.8 that the p-value for the shelf 2 dummy variable has

increased from 0.039 to 0.077, indicating that it may no longer belong in the model.

The effect of adding or removing predictors on the other predictors is not always

predictable. This is why variable selection procedures exist to perform this task

methodically, such as stepwise regression. We cover these methods later in this

chapter.

9.5 ADJUSTING R2: PENALIZING MODELS FOR
INCLUDING PREDICTORS THAT ARE NOT USEFUL

Recall that adding a variable to the model will increase the value of the coefficient of

determination R2, regardless of the usefulness of the variable. This is not a particu-

larly attractive feature of this measure, because it may lead us to prefer models with

marginally larger values for R2, simply because they have more variables, and not

because the extra variables are useful. Therefore, in the interests of parsimony, we

should find some way to penalize the R2 measure for models that include predictors

that are not useful. Fortunately, such a penalized form for R2 does exist, and is known

as the adjusted R2. The formula for adjusted R2 is as follows:

R2
adj

= 1 − (1 − R2) n − 1

n − m − 1

If R2
adj

is much less than R2, then this is an indication that at least one variable in

the model may be extraneous, and the analyst should consider omitting that variable

from the model.
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As an example of calculating R2
adj

, consider Figure 9.10, where we have

• R2 = 0.828

• R2
adj

= 0.818

• n= 76

• m= 4

Then, R2
adj

= 1 − (1 − R2) n−1

n−m−1
= 1 − (1 − 0.828) 75

71
= 0.818.

Let us now compare Tables 9.6 and 9.8, where the regression model was run

with and without the shelf 1 indicator variable, respectively. The shelf 1 indicator

variable was found to be not useful for estimating nutritional rating. How did this

affect R2 and R2
adj

?

• With shelf 1: Penalty = R2 − R2
adj

= 0.828 − 0.818 = 0.010

• Without shelf 1: Penalty = R2 − R2
adj

= 0.824 − 0.817 = 0.007

So, the regression model, not including shelf 1, suffers a smaller penalty than

does the model that includes it, which would make sense if shelf 1 is not a helpful

predictor. However, in this instance, the penalty is not very large in either case. Just

remember: When one is building models in multiple regression, one should use R2
adj

and s, rather than the raw R2.

9.6 SEQUENTIAL SUMS OF SQUARES

Some analysts use the information provided in the sequential sums of squares, pro-

vided by many software packages, to help them get a better idea of which variables to

include in the model. The sequential sums of squares represent a partitioning of SSR,

the regression sum of squares. Recall that SSR represents the proportion of the vari-

ability in the target variable that is explained by the linear relationship of the target

variable with the set of predictor variables. The sequential sums of squares partition

the SSR into the unique portions of the SSR that are explained by the particular pre-

dictors, given any earlier predictors. Thus, the values of the sequential sums of squares

depend on the order that the variables are entered into the model. For example, the

sequential sums of squares for the model:

y = 𝛽0 + 𝛽1(sugars) + 𝛽2(fiber) + 𝛽3(Shelf 1) + 𝛽4(Shelf 2) + 𝜀

are found in Table 9.6, and repeated here in Table 9.9. The sequential sum of squares

shown for sugars is 8711.9, and represents the variability in nutritional rating that is

explained by the linear relationship between rating and sugar content. In other words,

this first sequential sum of squares is exactly the value for SSR from the simple linear

regression of nutritional rating on sugar content.6

y = 𝛽0 + 𝛽1(sugars) + 𝛽2(fiber) + 𝛽3(Shelf 1) + 𝛽4(Shelf 2) + 𝜀

6Confirm this by comparing against Table 8.7.
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TABLE 9.9 The sequential sums of squares for the model:
y=𝜷0 + 𝜷1(sugars)+ 𝜷2(fiber)+ 𝜷3(Shelf 1)+ 𝜷4(Shelf 2)+ 𝜺

The second sequential sum of squares, for fiber content, equals 3476.6. This

represents the amount of unique additional variability in nutritional rating that

is explained by the linear relationship of rating with fiber content, given that the

variability explained by sugars has already been extracted. The third sequential

sum of squares, for shelf 1, is 7.0. This represents the amount of unique additional

variability in nutritional rating that is accounted for by location on shelf 1 (compared

to the reference class shelf 3), given that the variability accounted for by sugars and

fiber has already been separated out. This tiny value for the sequential sum of squares

for shelf 1 indicates that the variable is probably not useful for estimating nutritional

rating. Finally, the sequential sum of squares for shelf 2 is a moderate 159.9.

Now, suppose we changed the ordering of the variables into the regression

model. This would change the values of the sequential sums of squares. For example,

suppose we perform an analysis based on the following model:

y = 𝛽0 + 𝛽1(shelf 1) + 𝛽2(shelf 2) + 𝛽3(sugars) + 𝛽4(fiber) + 𝜀

The results for this regression are provided in Table 9.10. Note that all the results in

Table 9.10 are exactly the same as in Table 9.6 (apart from ordering), except the values

of the sequential sums of squares. This time, the indicator variables are able to “claim”

their unique portions of the variability before the other variables are entered, thus

giving them larger values for their sequential sums of squares. See Neter, Wasserman,

and Kutner7 for more information on applying sequential sums of squares for variable

selection. We use the sequential sums of squares, in the context of a partial F-test, to

perform variable selection later on in this chapter.

9.7 MULTICOLLINEARITY

Suppose that we are now interested in adding the predictor potassium to the model,

so that our new regression equation looks like:

ŷ = b0 + b1(sugars) + b2(fiber) + b3(shelf 1) + b4(potassium)

Now, data miners need to guard against multicollinearity, a condition where some

of the predictor variables are correlated with each other. Multicollinearity leads to

7Neter, Wasserman, and Kutner, Applied Linear Statistical Models, 4th edition, McGraw-Hill/Irwin, 1996.
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TABLE 9.10 Changing the ordering of the variables into the model changes nothing except
the sequential sums of squares

instability in the solution space, leading to possible incoherent results. For example,

in a data set with severe multicollinearity, it is possible for the F-test for the overall

regression to be significant, while none of the t-tests for the individual predictors are

significant.

Consider Figures 9.8 and 9.9. Figure 9.8 illustrates a situation where the pre-

dictors x1 and x2 are not correlated with each other; that is, they are orthogonal, or

independent. In such a case, the predictors form a solid basis, on which the response

surface y may rest sturdily, thereby providing stable coefficient estimates b1 and b2,

each with small variability sb1
and sb2

. However, Figure 9.9 illustrates a multicollinear

situation where the predictors x1 and x2 are correlated with each other, so that as one of

them increases, so does the other. In this case, the predictors no longer form a solid

basis, on which the response surface may firmly rest. Instead, when the predictors

are correlated, the response surface is unstable, providing highly variable coefficient

estimates b1 and b2, because of the inflated values for sb1
and sb2

.

The high variability associated with the estimates means that different sam-
ples may produce coefficient estimates with widely different values. For example, one

sample may produce a positive coefficient estimate for x1, while a second sample

may produce a negative coefficient estimate. This situation is unacceptable when the

analytic task calls for an explanation of the relationship between the response and the

predictors, individually. Even if such instability is avoided, inclusion of variables that
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x2

x1

y

Figure 9.8 When the predictors x1 and x2 are uncorrelated, the response surface y rests on a

solid basis, providing stable coefficient estimates.

x1

x2

y

Figure 9.9 Multicollinearity: When the predictors are correlated, the response surface is

unstable, resulting in dubious and highly variable coefficient estimates.

are highly correlated tends to overemphasize a particular component of the model,

because the component is essentially being double counted.

To avoid multicollinearity, the analyst should investigate the correlation struc-

ture among the predictor variables (ignoring for the moment the target variable).

Table 9.118 provides the correlation coefficients among the predictors for our present

model. For example, the correlation coefficient between sugars and fiber is −0.139,

8Shelf 2 is an indicator variable. No correlation inference should be carried out for indicator variables, as

the normality assumption would be violated. However, using the correlation coefficient as a descriptive

statistic for indicator variables is acceptable as an exploratory tool.
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TABLE 9.11 Correlation coefficients among the predictors: We have a problem

while the correlation coefficient between sugars and potassium is 0.001. Unfortu-

nately, there is one pair of variables that are strongly correlated: fiber and potassium,

with r= 0.912. Another method of assessing whether the predictors are correlated

is to construct a matrix plot of the predictors, such as Figure 9.10. The matrix plot

supports the finding that fiber and potassium are positively correlated.
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Figure 9.10 Matrix plot of the predictor variables shows correlation between fiber and

potassium.

However, suppose we did not check for the presence of correlation among

our predictors, and went ahead and performed the regression anyway. Is there some

way that the regression results can warn us of the presence of multicollinearity?

The answer is yes: We may ask for the variance inflation factors (VIFs) to be

reported.

What do we mean by VIFs? First, recall that sbi
represents the variability asso-

ciated with the coefficient bi for the ith predictor variable xi. We may express sbi
as

a product of s, the standard error of the estimate, and ci, which is a constant whose

value depends on the observed predictor values. That is, sbi
= s ⋅ ci. Now, s is fairly

robust with respect to the inclusion of correlated variables in the model, so, in the
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presence of correlated predictors, we would look to ci to help explain large changes

in sbi
.

We may express ci as the following:

ci =
√

1

(n − 1)s2
i

⋅
1

1 − R2
i

where s2
i represents the sample variance of the observed values of ith predictor,

xi, and R2
i represents the R2 value obtained by regressing xi on the other predictor

variables. Note that R2
i will be large when xi is highly correlated with the other

predictors.

Note that, of the two terms in ci, the first factor
( 1

(n−1)s2
i

)
measures only the

intrinsic variability within the ith predictor, xi. It is the second factor
( 1

1−R2
i

)
that

measures the correlation between the ith predictor xi and the remaining predictor

variables. For this reason, this second factor is denoted as the VIF for xi:

VIFi =
1

1 − R2
i

Can we describe the behavior of the VIF? Suppose that xi is completely uncorrelated

with the remaining predictors, so that R2
i = 0. Then we will have VIFi =

1

1−0
= 1.

That is, the minimum value for VIF is 1, and is reached when xi is completely uncor-

related with the remaining predictors. However, as the degree of correlation between

xi and the other predictors increases, R2
i will also increase. In that case, VIFi =

1

1−R2
i

will increase without bound, as R2
i approaches 1. Thus, there is no upper limit to the

value that VIFi can take.

What effect do these changes in VIFi have on sbi
, the variability of the ith coef-

ficient? We have sbi
= s ⋅ ci = s ⋅

√
1

(n−1)s2
i

⋅ 1

1−R2
i

= s ⋅
√

VIFi

(n−1)s2
i

. If xi is uncorrelated

with the other predictors, then VIFi = 1, and the standard error of the coefficient sbi
will not be inflated. However, if xi is correlated with the other predictors, then the

large VIFi will produce an inflation of the standard error of the coefficient sbi
. As

you know, inflating the variance estimates will result in a degradation in the precision

of the estimation. A rough rule of thumb for interpreting the value of the VIF is to

consider VIFi ≥ 5 to be an indicator of moderate multicollinearity, and to consider

VIFi ≥ 10 to be an indicator of severe multicollinearity. A VIFi = 5 corresponds to

R2
i = 0.80, while VIFi = 10 corresponds to R2

i = 0.90.

Getting back to our example, suppose we went ahead with the regression of

nutritional rating on sugars, fiber, the shelf 2 indicator, and the new variable potas-

sium, which is correlated with fiber. The results, including the observed VIFs, are

shown in Table 9.12. The estimated regression equation for this model is

ŷ = 52.525 − 2.1476(sugars) + 4.2515(fiber) + 1.663(shelf2)
− 0.04656(potassium)
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TABLE 9.12 Regression results, with variance inflation factors indicating a multicollinearity
problema

aNote that only 74 cases were used, because the potassium content of Almond Delight and Cream of Wheat are missing,

along with the sugar content of Quaker Oats.

The p-value for potassium is not very small (0.082), so at first glance, the variable may

or may not be included in the model. Also, the p-value for the shelf 2 indicator variable

(0.374) has increased to such an extent that we should perhaps not include it in the

model. However, we should probably not put too much credence into any of these

results, because the observed VIFs seem to indicate the presence of a multicollinearity

problem. We need to resolve the evident multicollinearity before moving forward with

this model.

The VIF for fiber is 6.952 and the VIF for potassium is 7.157, with both val-

ues indicating moderate-to-strong multicollinearity. At least the problem is local-

ized with these two variables only, as the other VIFs are reported at acceptably low

values.

How shall we deal with this problem? Some texts suggest choosing one of the

variables and eliminating it from the model. However, this should be viewed only

as a last resort, because the omitted variable may have something to teach us. As

we saw in Chapter 4, principal components can be a powerful method for using the

correlation structure in a large group of predictors to produce a smaller set of indepen-

dent components. Principal components analysis is a definite option here. Another

option might be to construct a user-defined composite, as discussed in Chapter 4.

Here, our user-defined composite will be as simple as possible, the mean of fiberz and

potassiumz, where the z-subscript notation indicates that the variables have been stan-

dardized. Thus, our composite W is defined as W = (fiberz + potassiumz)∕2. Note that

we need to standardize the variables involved in the composite, to avoid the possibil-

ity that the greater variability of one of the variables will overwhelm that of the other
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variable. For example, the standard deviation of fiber among all cereals is 2.38 grams,

while the standard deviation of potassium is 71.29 milligrams. (The grams/milligrams

scale difference is not at issue here. What is relevant is the difference in variability,

even on their respective scales.) Figure 9.11 illustrates the difference in variability.9

50 100 150 200 250 300

14121086420

0

Fiber

Potassium

Figure 9.11 Fiber and potassium have different variabilities, thus requiring standardization

before construction of user-defined composite.

We therefore proceed to perform the regression of nutritional rating on the fol-

lowing variables:

• Sugarsz

• Shelf 2

• W = (fiberz + potassiumz)∕2.

The results are provided in Table 9.13.

Note first that the multicollinearity problem seems to have been resolved, with

the VIF values all near 1. Note also, however, that the regression results are rather dis-

appointing, with the values of R2, R2
adj

, and s all underperforming the model results

found in Table 9.8, from the model, y = 𝛽0 + 𝛽1(sugars) + 𝛽2(fiber) + 𝛽4(shelf 2) +
𝜀, which did not even include the potassium variable.

What is going on here? The problem stems from the fact that the fiber variable

is a very good predictor of nutritional rating, especially when coupled with sugar

9Note that standardization by itself will not solve the multicollinearity issue. In fact, VIF values will not

change at all if the predictors are standardized.
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TABLE 9.13 Results from regression of rating on sugars, shelf 2, and the fiber/potassium
composite

content, as we shall see later on when we perform best subsets regression. Therefore,

using the fiber variable to form a composite with a variable that has weaker correla-

tion with rating dilutes the strength of fiber’s strong association with rating, and so

degrades the efficacy of the model.

Thus, reluctantly, we put aside this model (y = 𝛽0 + 𝛽1(sugarsz) +
𝛽4(shelf 2) + 𝛽5(W) + 𝜀). One possible alternative is to change the weights in

the composite, to increase the weight of fiber with respect to potassium. For

example, we could use W2 = (0.9 × fiberz + 0.1 × potassiumz). However, the model

performance would still be slightly below that of using fiber alone. Instead, the

analyst may be better advised to pursue principal components.

Now, depending on the task confronting the analyst, multicollinearity may not

in fact present a fatal defect. Weiss10 notes that multicollinearity “does not adversely

affect the ability of the sample regression equation to predict the response variable.”

He adds that multicollinearity does not significantly affect point estimates of the target

variable, confidence intervals for the mean response value, or prediction intervals for

a randomly selected response value. However, the data miner must therefore strictly

limit the use of a multicollinear model to estimation and prediction of the target vari-

able. Interpretation of the model would not be appropriate, because the individual

coefficients may not make sense, in the presence of multicollinearity.

10Weiss, Introductory Statistics, 9th edition, Pearson, 2010.
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9.8 VARIABLE SELECTION METHODS

To assist the data analyst in determining which variables should be included in a

multiple regression model, several different variable selection methods have been

developed, including

• forward selection;

• backward elimination;

• stepwise selection;

• best subsets.

These variable selection methods are essentially algorithms to help construct

the model with the optimal set of predictors.

9.8.1 The Partial F-Test

In order to discuss variable selection methods, we first need to learn about the

partial F-test. Suppose that we already have p variables in the model, x1, x2,… , xp,

and we are interested in whether one extra variable x∗ should be included in the

model or not. Recall earlier where we discussed the sequential sums of squares.

Here, we would calculate the extra (sequential) sum of squares from adding x∗ to

the model, given that x1, x2,… , xp are already in the model. Denote this quantity

by SSExtra = SS(x∗|x1, x2,… , xp). Now, this extra sum of squares is computed by

finding the regression sum of squares for the full model (including x1, x2,… , xp
and x∗), denoted SSFull = SS(x1, x2,… , xp, x

∗), and subtracting the regression

sum of squares from the reduced model (including only x1, x2,… , xp), denoted

SSReduced = SS(x1, x2,… , xp). In other words:

SSExtra = SSFull − SSReduced

that is,

SS(x∗|x1, x2,… , xp) = SS(x1, x2,… , xp, x
∗) − SS(x1, x2,… , xp)

The null hypothesis for the partial F-test is as follows:

H0: No, the SSExtra associated with x∗ does not contribute significantly to the

regression sum of squares for a model already containing x1, x2,… , xp.

Therefore, do not include x∗ in the model.

The alternative hypothesis is:

Ha: Yes, the SSExtra associated with x∗ does contribute significantly to the regres-

sion sum of squares for a model already containing x1, x2,… , xp. Therefore,

do include x∗ in the model.

The test statistic for the partial F-test is the following:

F(x∗|x1, x2,… , xp) =
SSExtra

MSEFull
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where MSEFull denotes the mean square error term from the full model, including

x1, x2,… , xp and x∗. This is known as the partial F-statistic for x∗. When the null

hypothesis is true, this test statistic follows an F1,n−p−2 distribution. We would there-

fore reject the null hypothesis when F(x∗|x1, x2,… , xp) is large, or when its associated

p-value is small.

An alternative to the partial F-test is the t-test. Now, an F-test with 1 and n −
p − 2 degrees of freedom is equivalent to a t-test with n − p − 2 degrees of freedom.

This is due to the distributional relationship that F1,n−p−2 = (tn−p−2)2. Thus, either the

F-test or the t-test may be performed. Similarly to our treatment of the t-test earlier

in the chapter, the hypotheses are given by

H0∶ 𝛽∗ = 0

Ha∶ 𝛽∗ ≠ 0

The associated models are

Under H0∶ y = 𝛽0 + 𝛽1x1 + · · · + 𝛽pxp + 𝜀

Under Ha∶ y = 𝛽0 + 𝛽1x1 + · · · + 𝛽pxp + 𝛽∗x∗ + 𝜀

Under the null hypothesis, the test statistic t = b∗

sb∗
follows a t distribution with n −

p − 2 degrees of freedom. Reject the null hypothesis when the two-tailed p-value,

P(|t| > |tobs|), is small.

Finally, we need to discuss the difference between sequential sums of squares,

and partial sums of squares. The sequential sums of squares are as described earlier in

the chapter. As each variable is entered into the model, the sequential sum of squares

represents the additional unique variability in the response explained by that variable,

after the variability accounted for by variables entered earlier in the model has been

extracted. That is, the ordering of the entry of the variables into the model is germane

to the sequential sums of squares.

However, ordering is not relevant to the partial sums of squares. For a partic-

ular variable, the partial sum of squares represents the additional unique variability

in the response explained by that variable, after the variability accounted for by all

the other variables in the model has been extracted. Table 9.14 shows the difference

between sequential and partial sums of squares, for a model with four predictors,

x1, x2, x3, x4.

TABLE 9.14 The difference between sequential SS and partial SS

Variable Sequential SS Partial SS

x1 SS(x1) SS(x1|x2, x3, x4)
x2 SS(x2|x1) SS(x2|x1, x3, x4)
x3 SS(x3|x1, x2) SS(x3|x1, x2, x4)
x4 SS(x4|x1, x2, x3) SS(x4|x1, x2, x3)
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9.8.2 The Forward Selection Procedure

The forward selection procedure starts with no variables in the model.

• Step 1. For the first variable to enter the model, select the predictor most highly

correlated with the target. (Without loss of generality, denote this variable x1.)

If the resulting model is not significant, then stop and report that no variables

are important predictors; otherwise, proceed to step 2. Note that the analyst may

choose the level of 𝛼; lower values make it more difficult to enter the model. A

common choice is 𝛼 = 0.05, but this is not set in stone.

• Step 2. For each remaining variable, compute the sequential F-statistic for that

variable, given the variables already in the model. For example, in this first

pass through the algorithm, these sequential F-statistics would be F(x2|x1),
F(x3|x1), and F(x4|x1). On the second pass through the algorithm, these might

be F(x3|x1, x2) and F(x4|x1, x2). Select the variable with the largest sequential

F-statistic.

• Step 3. For the variable selected in step 2, test for the significance of the sequen-

tial F-statistic. If the resulting model is not significant, then stop, and report

the current model without adding the variable from step 2. Otherwise, add the

variable from step 2 into the model and return to step 2.

9.8.3 The Backward Elimination Procedure

The backward elimination procedure begins with all the variables, or all of a

user-specified set of variables, in the model.

• Step 1. Perform the regression on the full model; that is, using all available

variables. For example, perhaps the full model has four variables, x1, x2, x3, x4.

• Step 2. For each variable in the current model, compute the partial F-statistic.

In the first pass through the algorithm, these would be F(x1|x2, x3, x4),
F(x2|x1, x3, x4), F(x3|x1, x2, x4), and F(x4|x1, x2, x3). Select the variable with

the smallest partial F-statistic. Denote this value Fmin.

• Step 3. Test for the significance of Fmin. If Fmin is not significant, then remove

the variable associated with Fmin from the model, and return to step 2. If Fmin
is significant, then stop the algorithm and report the current model. If this is

the first pass through the algorithm, then the current model is the full model.

If this is not the first pass, then the current model has been reduced by one or

more variables from the full model. Note that the analyst may choose the level

of 𝛼 needed to remove variables. Lower values make it more difficult to keep

variables in the model.

9.8.4 The Stepwise Procedure

The stepwise procedure represents a modification of the forward selection procedure.

A variable that has been entered into the model early in the forward selection process

may turn out to be nonsignificant, once other variables have been entered into the
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model. The stepwise procedure checks on this possibility, by performing at each step

a partial F-test, using the partial sum of squares, for each variable currently in the

model. If there is a variable in the model that is no longer significant, then the vari-

able with the smallest partial F-statistic is removed from the model. The procedure

terminates when no further variables can be entered or removed. The analyst may

choose both the level of 𝛼 required to enter the model, and the level of 𝛼′ needed to

remove variables, with 𝛼′ chosen to be somewhat large than 𝛼.

9.8.5 The Best Subsets Procedure

For data sets where the number of predictors is not too large, the best subsets pro-

cedure represents an attractive variable selection method. However, if there are more

than 30 or so predictors, then the best subsets method encounters a combinatorial

explosion, and becomes intractably slow.

The best subsets procedure works as follows:

• Step 1. The analyst specifies how many (k) models of each size he or she would

like reported, as well as the maximum number of predictors (p) the analyst

wants in the model.

• Step 2. All models of one predictor are built. Their R2, R2
adj

, Mallows’ Cp (see

below), and s values are calculated. The best k models are reported, based on

these measures.

• Step 3. Then all models of two predictors are built. Their R2, R2
adj

, Mallows’

Cp, and s values are calculated, and the best k models are reported.

• The procedure continues in this way until the maximum number of predictors

(p) is reached. The analyst then has a listing of the best models of each size, 1,

2, … , p, to assist in the selection of the best overall model.

9.8.6 The All-Possible-Subsets Procedure

The four methods of model selection we have discussed are essentially optimization

algorithms over a large sample space. Because of that, there is no guarantee that the

globally optimal model will be found; that is, there is no guarantee that these variable

selection algorithms will uncover the model with the lowest s, the highest R2
adj

, and so

on (Draper and Smith11; Kleinbaum, Kupper, Nizam, and Muller12). The only way

to ensure that the absolute best model has been found is simply to perform all the

possible regressions. Unfortunately, in data mining applications, there are usually so

many candidate predictor variables available that this method is simply not practica-

ble. Not counting the null model y = 𝛽0 + 𝜀, there are 2p − 1 possible models to be

built, using p predictors.

11Draper and Smith, Applied Regression Analysis, 3rd edition, Wiley Publishers, Hoboken, New Jersey,

1998.
12Kleinbaum, Kupper, Nizam, and Muller, Applied Regression Analysis and Multivariable Methods, 4th

edition, Cengage Learning, 2007.
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For small numbers of predictors, it is not a problem to construct all possible

regressions. For example, for p = 5 predictors, there are 25 − 1 = 31 possible models.

However, as the number of predictors starts to grow, the search space grows exponen-

tially. For instance, for p = 10 predictors, there are 210 − 1 = 1023 possible models,

while for p = 20 predictors, there are 220 − 1 = 1, 048, 575 possible models. Thus,

for most data mining applications, in which there may be hundreds of predictors, the

all-possible-regressions procedure is not applicable. Therefore, the data miner may

be inclined to turn to one of the four variable selection procedures discussed above.

Even though there is no guarantee that the globally best model is found, these methods

usually provide a useful set of models, which can provide positive results. The analyst

can then adopt these models as starting points, and apply tweaks and modifications

to coax the best available performance out of them.

9.9 GAS MILEAGE DATA SET

At this point, it may be helpful to turn to a new data set to illustrate the nuts and bolts

of variable selection methods. We shall use the Gas Mileage data set,13 where the

target variable MPG (miles per gallon) is estimated using four predictors: cab space,

horsepower, top speed, and weight. Let us explore this data set a bit. Figure 9.12

shows scatter plots of the target MPG with each of the predictors. The relationship

between MPG and horsepower does not appear to be linear. Using the bulging rule
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Figure 9.12 Scatter plots of MPG with each predictor. Some non-linearity.

13From the DASL web site (Data and Story Library), http://lib.stat.cmu.edu/DASL/.

http://lib.stat.cmu.edu/DASL
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from Chapter 8, we therefore take the ln of each variable. The resulting scatter plots,

shown in Figure 9.13, show improved linearity. We therefore proceed to perform lin-

ear regression of ln MPG on cab space, ln HP, top speed, and weight.
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Figure 9.13 Scatter plots of ln MPG with each predictor (including ln HP). Improved

linearity.

9.10 AN APPLICATION OF VARIABLE
SELECTION METHODS

We would like the most parsimonious model that does not leave out any significant

predictors. We shall apply the variable selection methods described above. We select

the following commonly used thresholds of significance for variables entering and

leaving the model: 𝛼 = 0.05 and 𝛼′ = 0.10.

9.10.1 Forward Selection Procedure Applied to the Gas
Mileage Data Set

Table 9.15 shows the results for the forward selection method. We begin with no

variables in the model. Then the variable most strongly correlated with ln MPG is

selected, and, if significant, entered into the model. This variable is weight, which

has the highest correlation with ln MPG, among the predictors. This is shown in the

upper left of Table 9.15, showing weight as the first variable entered.

Then the sequential F-tests are performed, such as F(ln HP|weight),
F(cab space|weight), and so on. It turns out that the highest sequential F-statistic is
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TABLE 9.15 Forward selection results

Variables Entered/Removeda

Variables EnteredModel

1

2

a Dependent variable: In MPG.

a Dependent Variable: In MPG.

Variables Removed Method

.

.

Forward (Criterion: Probability-of-F-to-enter <= 0.050).

Forward (Criterion: Probability-of-F-to-enter <= 0.050).

Weight

In HP

Model Summary

Model R R Square Std. Error of the Estimate

1

2

1

2

0.949(a)

0.962(b)

0.901

0.925

0.899

0.923

0.096592

0.084374

a Predictors: (Constant), Weight.

b Predictors: (Constant), Weight, In HP.

b Predictors: (Constant), Weight.

c Predictors: (Constant), Weight, In HP.

ANOVAa

Model Sum of Squares df Mean Square F Sig.

Regression

Residual

Total

Regression

Residual

Total

6.757

0.746

7.504

6.942

0.562

7.504

1

80

81

2

79

81

6.757

0.009

724.268 0.000(b)

3.471 487.540 0.000(c)

0.007

Adjusted R Square

given by the significance test of F(ln HP|weight), so that the variable ln HP becomes

the second variable entered into the model, as shown in Table 9.15. Once again, the

sequential F-tests are performed, but no further significant variables were found.

Thus, the forward selection method prefers the following model:

ŷ = b0 + b1weight + b2 ln HP

Table 9.15 contains the ANOVA tables for the two models selected by the forward

selection procedure. We may use these ANOVA results to calculate the sequential

F-statistics. Model 1 represents the model with weight as the only predictor. Model

2 represents the model with both weight and ln HP entered as predictors.

As SSExtra = SSFull − SSReduced, we have

SSln HP|weight = SSweight,ln HP − SSweight
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From Table 9.15, we have

• SSsugars,fiber = 6.942, and

• SSsugars = 6.757, giving us:

• SSfiber|sugars = SSsugars,fiber − SSsugars = 6.942–6.757 = 0.185

The test statistic for the partial (or, in this case, sequential) F-test is the

following:

F(ln HP|weight) =
SSln HP|weight

MSEweight,ln HP

From Table 9.15, we have

• MSEweight,ln HP = 0.007, giving us:

• F(ln HP|weight) = SSln HP|weight

MSEweight,ln HP
= 0.185

0.007
= 26.4

With a sample size of 82, and p= 2 parameters in the model, this test statistic

follows an F1,n−p−2 = F1,79 distribution. The p-value for this test statistic is approx-

imately zero, thereby rejecting the null hypothesis that fiber should not be included

after sugars.

9.10.2 Backward Elimination Procedure Applied to the Gas
Mileage Data Set

In the backward elimination procedure, we begin with all of the variables in the

model. The partial F-statistic is then calculated for each variable in the model

(e.g., F(cab space|weight, ln HP, top speed). The variable with the smallest

partial F-statistic, Fmin, is examined, which in this case is cab space. If Fmin is not

significant, which is the case here, then the variable is dropped from the model. Cab
space is the first variable to be removed, as is shown in Table 9.16. On the next

pass, the variable with the smallest partial F-statistic is top speed, which again is not

significant. Thus, top speed becomes the second variable omitted from the model.

No other variables are removed from the model, so that the backward elimination

method prefers the same model as the forward selection method.

9.10.3 The Stepwise Selection Procedure Applied to the Gas
Mileage Data Set

The stepwise selection procedure is a modification of the forward selection procedure,

where the algorithm checks at each step whether all variables currently in the model

are still significant. In this example, each variable that had been entered remained

significant when the other variables were also entered. Thus, for this example, the

results were the same as for the forward selection procedure, with the same model

summaries as shown in Table 9.15.
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TABLE 9.16 Backward elimination results

Variables Entered/Removeda

Variables EnteredModel

1

2

3

1

2

3

a
 Dependent variable: In MPG.

b
 All requested variables entered.

Variables Removed Method

Backward (criterion: Probability of F-to-remove >= 0.100).

Enter

Backward (criterion: Probability of F-to-remove >= 0.100).

In HP, Cab Space, Weight, Top Speed(b)

Top speed

Cab space

Model Summary

Model R R Square Std. Error of the Estimate

1

2

3

0.963(b)

0.963(a)

0.962(c)

0.927

0.927

0.925

0.924

0.924

0.923

0.083654

0.084165

0.084374

a
 Predictors: (Constant), In HP, Cab Space, Weight, Top Speed.

b
 Predictors: (Constant), In HP, Cab Space, Weight, Top Speed.

b
 Predictors: (Constant), In HP, Weight, Top Speed.

c
 Predictors: (Constant), In HP, Weight.

a
 Dependent variable: In MPG.

c
 Predictors: (Constant), In HP, Weight, Top Speed.

d
 Predictors: (Constant), In HP, Weight.

ANOVAa

Model Sum of Squares df Mean Square F Sig.

Regression

Residual

Total

Regression

Residual

Total

Regression

Residual

Total

6.958

0.545

7.504

6.958

0.546

7.504

6.942

0.562

7.504

4

77

81

3

78

81

2

79

81

1.740

0.007

245.580 0.000(b)

2.319 331.433

487.540

0.000(c)

0.000(d)

0.007

3.471

0.007

Adjusted R Square

.

.

.

9.10.4 Best Subsets Procedure Applied to the Gas Mileage
Data Set

Table 9.17 provides the results from Minitab’s application of the best subsets pro-

cedure on the gas mileage data set. The predictor variable names are given on the

upper right, formatted vertically. Each horizontal line in the table represents a sepa-

rate model, with the “X”s shown under the predictors included in a particular model.

The best subsets procedure reports the two best models with p= 1 predictor, the two

best models with p= 2 models, and so on. Thus, the first model has only weight; the

second model has only ln HP; the third model has ln HP and weight; the fourth model

has top speed and weight; and so on.
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TABLE 9.17 Best subsets results for Gas Mileage data set (“best” model highlighed)

Four model selection criteria are reported for each model: R2, R2
adj

, Mallows’

Cp, and s.

9.10.5 Mallows’ Cp Statistic

We now discuss the Cp statistic, developed by C. L. Mallows14. Mallows’ Cp statistic

takes the form:

Cp =
SSEp

MSEfull

− [n − 2(p + 1)]

where p represents the number of predictors in the current (working) model,

SSEp represents the error sum of squares of the model with p predictors, and

MSEfull represents the MSE of the full model; that is, the model with all predictors

entered.

For a model that fits well, it can be shown15 that E(Cp) = p + 1. Thus, we would

expect the value of Cp for a well-fitting model to take a value not far from p + 1.

However, models that show a considerable lack of fit will take values of Cp above

(and sometimes far above) p + 1. The full model, with all variables entered, always

has Cp = p + 1, but is often not the best model.

It is useful to plot the value of Mallows’ Cp against the number of predictors,

p. Figure 9.14 shows such a plot for the gas mileage data set regression. (To increase

granularity, the model with Cp = 95.1 is omitted.) One heuristic for choosing the best

model is to select the model where the value of Cp first approaches or crosses the line

Cp = p + 1, as p increases.

14Mallows, Some comments on Cp, Technometrics, Volume 15, pages 661–675, 1973.

15Draper and Smith, Applied Regression Analysis, 3rd edition, Wiley Publishers, Hoboken, New Jersey,

1998.
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Figure 9.14 A plot of Mallows’ Cp against the number of predictors, p, can help select the

best model.

Consider Figure 9.14. However, the general trend for the values of Cp is to fall

as p increases, as can be seen from Figure 9.17. As we reach p = 2, we have Cp = 3.4,

which is approaching the line Cp = p + 1. This represents the model chosen by the

other three variable selection methods.

Finally, when we reach p = 3, we have, for one of the models, Cp = 3.1, which

is below the line Cp = p + 1. Therefore, the Mallows’ Cp heuristic would be to select

this model as the working model. This model contains ln HP, top speed, and weight
as predictors.

Thus, we have two candidate working models:

Model A∶ ŷ = b0 + b1 weight + b2 ln HP

Model B∶ ŷ = b0 + b1weight + b2 ln HP + b3 top speed

Model A is supported by forward selection, backward elimination, and stepwise, and

was nearly favored by best subsets. Model B is preferred by best subsets, but barely.

Let us mention that one need not report only one model as a final model. Two or

three models may be carried forward, and input sought from managers about which

model may be most ameliorative of the business or research problem. However, it is

often convenient to have one “working model” selected, because of the complexity

of model building in the multivariate environment. However, recall the principal of

parsimony, which states All things being equal, choose the simpler model. Because

of parsimony, and because Model A did so well with most of the variable selection

methods, it is recommended that we consider Model A to be our working model. The

regression results for Model A are shown in Table 9.18.

Checking for the regression assumptions, each of the graphs in Figure 9.15

shows an outlier, the Subaru Loyale, which got lower gas mileage than expected,

given its predictor values. Table 9.19 shows the regression results when this outlier is
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TABLE 9.18 Regression results for model chosen by variable selection criteria

1
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Figure 9.15 Outlier uncovered.

omitted. The precision of the regression is improved; for example, the standard error

of the estimate, s, has decreased by 6.6%.

Figure 9.16 shows the plots for validation of the regression assumptions. With

some slight right-skewness in the residuals, and some curvature in the residuals ver-

sus fitted values, these are not as tight as we might wish; in the exercises, we will
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TABLE 9.19 Regression results improved a bit with outlier removed

1
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Figure 9.16 Regression assumptions.

try to deal with these issues. However, we are on the whole satisfied that our regres-

sion model provides a decent summary of the linear relationship between ln MPG

and the predictors. Nevertheless, there still remains the problem of moderate mul-

ticollinearity, as shown by the VIF values close to 5 for the predictors. Thus, we

now turn to a method made to deal with multicollinearity: principal components

analysis.
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9.11 USING THE PRINCIPAL COMPONENTS
AS PREDICTORS IN MULTIPLE REGRESSION

Principal components16 may be used as predictors in a multiple regression model.

Each record has a component value for each principal component, as shown in the

rightmost four columns in Table 9.20. These component values may be used as pre-

dictors in a regression model, or, indeed, any analytical model.

First, the predictors from the original data set are all standardized, using

z-scores. Then principal components analysis is performed on the standardized

predictors, with varimax rotation. The variance-explained results are shown in

Table 9.21. The varimax-rotated solution has nearly attained 100% of variance

explained by three components. We therefore extract three components, to be used

as predictors for our regression model.17

Table 9.22 shows the unrotated and rotated component weights, with weights

less than 0.5 hidden, for clarity. Brief component profiles for the rotated solution are

as follows:

• Component 1: Muscle. This component combines top speed and horsepower.

• Component 2: Roominess. The only variable is cab space.

• Component 3: Weight. The only variable is weight.

Regression of ln MPG on the three principal components is performed, with

the results shown in Table 9.23 and the residual plots shown in Figure 9.17. Note that

the multicollinearity problem has been solved, because the VIF statistics all equal

a perfect 1.0. However, the normal probability plot of the residuals shows concave

curvature, indicating right-skewness. We therefore apply the following Box–Cox

transformation to MPG, to reduce the skewness:

MPGBC 0.75 = (MPG0.75 − 1)
0.75

The residual plots for the resulting regression of MPGBC 0.75 on the principal com-

ponents are shown in Figure 9.18. The skewness has mostly been dealt with. These

plots are not perfect. Specifically, there appears to be a systematic difference for the

set of vehicles near the end of the data set in observation order. A glance at the data

set indicates these are luxury cars, such as a Rolls–Royce and a Jaguar, which may

follow a somewhat different gas mileage model. Overall, we find the plots indicate

broad validation of the regression assumptions. Remember, in the world of dirty data,

perfect validation of the assumptions may be elusive.

16Principal components analysis was covered in Chapter 5.
17In the exercises, we confirm that the four criteria for selecting the number of components can live with

extracting three components, although an argument can be made for extracting two instead.
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TABLE 9.22 Component weights, for the unrotated and rotated solutions

Component Matrixa Rotated Component Matrixa

Component Component

1 2 3 4 1 2 3 4

Horsepower_z

Top Speed_z

Weight_z

Cab Space_z

Horsepower_z

Top Speed_z

Weight_z

Cab Space_z

0.984

0.921

0.906

0.958

0.969

0.892

0.988

0.517 0.809

Extraction method: Principal component 

analysis.

Extraction method: Principal component analysis.

Rotation method: Varimax with Kaiser

normalization.a Four components extracted.
a Rotation converged in five iterations.

TABLE 9.23 Regression using principal components solves the multicollinearity problem

The regression results for regression of MPGBC 0.75 on the principal compo-

nents are shown in Table 9.24. Note the following:

• Multicollinearity remains vanquished, with all VIF= 1.0.

• R2 = 92.1%, not quite as good as the 93.5% for the model not accounting for

multicollinearity.

• Note the group of last four unusual observations, all high leverage points, con-

sists of a Mercedes, a Jaguar, a BMW, and a Rolls–Royce. The Rolls–Royce

is the most extreme outlier.

In the exercises, we invite the analyst to further improve this model, either by

tweaking the Box–Cox transformation, or through an indicator variable for the luxury

cars, or some other means.
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Residual plots for In MPG
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Figure 9.17 Normal probability plot shows skewness.
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TABLE 9.24 Regression of MPGBC 0.75 on the principal components

THE R ZONE

# Input and prepare Cereals data

cereal <- read.csv(file = "C:/… /cereals.txt",

stringsAsFactors=TRUE,

header=TRUE,

sep="\t")

which(is.na(cereal$Sugars))

# Record 58 has missing Sugars value

cereal <- cereal[-58,]

dat <- data.frame(Rating = cereal$Rating,

Sugars = cereal$Sugars,

Fiber = cereal$Fiber)
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# Three-Variable Scatterplot

library(scatterplot3d)

# Color by Rating

rg <- colorRampPalette(c("red",

"green"))(76)

sp <- scatterplot3d(z=sort(cereal$Rating),

y=cereal$Sugars,

x=cereal$Fiber,

color=rg,

pch = 16,

xlab = "Fiber",

ylab = "Sugars",

zlab = "Rating",

main = "3D Scatterplot")
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# Individual Variable Scatter Plots of Rating vs. Sugars and Fiber

par(mfrow=c(1,2),

mar = c(4.5,4,3,3),

oma = c(0,1,0,0))

lm91 <- lm(Rating ∼
Sugars,

data = cereal)

lm92 <- lm(Rating ∼
Fiber,

data = cereal)

plot(Rating ∼ Sugars,

data = cereal,

pch = 16,

col = "red",

ylab = "Rating")

abline(lm91, col = "blue")

plot(Rating∼Fiber, data= cereal, pch= 16, col= "red")

abline(lm92, col = "blue")

# Reset plot area

par(mfrow=c(1,1))
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# Multiple regression: <Insert carriage return.> # Output, t-Tests, F-Tests

mreg1 <- lm(Rating ∼
Sugars + Fiber,

data = cereal)

summary(mreg1)

# t-tests are in the

# Coefficients table

# F-test: bottom row

# of the output

ma1 <- anova(mreg1)

ma1

# SSR is broken up

# between predictors

# Confidence Intervals

# CI for Beta coefficients

confint(mreg1, level =0.95)

# Confidence Interval

predict(mreg1, newdata =
data.frame(Sugars = 5, Fiber = 5),

interval = c("confidence"))

# Prediction Interval

predict(mreg1, newdata =
data.frame(Sugars = 5, Fiber = 5),

interval = c("prediction"))

# Dotplot of Rating by Shelf

# Create indicator variables

cereal$shelf1 <- ifelse(cereal$Shelf==1,

1, 0)

cereal$shelf2 <- ifelse(cereal$Shelf==2,

1, 0)

stripchart(Rating∼Shelf,

data = cereal,

method = "stack",

pch = 1,

col=c("green", "blue", "red"),

main = "Rating by Shelf",

offset=0.5,

ylab = "Shelf")

20 40

1
2

3

60 80

Rating 

S
h
e
lf

Rating by shelf



9.11 USING THE PRINCIPAL COMPONENTS AS PREDICTORS IN MULTIPLE REGRESSION 287

# Regression including Shelf effect

# All shelves

mreg2 <- lm(Rating ∼
shelf1 + shelf2,

data = cereal)

summary(mreg2)

anova(mreg2)

# One shelf

mreg3 <- lm(Rating ∼
Sugars + Fiber +
shelf1 + shelf2,

data = cereal)

summary(mreg3)

# 3D scatterplot with groups

sp <- scatterplot3d(z=
sort(cereal$Rating),

y=cereal$Sugars, x=cereal$Fiber,

color=cereal$Shelf, pch = 16,

xlab = "Fiber", ylab = "Sugars",

zlab = "Rating",

main = "3D Scatterplot")
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# Sequential SS

mreg4.1 <- lm(Rating ∼
Sugars + Fiber + shelf2,

data = cereal)

anova(mreg4.1)

mreg4.2 <- lm(Rating ∼
shelf1 + shelf2 +
Sugars + Fiber,

data = cereal)

anova(mreg4.2)
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# Multicollinearity

datam <- matrix(c(cereal$Fiber,

cereal$Sugars,

cereal$shelf2),

ncol = 3)

colnames(datam)<- c("Fiber",

"Sugars", "Shelf2")

cor(datam)

pairs(∼Sugars+Fiber+Potass,

data = cereal)

# VIFs

mreg5 <- lm(Rating ∼ Sugars +
Fiber + shelf2 + Potass,

data = cereal)

library(car)

vif(mreg5)
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# Gas mileage data example

# Read in Gas data

gas <- read.csv(file =
"C:/… /gasmilage.csv",

stringsAsFactors=TRUE,

header=TRUE)

gas$"lnMPG" <-

log(gas$MPG)

gas$"lnHP" <-

log(gas$HP)

gas1 <- gas[,c(7, 2, 8, 5, 6)]

names(gas1)

pairs(gas1[,1]∼gas1[,2]+
gas1[,3]+gas1[,4]+gas1[,5],

labels = names(gas1),

cex.labels = 1)
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# Model Selection: Forward

library(MASS)

# Declare empty model

mreg7.empty <- lm(lnMPG ∼
1, data = gas1)

stepF1 <- add1(mreg7.empty,

scope = gas1[,-1],

test = "F", trace = TRUE)

mreg7.empty2 <-

lm(lnMPG ∼ WT,

data = gas1)

stepF2 <-

add1(mreg7.empty2,

scope = gas1[,-1],

test = "F", trace = TRUE)

mreg7.empty3 <-

lm(lnMPG ∼ WT+lnHP,

data = gas1)

stepF3<-

add1(mreg7.empty3,

scope = gas1[,-1],

test = "F", trace = TRUE)

# Model Selection: Backward

# Declare full model

mreg7.full <- lm(lnMPG ∼ .,

data = gas1)

stepB1 <- drop1(mreg7.full,

scope = gas1[,-1],

test = "F",

trace = TRUE)

mreg7.full2 <- lm(lnMPG ∼
lnHP+WT,

data = gas1)

stepB2 <- drop1(mreg7.full2,

scope = gas1[,-c(1,4)],

test = "F",

trace = TRUE)
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# Model Selection: Stepwise

library(rms)

mreg8 <- ols(lnMPG ∼
VOL+lnHP+SP+WT,

data = gas1)

stepS <- fastbw(mreg8,

rule="p")

# Your model is

# lnHP + WT

# Model Selection: Best Subsets

library(leaps)

stepBS <- regsubsets(x=lnMPG ∼
WT+SP+lnHP+VOL,

data = gas,

nbest = 2)

sum.stepBS <- summary(stepBS)

sum.stepBS$which

sum.stepBS$rsq

sum.stepBS$cp

plot(c(1,2,2,3,3,4),

sum.stepBS$cp[-2],

main = "Cp by p",

ylab = "Cp",

xlab = "p",

col = "red",

pch = 16)

abline(a = 1, b = 1, lwd = 2)

# Final model without outlier

which(gas$MAKE.MODEL==

"Subaru Loyale")

# Record 29 is an outlier

gas2 <- gas1[-29,]

mreg.fin2 <- lm(lnMPG ∼
lnHP+WT,

data = gas2)

summary(mreg.fin2)

plot(mreg.fin2)
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# Display final model

mreg.fin <- lm(lnMPG ∼
lnHP+WT,

data = gas1)

summary(mreg.fin)

par(mfrow=c(2,2))

plot(mreg.fin)

# Final model without outlier

which(gas$MAKE.MODEL==
"Subaru Loyale")

# Record 29 is an outlier

gas2 <- gas1[-29,]

mreg.fin2 <- lm(lnMPG ∼
lnHP+WT,

data = gas2)

summary(mreg.fin2)

plot(mreg.fin2)
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# Regression on Principal Components: Preparation Step

# Standardize all data

gas$CabSpace_z <- (gas$VOL - mean(gas$VOL))/sd(gas$VOL)

gas$Horsepower_z <- (gas$HP - mean(gas$HP))/sd(gas$HP)

gas$TopSpeed_z <- (gas$SP - mean(gas$SP))/sd(gas$SP)

gas$Weight_z <- (gas$WT - mean(gas$WT))/sd(gas$WT)

# Create new dataset

gas3 <- gas[,-c(1:3,5:8)]

names(gas3)
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# Regression on Principal Components: PCA Step

# Run PCA on predictors

library(psych)

pca1 <- principal(gas3[,-1],

rotate="varimax",

nfactors = 3)

pca1$loadings

# Regression on Principal Components: Regression Step

gas3[,c(6:8)] <- pca1$scores

gas3$lnMPG <-

log(gas3$MPG)

# Regression on components

mreg11 <- lm(lnMPG ∼
V6+V7+V8, data = gas3)

summary(mreg11)

# Plot diagnostics

par(mfrow=c(2,2))

plot(mreg11) Residuals vs fitted

Residuals vs leverageScale-location
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EXERCISES

CLARIFYING THE CONCEPTS

1. Indicate whether the following statements are true or false. If the statement is false, alter

it so that the statement becomes true.

a. If we would like to approximate the relationship between a response and two contin-

uous predictors, we would need a plane.

b. In linear regression, while the response variable is typically continuous, it may be

categorical as well.

c. In general, for a multiple regression with m predictor variables, we would interpret

coefficient bi as follows: “the estimated change in the response variable for a unit

increase in variable xi is bi.”

d. In multiple regression, the residual is represented by the vertical distance between the

data point and the regression plane or hyperplane.

e. Whenever a new predictor variable is added to the model, the value of R2 always goes

up.

f. The alternative hypothesis in the F-test for the overall regression asserts that the regres-

sion coefficients all differ from zero.

g. The standard error of the estimate is a valid measure of the usefulness of the regres-

sion, without reference to an inferential model (i.e., the assumptions need not be

relevant).

h. If we were to use only the categorical variables as predictors, then we would have to

use analysis of variance and could not use linear regression.

i. For use in regression, a categorical variable with k categories must be transformed into

a set of k indicator variables.

j. The first sequential sum of squares is exactly the value for SSR from the simple linear

regression of the response on the first predictor.

k. The VIF has a minimum of zero, but no upper limit.

l. A variable that has been entered into the model early in the forward selection

process will remain significant, once other variables have been entered into the

model.

m. The variable selection criteria for choosing the best model account for the multi-

collinearity among the predictors.

n. The VIFs for principal components using varimax rotation always equal 1.0.

2. Clearly explain why s and R2
adj

are preferable to R2 as measures for model building.

3. Explain the difference between the t-test and the F-test for assessing the significance of

the predictors.

http://CRAN.R-project.org/package=leaps
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4. Construct indicator variables for the categorical variable class, which takes four values,

freshman, sophomore, junior, and senior.

5. When using indicator variables, explain the meaning and interpretation of the indicator

variable coefficients, graphically and numerically.

6. Discuss the concept of the level of significance (𝛼). At what value should it be set? Who

should decide the value of 𝛼? What if the observed p-value is close to 𝛼? Describe a situa-

tion where a particular p-value will lead to two different conclusions, given two different

values for 𝛼.

7. Explain what it means when R2
adj

is much less than R2.

8. Explain the difference between the sequential sums of squares and the partial sums of

squares. For which procedures do we need these statistics?

9. Explain some of the drawbacks of a set of predictors with high multicollinearity.

10. Which statistics report the presence of multicollinearity in a set of predictors? Explain,

using the formula, how this statistic works. Also explain the effect that large and small

values of this statistic will have on the standard error of the coefficient.

11. Compare and contrast the effects that multicollinearity has on the point and intervals esti-

mates of the response versus the values of the predictor coefficients.

12. Describe the differences and similarities among the forward selection procedure, the back-

ward elimination procedure, and the stepwise procedure.

13. Describe how the best subsets procedure works. Why not always use the best subsets

procedure?

14. Describe the behavior of Mallows’ Cp statistic, including the heuristic for choosing the

best model.

15. Suppose we wished to limit the number of predictors in the regression model to a lesser

number than those obtained using the default settings in the variable selection criteria.

How should we alter each of the selection criteria? Now, suppose we wished to increase

the number of predictors. How then should we alter each of the selection criteria?

16. Explain the circumstances under which the value for R2 would reach 100%. Now explain

how the p-value for any test statistic could reach zero.

WORKING WITH THE DATA

For Exercises 17–27, consider the multiple regression output from SPSS in Table 9.25, using

the nutrition data set, found on the book web site, www.DataMiningConsultant.com.

17. What is the response? What are the predictors?

18. What is the conclusion regarding the significance of the overall regression? How do you

know? Does this mean that all of the predictors are important? Explain.

19. What is the typical error in prediction? (Hint: This may take a bit of digging.)

20. How many foods are included in the sample?

21. How are we to interpret the value of b0, the coefficient for the constant term? Is this

coefficient significantly different from zero? Explain how this makes sense.

http://www.DataMiningConsultant.com
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TABLE 9.25 Regression results for Exercises 17–27

Coefficientsa

−0.323 0.768 −0.421 0.674

4.274 0.088 0.080 48.330 0.000 0.463 2.160

8.769 0.023 0.535 375.923 0.000 0.621 1.611

0.006 0.007 0.001 0.897 0.370 0.535 1.868

3.858 0.013 0.558 293.754 0.000 0.349 2.864

−1.584 0.305 −0.009 −5.187 0.000 0.404 2.475

0.005 0.001 0.006 4.032 0.000 0.557 1.796

(Constant)

PROTEIN

FAT

CHOLEST

CARBO

IRON

SODIUM

Model

1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Tolerance VIF

Collinearity Statistics

a Dependent variable: CALORIES.

ANOVAb

2.83E+08 6 47,104,854.46 132,263.1 .000a

339,762.5 954 356.145

2.83E+08 960

Regression

Residual

Total

Model

1

Sum of
Squares df Mean Square F Sig.

a Predictors: (Constant), SODIUM, CHOLEST, IRON, FAT, PROTEIN, CARBO.

b Dependent variable: CALORIES.

22. Which of the predictors probably does not belong in the model? Explain how you know

this. What might be your next step after viewing these results?

23. Suppose we omit cholesterol from the model and rerun the regression. Explain what will

happen to the value of R2.

24. Which predictor is negatively associated with the response? Explain how you know this.

25. Discuss the presence of multicollinearity. Evaluate the strength of evidence for the pres-

ence of multicollinearity. On the basis of this, should we turn to principal components

analysis?

26. Clearly and completely express the interpretation for the coefficient for sodium.

27. Suppose a certain food was predicted to have 60 calories fewer than it actually has, based

on its content of the predictor variables. Would this be considered unusual? Explain specif-

ically how you would determine this.

For Exercises 28–29, next consider the multiple regression output from SPSS in Table 9.26.

Three predictor variables have been added to the analysis in Exercises 17–27: saturated fat,

monounsaturated fat, and polyunsaturated fat.

28. Evaluate the strength of evidence for the presence of multicollinearity.

29. On the basis of this, should we turn to principal components analysis?
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TABLE 9.26 Regression results for Exercises 28–29

Coefficientsa

Unstandardized

coefficients

Standardized

Coefficients

Collinearity

Statistics

Model B Std. Error Beta t Sig. Tolerance VIF

1 (Constant) −0.158 0.772 −0.205 0.838

PROTEIN 4.278 0.088 0.080 48.359 0.000 0.457 2.191

FAT 9.576 1.061 0.585 9.023 0.000 0.000 3379.867

CHOLEST 1.539E−02 0.008 0.003 1.977 0.048 0.420 2.382

CARBO 3.860 0.014 0.558 285.669 0.000 0.325 3.073

IRON −1.672 0.314 −0.010 −5.328 0.000 0.377 2.649

SODIUM 5.183E−03 0.001 0.006 3.992 0.000 0.555 1.803

SAT_FAT −1.011 1.143 −0.020 −0.884 0.377 0.002 412.066

MONUNSAT −0.974 1.106 −0.025 −0.881 0.379 0.002 660.375

POLUNSAT −0.600 1.111 −0.013 −0.541 0.589 0.002 448.447

aDependent variable: CALORIES.

For Exercises 30–37, consider the multiple regression output from SPSS in Table 9.27, using

the New York data set, found on the book web site, www.DataMiningConsultant.com. The data

set contains demographic information about a set of towns in New York state. The response

“MALE_FEM” is the number of males in the town for every 100 females. The predictors are

the percentage under the age of 18, the percentage between 18 and 64, and the percentage over

64 living in the town (all expressed in percents such as “57.0”), along with the town’s total

population.

30. Note that the variable PCT_O64 was excluded. Explain why this variable was automati-

cally excluded from the analysis by the software. (Hint: Consider the analogous case of

using too many indicator variables to define a particular categorical variable.)

31. What is the conclusion regarding the significance of the overall regression?

32. What is the typical error in prediction?

33. How many towns are included in the sample?

34. Which of the predictors probably does not belong in the model? Explain how you know

this. What might be your next step after viewing these results?

35. Suppose we omit TOT_POP from the model and rerun the regression. Explain what will

happen to the value of R2.

36. Discuss the presence of multicollinearity. Evaluate the strength of evidence for the pres-

ence of multicollinearity. On the basis of this, should we turn to principal components

analysis?

37. Clearly and completely express the interpretation for the coefficient for PCT_U18. Dis-

cuss whether this makes sense.

http://www.DataMiningConsultant.com
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TABLE 9.27 Regression results for Exercises 30–37

Coefficientsa

−63.790 16.855 −3.785 0.000

−1.90E-06 0.000 −0.017 −0.506 0.613 1.000 1.000

0.660 0.249 0.105 2.657 0.008 0.700 1.428

2.250 0.208 0.427 10.830 0.000 0.700 1.428

(Constant)

TOT_POP

PCT_U18

PC_18_64

Model

1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig. Tolerance VIF

Collinearity Statistics

a Dependent variable: MALE_FEM.

Excluded Variablesb

−0.338a −0.103 0.918 −0.004 1.009E-04 9907.839 7.906E-05PCT_O64

Model

1

Beta In t Sig.
Partial

Correlation Tolerance VIF
Minimum
Tolerance

Collinearity Statistics

a Predictors in the Model: (Constant), PC_18_64, TOT_POP, PCT_U18.
b Dependent variable: MALE_FEM.

ANOVAb

100,298.8 3 33,432.919 44.213 0.000a

594,361.3 786 756.185

694,660.1 789

Regression

Residual

Total

Model

1

Sum of
Squares df Mean Square F Sig.

a Predictors: (Constant), PC_18_64, TOT_POP, PCT_U18.
b Dependent variable: MALE_FEM.

HANDS-ON ANALYSIS

For Exercises 38–41, use the nutrition data set, found on the book web site, www.DataMining-

Consultant.com.

38. Build the best multiple regression model you can for the purposes of predicting calories,

using all the other variables as the predictors. Do not worry about whether the predictor

coefficients are stable or not. Compare and contrast the results from the forward selection,

backward elimination, and stepwise variable selection procedures.

39. Apply the best subsets procedure, and compare against the previous methods.

40. (Extra credit). Write a script that will perform all possible regressions. Did the variable

selection algorithms find the best regression?

41. Next, build the best multiple regression model you can for the purposes both of predicting

the response and of profiling the predictors’ individual relationship with the response.

Make sure you account for multicollinearity.

http://www.DataMining-Consultant.com
http://www.DataMining-Consultant.com
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For Exercises 42–44, use the New York data set, found on the book web site.

42. Build the best multiple regression model you can for the purposes of predicting the

response, using the gender ratio as the response, and all the other variables as the

predictors. Compare and contrast the results from the forward selection, backward

elimination, and stepwise variable selection procedures.

43. Apply the best subsets procedure, and compare against the previous methods.

44. Perform all possible regressions. Did the variable selection algorithms find the best regres-

sion?

For Exercises 45–49, use the crash data set, found on the book web site.

45. Build the best multiple regression model you can for the purposes of predicting head injury

severity, using all the other variables as the predictors.

46. Determine which variables must be made into indicator variables.

47. Determine which variables might be superfluous.

48. Build two parallel models, one where we account for multicollinearity, and another where

we do not. For which purposes may each of these models be used?

49. Continuing with the crash data set, combine the four injury measurement variables into

a single variable, defending your choice of combination function. Build the best multiple

regression model you can for the purposes of predicting injury severity, using all the other

variables as the predictors. Build two parallel models, one where we account for multi-

collinearity, and another where we do not. For which purposes may each of these models

be used?

For Exercises 50–51, see if you can improve on the regression model of ln MPG on ln HP and

weight.

50. Use a Box–Cox transformation to try to eliminate the skewness in the normal probability

plot.

51. Do you see some curvature in the residuals versus fitted values plot? Produce a plot of the

residuals against each of the predictors. Any curvature? Add a quadratic term of one of

the predictors (e.g., weight2) to the model, and see if this helps.

52. Using the four criteria from Chapter 5, determine the best number of principal components

to extract for the gas mileage data.

53. Take a shot at improving the regression of MPGBC 0.75 on the principal components. For

example, you may wish to tweak the Box–Cox transformation, or you may wish to use an

indicator variable for the luxury cars. Using whatever means you can bring to bear, obtain

your best model that deals with multicollinearity and validates the regression assumptions.
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10.1 CLASSIFICATION TASK

Perhaps the most common data mining task is that of classification. Examples of

classification tasks may be found in nearly every field of endeavor:

• Banking: Determining whether a mortgage application is a good or bad credit

risk, or whether a particular credit card transaction is fraudulent.

• Education: Placing a new student into a particular track with regard to special

needs.

• Medicine: Diagnosing whether a particular disease is present.

• Law: Determining whether a will was written by the actual person deceased or

fraudulently by someone else.

• Homeland security: Identifying whether or not certain financial or personal

behavior indicates a possible terrorist threat.

In classification, there is a target categorical variable, (e.g., income bracket),
which is partitioned into predetermined classes or categories, such as high income,

middle income, and low income. The data mining model examines a large set of

records, each record containing information on the target variable as well as a set

of input or predictor variables. For example, consider the excerpt from a data set

shown in Table 10.1. Suppose that the researcher would like to be able to classify the

income bracket of persons not currently in the database, based on the other charac-

teristics associated with that person, such as age, gender, and occupation. This task

is a classification task, very nicely suited to data mining methods and techniques.

The algorithm would proceed roughly as follows. First, examine the data set

containing both the predictor variables and the (already classified) target variable,

income bracket. In this way, the algorithm (software) “learns about” which combi-

nations of variables are associated with which income brackets. For example, older

females may be associated with the high-income bracket. This data set is called the
training set. Then the algorithm would look at new records for which no information

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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TABLE 10.1 Excerpt from data set for classifying income

Subject Age Gender Occupation Income Bracket

001 47 F Software engineer High

002 28 M Marketing consultant Middle

003 35 M Unemployed Low

⋮

about income bracket is available. Based on the classifications in the training set, the

algorithm would assign classifications to the new records. For example, a 63-year-old

female professor might be classified in the high-income bracket.

10.2 k-NEAREST NEIGHBOR ALGORITHM

The first algorithm we shall investigate is the k-nearest neighbor algorithm, which

is most often used for classification, although it can also be used for estimation and

prediction. k-Nearest neighbor is an example of instance-based learning, in which

the training data set is stored, so that a classification for a new unclassified record

may be found simply by comparing it to the most similar records in the training set.

Let us consider an example.

Recall the example from Chapter 1 where we were interested in classifying the

type of drug a patient should be prescribed, based on certain patient characteristics,

such as the age of the patient and the patient’s sodium/potassium ratio. For a sample

of 200 patients, Figure 10.1 presents a scatter plot of the patients’ sodium/potassium

(Na/K) ratio against the patients’ ages. The particular drug prescribed is symbolized

by the shade of the points. Light gray points indicate drug Y; medium gray points

indicate drug A or X; dark gray points indicate drug B or C.

Now suppose that we have a new patient record, without a drug classification,

and would like to classify which drug should be prescribed for the patient based on

which drug was prescribed for other patients with similar attributes. Identified as

“new patient 1,” this patient is 40 years old and has a Na/K ratio of 29, placing her

at the center of the circle indicated for new patient 1 in Figure 10.1. Which drug

classification should be made for new patient 1? Since her patient profile places her

deep into a section of the scatter plot where all patients are prescribed drug Y, we

would thereby classify new patient 1 as drug Y. All of the points nearest to this point,

that is, all of the patients with a similar profile (with respect to age and Na/K ratio)

have been prescribed the same drug, making this an easy classification.

Next, we move to new patient 2, who is 17 years old with a Na/K ratio of 12.5.

Figure 10.2 provides a close-up view of the training data points in the local neigh-

borhood of and centered at new patient 2. Suppose we let k= 1 for our k-nearest

neighbor algorithm, so that new patient 2 would be classified according to whichever

single (one) observation it was closest to. In this case, new patient 2 would be classi-

fied for drugs B and C (dark gray), since that is the classification of the point closest

to the point on the scatter plot for new patient 2.
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Figure 10.1 Scatter plot of sodium/potassium ratio against age, with drug overlay.
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Figure 10.2 Close-up of three nearest neighbors to new patient 2.
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However, suppose that we now let k= 2 for our k-nearest neighbor algorithm,

so that new patient 2 would be classified according to the classification of the k= 2

points closest to it. One of these points is dark gray, and one is medium gray, so that

our classifier would be faced with a decision between classifying new patient 2 for

drugs B and C (dark gray) or drugs A and X (medium gray). How would the classifier

decide between these two classifications? Voting would not help, since there is one

vote for each of the two classifications.

Voting would help, however, if we let k= 3 for the algorithm, so that new patient

2 would be classified based on the three points closest to it. Since two of the three clos-

est points are medium gray, a classification based on voting would therefore choose

drugs A and X (medium gray) as the classification for new patient 2. Note that the

classification assigned for new patient 2 differed based on which value we chose for k.

Finally, consider new patient 3, who is 47 years old and has a Na/K ratio of

13.5. Figure 10.3 presents a close-up of the three nearest neighbors to new patient 3.

For k= 1, the k-nearest neighbor algorithm would choose the dark gray (drugs B and

C) classification for new patient 3, based on a distance measure. For k= 2, however,

voting would not help. But voting would not help for k= 3 in this case either, since

the three nearest neighbors to new patient 3 are of three different classifications.

This example has shown us some of the issues involved in building a classifier

using the k-nearest neighbor algorithm. These issues include

• How many neighbors should we consider? That is, what is k?

• How do we measure distance?

• How do we combine the information from more than one observation?

Later we consider other questions, such as

• Should all points be weighted equally, or should some points have more influ-

ence than others?

Figure 10.3 Close-up of three nearest neighbors to new patient 3.
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10.3 DISTANCE FUNCTION

We have seen above how, for a new record, the k-nearest neighbor algorithm assigns

the classification of the most similar record or records. But just how do we define

similar? For example, suppose that we have a new patient who is a 50-year-old male.

Which patient is more similar, a 20-year-old male or a 50-year-old female?

Data analysts define distance metrics to measure similarity. A distance metric
or distance function is a real-valued function d, such that for any coordinates x, y,

and z:

1. d(x,y)≥ 0, and d(x,y)= 0 if and only if x= y;

2. d(x,y)= d(y,x);

3. d(x,z)≤ d(x,y)+ d(y,z).

Property 1 assures us that distance is always nonnegative, and the only way

for distance to be zero is for the coordinates (e.g., in the scatter plot) to be the same.

Property 2 indicates commutativity, so that, for example, the distance from New York

to Los Angeles is the same as the distance from Los Angeles to New York. Finally,

property 3 is the triangle inequality, which states that introducing a third point can

never shorten the distance between two other points.

The most common distance function is Euclidean distance, which represents

the usual manner in which humans think of distance in the real world:

dEuclidean(x, y) =
√∑

i

(xi − yi)2

where x= x1, x2,… , xm and y= y1, y2,… , ym represent the m attribute values of two

records. For example, suppose that patient A is x1 = 20 years old and has a Na/K ratio

of x2 = 12, while patient B is y1 = 30 years old and has a Na/K ratio of y2 = 8. Then

the Euclidean distance between these points, as shown in Figure 10.4, is

dEuclidean(x, y) =
√∑

i

(xi − yi)2 =
√
(20 − 30)2 + (12 − 8)2

=
√

100 + 16 = 10.77

When measuring distance, however, certain attributes that have large values,

such as income, can overwhelm the influence of other attributes that are measured on

a smaller scale, such as years of service. To avoid this, the data analyst should make

sure to normalize the attribute values.

For continuous variables, the min–max normalization or Z-score standardiza-
tion, discussed in Chapter 2, may be used:

Min–max normalization:

X∗ = X − min(X)
range(X)

= X − min(X)
max(X) − min(X)

Z-score standardization:

X∗ = X − mean(X)
SD(X)
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(20, 12)Na/K

(30, 8)
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Figure 10.4 Euclidean distance.

For categorical variables, the Euclidean distance metric is not appropriate.

Instead, we may define a function, “different from,” used to compare the ith attribute

values of a pair of records, as follows:

Different(xi, yi) =

{
0 if xi = yi

1 otherwise

where xi and yi are categorical values. We may then substitute different (xi, yi) for the

ith term in the Euclidean distance metric above.

For example, let us find an answer to our earlier question: Which patient is

more similar to a 50-year-old male: a 20-year-old male or a 50-year-old female?

Suppose that for the age variable, the range is 50, the minimum is 10, the mean is

45, and the standard deviation is 15. Let patient A be our 50-year-old male, patient

B the 20-year-old male, and patient C the 50-year-old female. The original variable

values, along with the min–max normalization (ageMMN) and Z-score standardization

(ageZscore), are listed in Table 10.2.

TABLE 10.2 Variable values for age and gender

Patient Age AgeMMN AgeZscore Gender

A 50
50 − 10

50
= 0.8

50 − 45

15
= 0.33 Male

B 20
20 − 10

50
= 0.2

20 − 45

15
= −1.67 Male

C 50
50 − 10

50
= 0.8

50 − 45

15
= 0.33 Female

We have one continuous variable (age, x1) and one categorical variable (gender,

x2). When comparing patients A and B, we have different (x2, y2)= 0, with different

(x2, y2)= 1 for the other combinations of patients. First, let us see what happens when

we forget to normalize the age variable. Then, the distance between patients A and

B is d(A,B) =
√
(50 − 20)2 + 02 = 30, and the distance between patients A and C is

d(A,C) =
√
(20 − 20)2 + 12 = 1. We would thus conclude that the 20-year-old male
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is 30 times more “distant” from the 50-year-old male than the 50-year-old female is.

In other words, the 50-year-old female is 30 times more “similar” to the 50-year-old

male than the 20-year-old male is. Does this seem justified to you? Well, in certain

circumstances, it may be justified, as in certain age-related illnesses. But, in general,

one may judge that the two men are just as similar as are the two 50-year-olds. The

problem is that the age variable is measured on a larger scale than the different(x2,

y2) variable. Therefore, we proceed to account for this discrepancy by normalizing

and standardizing the age values, as shown in Table 10.2.

Next, we use the min–max normalization values to find which patient is

more similar to patient A. We have dMMN (A,B) =
√
(0.8 − 0.2)2 + 02 = 0.6

and dMMN (A,C) =
√
(0.8 − 0.8)2 + 12 = 1, which means that patient B is now

considered to be more similar to patient A.

Finally, we use the Z-score standardization values to determine which patient

is more similar to patient A. We have dZscore(A,B) =
√
[0.33 − (−1.67)]2 + 02 =

2.0 and dZscore(A,C) =
√
(0.33 − 0.33)2 + 12 = 1.0, which means that patient C is

closer. Using the Z-score standardization rather than the min–max standardization

has reversed our conclusion about which patient is considered to be more similar to

patient A. This underscores the importance of understanding which type of normal-

ization one is using. The min–max normalization will almost always lie between zero

and 1 just like the “identical” function. The Z-score standardization, however, usually

takes values −3< z< 3, representing a wider scale than that of the min–max normal-

ization. Therefore, perhaps, when mixing categorical and continuous variables, the

min–max normalization may be preferred.

10.4 COMBINATION FUNCTION

Now that we have a method of determining which records are most similar to the new,

unclassified record, we need to establish how these similar records will combine to

provide a classification decision for the new record. That is, we need a combination
function. The most basic combination function is simple unweighted voting.

10.4.1 Simple Unweighted Voting

1. Before running the algorithm, decide on the value of k, that is, how many

records will have a voice in classifying the new record.

2. Then, compare the new record to the k nearest neighbors, that is, to the k records

that are of minimum distance from the new record in terms of the Euclidean

distance or whichever metric the user prefers.

3. Once the k records have been chosen, then for simple unweighted voting, their

distance from the new record no longer matters. It is simple one record, one

vote.

We observed simple unweighted voting in the examples for Figures 10.2 and

10.3. In Figure 10.2, for k= 3, a classification based on simple voting would choose
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drugs A and X (medium gray) as the classification for new patient 2, as two of the

three closest points are medium gray. The classification would then be made for drugs

A and X, with confidence 66.67%, where the confidence level represents the count of

records, with the winning classification divided by k.

However, in Figure 10.3, for k= 3, simple voting would fail to choose a clear

winner as each of the three categories receives one vote. There would be a tie among

the three classifications represented by the records in Figure 10.3, and a tie may not

be a preferred result.

10.4.2 Weighted Voting

One may feel that neighbors that are closer or more similar to the new record should

be weighted more heavily than more distant neighbors. For example, in Figure 10.3,

does it seem fair that the light gray record farther away gets the same vote as the

dark gray vote that is closer to the new record? Perhaps not. Instead, the analyst may

choose to apply weighted voting, where closer neighbors have a larger voice in the

classification decision than do more distant neighbors. Weighted voting also makes

it much less likely for ties to arise.

In weighted voting, the influence of a particular record is inversely proportional

to the distance of the record from the new record to be classified. Let us look at an

example. Consider Figure 10.2, where we are interested in finding the drug classifi-

cation for a new record, using the k= 3 nearest neighbors. Earlier, when using simple

unweighted voting, we saw that there were two votes for the medium gray classifica-

tion, and one vote for the dark gray. However, the dark gray record is closer than the

other two records. Will this greater proximity be enough for the influence of the dark

gray record to overcome that of the more numerous medium gray records?

Assume that the records in question have the values for age and Na/K ratio

given in Table 10.3, which also shows the min–max normalizations for these values.

Then the distances of records A, B, and C from the new record are as follows:

d(new,A) =
√
(0.05 − 0.0467)2 + (0.25 − 0.2471)2 = 0.004393

d(new,B) =
√
(0.05 − 0.0533)2 + (0.25 − 0.1912)2 = 0.58893

d(new,C) =
√
(0.05 − 0.0917)2 + (0.25 − 0.2794)2 = 0.051022

The votes of these records are then weighted according to the inverse square of their

distances.

One record (A) votes to classify the new record as dark gray (drugs B and C),

so the weighted vote for this classification is

Votes(dark gray) = 1

d(new,A)2
= 1

0.0043932
≅ 51, 818

Two records (B and C) vote to classify the new record as medium gray (drugs

A and X), so the weighted vote for this classification is

Votes(medium gray) = 1

d(new,B)2
+ 1

d(new,C)2
= 1

0.0588932
+ 1

0.0510222
≅ 672
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TABLE 10.3 Age and Na/K ratios for records from Figure 5.4

Record Age Na/K AgeMMN Na/KMMN

New 17 12.5 0.05 0.25

A (dark gray) 16.8 12.4 0.0467 0.2471

B (medium gray) 17.2 10.5 0.0533 0.1912

C (medium gray) 19.5 13.5 0.0917 0.2794

Therefore, by the convincing total of 51,818 to 672, the weighted voting procedure

would choose dark gray (drugs B and C) as the classification for a new 17-year-old

patient with a sodium/potassium ratio of 12.5. Note that this conclusion reverses the

earlier classification for the unweighted k= 3 case, which chose the medium gray

classification.

When the distance is zero, the inverse would be undefined. In this case, the

algorithm should choose the majority classification of all records whose distance is

zero from the new record.

Consider for a moment that once we begin weighting the records, there is no

theoretical reason why we could not increase k arbitrarily so that all existing records

are included in the weighting. However, this runs up against the practical considera-

tion of very slow computation times for calculating the weights of all of the records

every time a new record needs to be classified.

10.5 QUANTIFYING ATTRIBUTE RELEVANCE:
STRETCHING THE AXES

Consider that not all attributes may be relevant to the classification. In decision trees

(Chapter 11), for example, only those attributes that are helpful to the classification

are considered. In the k-nearest neighbor algorithm, the distances are by default cal-

culated on all the attributes. It is possible, therefore, for relevant records that are

proximate to the new record in all the important variables, but are distant from the

new record in unimportant ways, to have a moderately large distance from the new

record, and therefore not be considered for the classification decision. Analysts may

therefore consider restricting the algorithm to fields known to be important for clas-

sifying new records, or at least to blind the algorithm to known irrelevant fields.

Alternatively, rather than restricting fields a priori, the data analyst may prefer

to indicate which fields are of more or less importance for classifying the target vari-

able. This can be accomplished using a cross-validation approach or one based on

domain expert knowledge. First, note that the problem of determining which fields

are more or less important is equivalent to finding a coefficient zj by which to multi-

ply the jth axis, with larger values of zj associated with more important variable axes.

This process is therefore termed stretching the axes.

The cross-validation approach then selects a random subset of the data to be

used as a training set and finds the set of values z1, z2,… , zm that minimize the clas-

sification error on the test data set. Repeating the process will lead to a more accurate
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set of values z1, z2,… , zm. Otherwise, domain experts may be called on to recom-

mend a set of values for z1, z2,… , zm. In this way, the k-nearest neighbor algorithm

may be made more precise.

For example, suppose that either through cross-validation or expert knowledge,

the Na/K ratio was determined to be three times as important as age for drug classi-

fication. Then we would have zNa/K = 3 and zage = 1. For the example above, the new

distances of records A, B, and C from the new record would be as follows:

d(new,A) =
√
(0.05 − 0.0467)2 + [3(0.25 − 0.2471)]2 = 0.009305

d(new,B) =
√
(0.05 − 0.0533)2 + [3(0.25 − 0.1912)]2 = 0.17643

d(new,C) =
√
(0.05 − 0.0917)2 + [3(0.25 − 0.2794)]2 = 0.09756

In this case, the classification would not change with the stretched axis for Na/K,

remaining dark gray. In real-world problems, however, axis stretching can lead to

more accurate classifications, as it represents a method for quantifying the relevance

of each variable in the classification decision.

10.6 DATABASE CONSIDERATIONS

For instance-based learning methods such as the k-nearest neighbor algorithm, it is

vitally important to have access to a rich database full of as many different combina-

tions of attribute values as possible. It is especially important that rare classifications

be represented sufficiently, so that the algorithm does not only predict common clas-

sifications. Therefore, the data set would need to be balanced, with a sufficiently large

percentage of the less common classifications. One method to perform balancing is

to reduce the proportion of records with more common classifications.

Maintaining this rich database for easy access may become problematic if there

are restrictions on main memory space. Main memory may fill up, and access to aux-

iliary storage is slow. Therefore, if the database is to be used for k-nearest neighbor

methods only, it may be helpful to retain only those data points that are near a clas-

sification “boundary.” For example, in Figure 10.1, all records with Na/K ratio value

greater than, say, 19 could be omitted from the database without loss of classification

accuracy, as all records in this region are classified as light gray. New records with

Na/K ratio >19 would therefore be classified similarly.

10.7 k-NEAREST NEIGHBOR ALGORITHM FOR
ESTIMATION AND PREDICTION

So far we have considered how to use the k-nearest neighbor algorithm for clas-

sification. However, it may be used for estimation and prediction as well as for

continuous-valued target variables. One method for accomplishing this is called

locally weighted averaging. Assume that we have the same data set as the example

above, but this time rather than attempting to classify the drug prescription, we are

trying to estimate the systolic blood pressure reading (BP, the target variable) of the



10.8 CHOOSING k 311

patient, based on that patient’s age and Na/K ratio (the predictor variables). Assume

that BP has a range of 80 with a minimum of 90 in the patient records.

In this example, we are interested in estimating the systolic BP reading for a

17-year-old patient with a Na/K ratio of 12.5, the same new patient record for which

we earlier performed drug classification. If we let k= 3, we have the same three near-

est neighbors as earlier, shown here in Table 10.4. Assume that we are using the

zNa/K = three-axis-stretching to reflect the greater importance of the Na/K ratio.

TABLE 10.4 k= 3 nearest neighbors of the new record

Record Age Na/K BP AgeMMN Na/KMMN Distance

New 17 12.5 ? 0.05 0.25 —

A 16.8 12.4 120 0.0467 0.2471 0.009305

B 17.2 10.5 122 0.0533 0.1912 0.17643

C 19.5 13.5 130 0.0917 0.2794 0.26737

Locally weighted averaging would then estimate BP as the weighted average of

BP for the k= 3 nearest neighbors, using the same inverse square of the distances for

the weights that we used earlier. That is, the estimated target value ŷ is calculated as

ŷnew =
∑

iwiyi∑
iwi

where wi = 1∕d(new, xi)2 for existing records x1, x2,… , xk. Thus, in this example,

the estimated systolic BP reading for the new record would be

ŷnew =
∑

iwiyi∑
iwi

=
(120∕0.0093052)+(122∕0.176432)+(130∕0.097562)

(1∕0.0093052) + (1∕0.176432) + (1∕0.097562)
= 120.0954.

As expected, the estimated BP value is quite close to the BP value in the present data

set that is much closer (in the stretched attribute space) to the new record. In other

words, as record A is closer to the new record, its BP value of 120 contributes greatly

to the estimation of the BP reading for the new record.

10.8 CHOOSING k

How should one go about choosing the value of k? In fact, there may not be an obvious

best solution. Consider choosing a small value for k. Then it is possible that the clas-

sification or estimation may be unduly affected by outliers or unusual observations

(“noise”). With small k (e.g., k= 1), the algorithm will simply return the target value

of the nearest observation, a process that may lead the algorithm toward overfitting,

tending to memorize the training data set at the expense of generalizability.

However, choosing a value of k that is not too small will tend to smooth out

any idiosyncratic behavior learned from the training set. However, if we take this

too far and choose a value of k that is too large, locally interesting behavior will be

overlooked. The data analyst needs to balance these considerations when choosing

the value of k.
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It is possible to allow the data itself to help resolve this problem, by follow-

ing a cross-validation procedure similar to the earlier method for finding the optimal

values z1, z2,… , zm for axis stretching. Here, we would try various values of k with

different randomly selected training sets and choose the value of k that minimizes the

classification or estimation error.

10.9 APPLICATION OF k-NEAREST NEIGHBOR
ALGORITHM USING IBM/SPSS MODELER

Table 10.5 contains a small data set of 10 records excerpted from the ClassifyRisk
data set, with predictors’ age, marital status, and income, and target variable risk. We

seek the k-nearest neighbor for record 10, using k= 2. Modeler’s results are shown

in Figure 10.5. (Note that Modeler automatically normalizes the data.) Records 8

and 9 are the two nearest neighbors to Record 10, with the same marital status, and

somewhat similar ages. As both Records 8 and 9 and classified as Good risk, the

prediction for Record 10 would be Good risk as well.

TABLE 10.5 Find the k-nearest neighbor for Record #10

Record Age Marital Income Risk

1 22 Single $46,156.98 Bad loss

2 33 Married $24,188.10 Bad loss

3 28 Other $28,787.34 Bad loss

4 51 Other $23,886.72 Bad loss

5 25 Single $47,281.44 Bad loss

6 39 Single $33,994.90 Good risk

7 54 Single $28,716.50 Good risk

8 55 Married $49,186.75 Good risk

9 50 Married $46,726.50 Good risk

10 66 Married $36,120.34 Good risk

THE R ZONE
# Create the data set using Table 10.3

new <- c(0.05,0.25)

A <- c(0.0467, 0.2471)

B <- c(0.0533, 0.1912)

C <- c(0.0917, 0.2794)

data <- rbind(A, B, C)

dimnames(data) <- list(c("Dark", "Medium", "Light"),

c("Age (MMN)", "Na/K (MMN)"))

# Declare true classifications of A, B, and C.

trueclass <- c("Dark", "Medium", "Light")



313

Predictor space Peers chart

Built Model: 3 selected predictors, k = 2 Focal records and nearest neighbors

Single
S

in
g

le

Other

O
th

e
r

20
30 40

Age

50 60 70

Married

M
a

rr
ie

d

50,000 40,000 30,000 20,000

25,000
35,000

Income45,000

Select points to use as focal records

m
a
ri
ta

l 
_
 s

ta
tu

s

Focal Focal

No

Yes
No

Yes

Type

Training
Holdout

Type

Training
Holdout

Target:
risk

Bad loss

Bad

loss

Good risk

Good

risk

k: 2

Risk Age

98

10

70

65

60

55

50

10

8

9

8

9

10

3
7

,5
0

0
4

7
,5

0
0

4
2

,5
0

0

98

10

Marital_
status Income

Figure 10.5 Modeler k-nearest neighbor results.



314 CHAPTER 10 k-NEAREST NEIGHBOR ALGORITHM

# Run KNN

# Requires package “class”

library(class)

knn <- knn(data,

new,

cl = trueclass,

k = 3,

prob = TRUE)

knn

# Calculate the Euclidean distance

# Requires

package "fields"

library(fields)

together <- rbind(new,

data)

# The top row has the

# distances from New

rdist(together)

# Stretch the axes

ds_newA <- sqrt((new[1] -A[1])^2 + (3*(new[2]-A[2]))^2)

ds_newB <- sqrt((new[1] -B[1])^2 + (3*(new[2]-B[2]))^2)

ds_newC <- sqrt((new[1] -C[1])^2 + (3*(new[2]-C[2]))^2)

# Table 10.4

distance <- c(ds_newA,

ds_newB,

ds_newC)

BP <- c(120, 122, 130)

data <- cbind(BP,

data,

distance)

data
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# Locally Weighted Averaging

weights <- (1/(distance^2))

sum_wi <- sum(weights)

sum_wiyi <- sum(weights*data[,1])

yhat_new <- sum_wiyi/sum_wi

yhat_new

# ClassifyRisk example: Prep the data

# Read in the ClassifyRisk dataset

risk<- read.csv(file= "C:/… /classifyrisk.txt", stringsAsFactors=FALSE, header=TRUE,

sep="\t")

# Table 10.5 contains Records 51, 65, 79, 87, 124, 141, 150, 162, 163

risk2 <- risk[c(51, 65, 79, 87, 124, 141, 150, 162), c(5, 1, 4, 6)]

risk2$married.I <- ifelse(risk2$marital_status=="married",1,0)

risk2$single.I <- ifelse(risk2$marital_status=="single", 1, 0)

risk2 <- risk2[,-2]; new2 <- risk[163, c(5, 1, 4)]

new2$married.I <- 1; new2$single.I <- 0

new2 <- new2[,-2]; cll <- c(risk2[,3])

# ClassifyRisk example: KNN

knn2 <- knn(train = risk2[,c(1,2,4,5)],

test = new2,

cl = cll,

k = 3)

R REFERENCES
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EXERCISES

1. Clearly describe what is meant by classification.

2. What is meant by the term instance-based learning?

3. Make up a set of three records, each with two numeric predictor variables and one categor-

ical target variable, so that the classification would not change regardless of the value of k.

http://www.R-project.org
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4. Refer to Exercise 3. Alter your data set so that the classification changes for different

values of k.

5. Refer to Exercise 4. Find the Euclidean distance between each pair of points. Using these

points, verify that Euclidean distance is a true distance metric.

6. Compare the advantages and drawbacks of unweighted versus weighted voting.

7. Why does the database need to be balanced?

8. The example in the text regarding using the k-nearest neighbor algorithm for estimation

has the closest record, overwhelming the other records in influencing the estimation. Sug-

gest two creative ways that we could use to dilute this strong influence of the closest

record.

9. Discuss the advantages and drawbacks of using a small value versus a large value for k.

10. Why would one consider stretching the axes?

11. What is locally weighted averaging, and how does it help in estimation?

HANDS-ON ANALYSIS

12. Using the data in table 10.5, find the k-nearest neighbor for Record #10, using k= 3.

13. Using the ClassifyRisk data set with predictors age, marital status, and income, and tar-

get variable risk, find the k-nearest neighbor for Record #1, using k= 2 and Euclidean

distance.

14. Using the ClassifyRisk data set with predictors age, marital status, and income, and tar-

get variable risk, find the k-nearest neighbor for Record #1, using k= 2 and Minkowski

(city-block) distance (Chapter 19).



C H A P T E R 11
DECISION TREES

11.1 WHAT IS A DECISION TREE?

In this chapter, we continue our examination of classification methods for data min-

ing. One attractive classification method involves the construction of a decision tree,

a collection of decision nodes, connected by branches, extending downward from

the root node until terminating in leaf nodes. Beginning at the root node, which by

convention is placed at the top of the decision tree diagram, attributes are tested at

the decision nodes, with each possible outcome resulting in a branch. Each branch

then leads either to another decision node or to a terminating leaf node. Figure 11.1

provides an example of a simple decision tree.

The target variable for the decision tree in Figure 11.1 is credit risk, with poten-

tial customers being classified as either good or bad credit risks. The predictor vari-

ables are savings (low, medium, and high), assets (low or not low), and income
(≤$30,000 or >$30,000). Here, the root node represents a decision node, testing

whether each record has a low, medium, or high savings level (as defined by the

analyst or domain expert). The data set is partitioned, or split, according to the val-

ues of this attribute. Those records with low savings are sent via the leftmost branch

(savings= low) to another decision node. The records with high savings are sent via

the rightmost branch to a different decision node.

The records with medium savings are sent via the middle branch directly to a

leaf node, indicating the termination of this branch. Why a leaf node and not another

decision node? Because, in the data set (not shown), all of the records with medium

savings levels have been classified as good credit risks. There is no need for another

decision node, because our knowledge that the customer has medium savings predicts

good credit with 100% accuracy in the data set.

For customers with low savings, the next decision node tests whether the cus-

tomer has low assets. Those with low assets are then classified as bad credit risks; the

others are classified as good credit risks. For customers with high savings, the next

decision node tests whether the customer has an income of at most $30,000. Cus-

tomers with incomes of $30,000 or less are then classified as bad credit risks, with

the others classified as good credit risks.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

317



318 CHAPTER 11 DECISION TREES

Root node
Savings = low, med, high?

Income ≤ $30K?Assets = low?
Good credit risk

Bad risk Bad risk Good riskGood risk

YesNo NoYes

Savings = high

Savings = med

Savings = low

Figure 11.1 Simple decision tree.

When no further splits can be made, the decision tree algorithm stops growing

new nodes. For example, suppose that all of the branches terminate in “pure” leaf

nodes, where the target variable is unary for the records in that node (e.g., each record

in the leaf node is a good credit risk). Then no further splits are necessary, so no further

nodes are grown.

However, there are instances when a particular node contains “diverse”

attributes (with non-unary values for the target attribute), and yet the decision

tree cannot make a split. For example, suppose that we consider the records from

Figure 11.1 with high savings and low income (≤$30,000). Suppose that there are

five records with these values, all of which also have low assets. Finally, suppose

that three of these five customers have been classified as bad credit risks and two as

good credit risks, as shown in Table 11.1. In the real world, one often encounters

situations such as this, with varied values for the response variable, even for exactly

the same values for the predictor variables.

Here, as all customers have the same predictor values, there is no possible way

to split the records according to the predictor variables that will lead to a pure leaf

TABLE 11.1 Sample of records that cannot lead to pure leaf node

Customer Savings Assets Income Credit Risk

004 High Low ≤$30,000 Good

009 High Low ≤$30,000 Good

027 High Low ≤$30,000 Bad

031 High Low ≤$30,000 Bad

104 High Low ≤$30,000 Bad
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node. Therefore, such nodes become diverse leaf nodes, with mixed values for the

target attribute. In this case, the decision tree may report that the classification for

such customers is “bad,” with 60% confidence, as determined by the three-fifths of

customers in this node who are bad credit risks. Note that not all attributes are tested

for all records. Customers with low savings and low assets, for example, are not tested

with regard to income in this example.

11.2 REQUIREMENTS FOR USING DECISION TREES

Following requirements must be met before decision tree algorithms may be applied:

1. Decision tree algorithms represent supervised learning, and as such require pre-

classified target variables. A training data set must be supplied, which provides

the algorithm with the values of the target variable.

2. This training data set should be rich and varied, providing the algorithm with

a healthy cross section of the types of records for which classification may

be needed in the future. Decision trees learn by example, and if examples are

systematically lacking for a definable subset of records, classification and pre-

diction for this subset will be problematic or impossible.

3. The target attribute classes must be discrete. That is, one cannot apply decision

tree analysis to a continuous target variable. Rather, the target variable must

take on values that are clearly demarcated as either belonging to a particular

class or not belonging.

Why, in the example above, did the decision tree choose the savings attribute

for the root node split? Why did it not choose assets or income instead? Decision

trees seek to create a set of leaf nodes that are as “pure” as possible; that is, where

each of the records in a particular leaf node has the same classification. In this way,

the decision tree may provide classification assignments with the highest measure of

confidence available.

However, how does one measure uniformity, or conversely, how does one mea-

sure heterogeneity? We shall examine two of the many methods for measuring leaf

node purity, which lead to the following two leading algorithms for constructing deci-

sion trees:

• Classification and regression trees (CART) algorithm;

• C4.5 algorithm.

11.3 CLASSIFICATION AND REGRESSION TREES

The CART method was suggested by Breiman et al.1 in 1984. The decision trees pro-

duced by CART are strictly binary, containing exactly two branches for each decision

1Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone, Classification and Regression Trees,

Chapman & Hall/CRC Press, Boca Raton, FL, 1984.
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node. CART recursively partitions the records in the training data set into subsets of

records with similar values for the target attribute. The CART algorithm grows the

tree by conducting for each decision node, an exhaustive search of all available vari-

ables and all possible splitting values, selecting the optimal split according to the

following criteria (from Kennedy et al.2).

Let Φ(s|t) be a measure of the “goodness” of a candidate split s at node t, where

Φ(s|t) = 2PLPR

#classes∑
j=1

|P(j|tL) − P(j|tR)| (11.1)

and where

tL = left child node of node t

tR = right child node of node t

PL =
number of records at tL

number of records in training set

PR =
number of records at tR

number of records in training set

P(j|tL) = number of class j records at tL
number of records at t

P(j|tR) = number of class j records at tR
number of records at t

Then the optimal split is whichever split maximizes this measure Φ(s|t) over all pos-

sible splits at node t.
Let us look at an example. Suppose that we have the training data set shown in

Table 11.2 and are interested in using CART to build a decision tree for predicting

whether a particular customer should be classified as being a good or a bad credit risk.

2Ruby L. Kennedy, Yuchun Lee, Benjamin Van Roy, Christopher D. Reed, and Richard P. Lippman, Solving
Data Mining Problems through Pattern Recognition, Pearson Education, Upper Saddle River, NJ, 1995.

TABLE 11.2 Training set of records for classifying credit risk

Customer Savings Assets Income ($1000s) Credit Risk

1 Medium High 75 Good

2 Low Low 50 Bad

3 High Medium 25 Bad

4 Medium Medium 50 Good

5 Low Medium 100 Good

6 High High 25 Good

7 Low Low 25 Bad

8 Medium Medium 75 Good
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In this small example, all eight training records enter into the root node. As CART is

restricted to binary splits, the candidate splits that the CART algorithm would evaluate

for the initial partition at the root node are shown in Table 11.3. Although income is a

continuous variable, CART may still identify a finite list of possible splits based on the

number of different values that the variable actually takes in the data set. Alternatively,

the analyst may choose to categorize the continuous variable into a smaller number

of classes.

TABLE 11.3 Candidate splits for t= root node

Candidate Split Left Child Node, tL Right Child Node, tR

1 Savings= low Savings∈ {medium, high}

2 Savings=medium Savings∈ {low, high}

3 Savings= high Savings∈ {low, medium}

4 Assets= low Assets∈ {medium, high}

5 Assets=medium Assets∈ {low, high}

6 Assets= high Assets∈ {low, medium}

7 Income≤ $25,000 Income> $25,000

8 Income≤ $50,000 Income> $50,000

9 Income≤ $75,000 Income> $75,000

For each candidate split, let us examine the values of the various components

of the optimality measure Φ(s|t) in Table 11.4. Using these observed values, we

may investigate the behavior of the optimality measure under various conditions. For

example, when is Φ(s|t) large? We see that Φ(s|t) is large when both of its main

components are large: 2PLPR and
∑#classes

j=1 |P(j|tL) − P(j|tR)|.
Consider Q(s|t) = ∑#classes

j=1 |P(j|tL) − P(j|tR)|. When is the component Q(s|t)
large? Q(s|t) is large when the distance between P(j|tL) and P(j|tR) is maximized

across each class (value of the target variable). In other words, this component is

maximized when the proportions of records in the child nodes for each particular

value of the target variable are as different as possible. The maximum value would

therefore occur when for each class the child nodes are completely uniform (pure).

The theoretical maximum value for Q(s|t) is k, where k is the number of classes for

the target variable. As our output variable credit risk takes two values, good and bad,

k= 2 is the maximum for this component.

The component 2PLPR is maximized when PL and PR are large, which occurs

when the proportions of records in the left and right child nodes are equal. Therefore,

Φ(s|t) will tend to favor balanced splits that partition the data into child nodes

containing roughly equal numbers of records. Hence, the optimality measure Φ(s|t)
prefers splits that will provide child nodes that are homogeneous for all classes and

have roughly equal numbers of records. The theoretical maximum for 2PLPR is

2(0.5)(0.5)= 0.5.

In this example, only candidate split 5 has an observed value for 2PLPR that

reaches the theoretical maximum for this statistic, 0.5, because the records are
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TABLE 11.4 Values of the components of the optimality measure 𝚽(s|t) for each candidate
split, for the root node (best performance highlighted)

Split PL PR P(j|tL) P(j|tR) 2PLPR Q(s|t) Φ(s|t)

1 0.375 0.625 G: 0.333 G: 0.8 0.46875 0.934 0.4378

B: 0.667 B: 0.2

2 0.375 0.625 G: 1 G: 0.4 0.46875 1.2 0.5625

B: 0 B: 0.6

3 0.25 0.75 G: 0.5 G: 0.667 0.375 0.334 0.1253

B: 0.5 B: 0.333

4 0.25 0.75 G: 0 G: 0.833 0.375 1.667 0.6248
B: 1 B: 0.167

5 0.5 0.5 G: 0.75 G: 0.5 0.5 0.5 0.25

B: 0.25 B: 0.5

6 0.25 0.75 G: 1 G: 0.5 0.375 1 0.375

B: 0 B: 0.5

7 0.375 0.625 G: 0.333 G: 0.8 0.46875 0.934 0.4378

B: 0.667 B: 0.2

8 0.625 0.375 G: 0.4 G: 1 0.46875 1.2 0.5625

B: 0.6 B: 0

9 0.875 0.125 G: 0.571 G: 1 0.21875 0.858 0.1877

B: 0.429 B: 0

partitioned equally into two groups of four. The theoretical maximum for Q(s|t) is

obtained only when each resulting child node is pure, and thus is not achieved for

this data set.

The maximum observed value for Φ(s|t) among the candidate splits is therefore

attained by split 4, with Φ(s|t)= 0.6248. CART therefore chooses to make the initial

partition of the data set using candidate split 4, assets= low versus assets ∈{medium,

high}, as shown in Figure 11.2.

Root node (all records)

Bad risk
(Records 2, 7)

Decision node A
(records 1, 3, 4, 5, 6, 8)

Assets ∈ {medium, high}Assets = low

Assets = low vs
Assets ∈ {medium, high}

Figure 11.2 CART decision tree after initial split.
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The left child node turns out to be a terminal leaf node, because both of the

records that were passed to this node had bad credit risk. The right child node, how-

ever, is diverse and calls for further partitioning.

We again compile a table of the candidate splits (all are available except split

4), along with the values for the optimality measure (Table 11.5). Here two candidate

splits (3 and 7) share the highest value for Φ(s|t), 0.4444. We arbitrarily select the

first split encountered, split 3, savings= high versus savings ∈{low, medium}, for

decision node A, with the resulting tree shown in Figure 11.3.

TABLE 11.5 Values of the components of the optimality measure 𝚽(s|t) for each candidate
split, for decision node A (best performance highlighted)

Split PL PR P(j|tL) P(j|tR) 2PLPR Q(s|t) Φ(s|t)

1 0.167 0.833 G: 1 G: 0.8 0.2782 0.4 0.1113

B: 0 B: 0.2

2 0.5 0.5 G: 1 G: 0.667 0.5 0.6666 0.3333

B: 0 B: 0.333

3 0.333 0.667 G: 0.5 G: 1 0.4444 1 0.4444
B: 0.5 B: 0

5 0.667 0.333 G: 0.75 G: 1 0.4444 0.5 0.2222

B: 0.25 B: 0

6 0.333 0.667 G: 1 G: 0.75 0.4444 0.5 0.2222

B: 0 B: 0.25

7 0.333 0.667 G: 0.5 G: 1 0.4444 1 0.4444
B: 0.5 B: 0

8 0.5 0.5 G: 0.667 G: 1 0.5 0.6666 0.3333

B: 0.333 B: 0

9 0.833 0.167 G: 0.8 G: 1 0.2782 0.4 0.1113

B: 0.2 B: 0

As decision node B is diverse, we again need to seek the optimal split. Only

two records remain in this decision node, each with the same value for savings

(high) and income (25). Therefore, the only possible split is assets= high versus

assets=medium, providing us with the final form of the CART decision tree for this

example, in Figure 11.4. Compare Figure 11.4 with Figure 11.5, the decision tree

generated by Modeler’s CART algorithm.

Let us leave aside this example now, and consider how CART would operate

on an arbitrary data set. In general, CART would recursively proceed to visit each

remaining decision node and apply the procedure above to find the optimal split at

each node. Eventually, no decision nodes remain, and the “full tree” has been grown.

However, as we have seen in Table 11.1, not all leaf nodes are necessarily homoge-

neous, which leads to a certain level of classification error.

For example, suppose that, as we cannot further partition the records in

Table 11.1, we classify the records contained in this leaf node as bad credit risk.

Then the probability that a randomly chosen record from this leaf node would
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Assets = low vs

Assets = low 

Assets ∈ {medium, migh}

Assets ∈ {medium, high}

Savings ∈ {low, medium}

Root node (all records)

Decision node B
(records 3, 6)

Good risk
(records 1, 4, 5, 8)

Savings = high

Decision node A
(records 1, 3, 4, 5, 6, 8)

Bad risk
(records 2, 7)

Figure 11.3 CART decision tree after decision node A split.

Root node (all records)
Assets = low vs

Assets ∈ {medium, high}

Bad risk
(record 3)

Decision node A
(records 1, 3, 4, 5, 6, 8)

Decision node B
(records 3, 6)

Good risk
(records 1, 4, 5, 8)

Bad risk
(records 2, 7)

Good risk
(record 6)

Savings = high

Assets = mediumAssets = high

Assets = low Assets ∈ {medium, high}

Savings ∈ {low, medium}

Figure 11.4 CART decision tree, fully grown form.

be classified correctly is 0.6, because three of the five records (60%) are actually

classified as bad credit risks. Hence, our classification error rate for this particular

leaf would be 0.4 or 40%, because two of the five records are actually classified as

good credit risks. CART would then calculate the error rate for the entire decision

tree to be the weighted average of the individual leaf error rates, with the weights

equal to the proportion of records in each leaf.

To avoid memorizing the training set, the CART algorithm needs to begin

pruning nodes and branches that would otherwise reduce the generalizability of the
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Figure 11.5 Modeler’s CART decision tree.
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classification results. Even though the fully grown tree has the lowest error rate on the

training set, the resulting model may be too complex, resulting in overfitting. As each

decision node is grown, the subset of records available for analysis becomes smaller

and less representative of the overall population. Pruning the tree will increase the

generalizability of the results. How the CART algorithm performs tree pruning is

explained in Breiman et al. [p. 66]. Essentially, an adjusted overall error rate is found

that penalizes the decision tree for having too many leaf nodes and thus too much

complexity.

11.4 C4.5 ALGORITHM

The C4.5 algorithm is Quinlan’s extension of his own iterative dichotomizer 3 (ID3)

algorithm for generating decision trees.3 Just as with CART, the C4.5 algorithm recur-

sively visits each decision node, selecting the optimal split, until no further splits are

possible. However, there are following interesting differences between CART and

C4.5:

• Unlike CART, the C4.5 algorithm is not restricted to binary splits. Whereas

CART always produces a binary tree, C4.5 produces a tree of more variable

shape.

• For categorical attributes, C4.5 by default produces a separate branch for each

value of the categorical attribute. This may result in more “bushiness” than

desired, because some values may have low frequency or may naturally be

associated with other values.

• The C4.5 method for measuring node homogeneity is quite different from the

CART method and is examined in detail below.

The C4.5 algorithm uses the concept of information gain or entropy reduction
to select the optimal split. Suppose that we have a variable X whose k possible values

have probabilities p1, p2, … , pk. What is the smallest number of bits, on average

per symbol, needed to transmit a stream of symbols representing the values of X
observed? The answer is called the entropy of X and is defined as

H(X) = −
∑

j

pj log 2(pj)

Where does this formula for entropy come from? For an event with probability

p, the average amount of information in bits required to transmit the result is−log2(p).

For example, the result of a fair coin toss, with probability 0.5, can be transmitted

using −log2(0.5)= 1 bit, which is a 0 or 1, depending on the result of the toss. For

variables with several outcomes, we simply use a weighted sum of the log2(pj)s, with

weights equal to the outcome probabilities, resulting in the formula

H(X) = −
∑

j

pj log 2(pj)

3J. Ross Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Francisco, CA, 1992.
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C4.5 uses this concept of entropy as follows. Suppose that we have a candidate

split S, which partitions the training data set T into several subsets, T1, T2, … , Tk.

The mean information requirement can then be calculated as the weighted sum of the

entropies for the individual subsets, as follows:

HS(T) = −
k∑

i=1

piHS(Ti) (11.2)

where Pi represents the proportion of records in subset i. We may then define our

information gain to be gain(S)=H(T)−HS(T), that is, the increase in information

produced by partitioning the training data T according to this candidate split S. At

each decision node, C4.5 chooses the optimal split to be the split that has the greatest

information gain, gain(S).

To illustrate the C4.5 algorithm at work, let us return to the data set in Table 11.2

and apply the C4.5 algorithm to build a decision tree for classifying credit risk, just as

we did earlier using CART. Once again, we are at the root node and are considering

all possible splits using all the data (Table 11.6).

Now, because five of the eight records are classified as good credit risk, with

the remaining three records classified as bad credit risk, the entropy before splitting is

H(T) = −
∑

j

pj log 2(pj) = −5

8
log 2

(
5

8

)
− 3

8
log 2

(
3

8

)
= 0.9544

We shall compare the entropy of each candidate split against this H(T)= 0.9544, to

see which split results in the greatest reduction in entropy (or gain in information).

For candidate split 1 (savings), two of the records have high savings, three

of the records have medium savings, and three of the records have low savings,

so we have Phigh = 2∕8, Pmedium = 3∕8, Plow = 3∕8. Of the records with high
savings, one is a good credit risk and one is bad, giving a probability of 0.5 of

choosing the record with a good credit risk. Thus, the entropy for high savings is

−1∕2 log 2(1∕2) − 1∕2 log 2(1∕2) = 1, which is similar to the flip of a fair coin. All

three of the records with medium savings are good credit risks, so that the entropy

for medium is −3∕3 log 2(3∕3) − 0∕3 log 2(0∕3) = 0, where by convention we define

log2(0)= 0.

In engineering applications, information is analogous to signal, and entropy is

analogous to noise, so it makes sense that the entropy for medium savings is zero,

because the signal is crystal clear and there is no noise: If the customer has medium

TABLE 11.6 Candidate splits at root node for C4.5 algorithm

Candidate Split Child Nodes

1 Savings= low Savings=medium Savings= high

2 Assets= low Assets=medium Assets= high

3 Income≤ $25,000 Income> $25,000

4 Income≤ $50,000 Income> $50,000

5 Income≤ $75,000 Income> $75,000
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savings, he or she is a good credit risk, with 100% confidence. The amount of infor-

mation required to transmit the credit rating of these customers is zero, as long as we

know that they have medium savings.

One of the records with low savings is a good credit risk, and two records

with low savings are bad credit risks, giving us our entropy for low credit risk as

−1∕3 log 2(1∕3) − 2∕3 log 2(2∕3) = 0.9183. We combine the entropies of these

three subsets, using equation (11.2) and the proportions of the subsets Pi, so

that Hsavings(T) = (2∕8)(1) + (3∕8)(0) + (3∕8)(0.9183) = 0.5944. Then the infor-

mation gain represented by the split on the savings attribute is calculated as

H(T)−Hsavings(T)= 0.9544− 0.5944= 0.36 bits.

How are we to interpret these measures? First, H(T)= 0.9544 means that, on

average, one would need 0.9544 bits (0’s or 1’s) to transmit the credit risk of the

eight customers in the data set. Now, Hsavings(T)= 0.5944 means that the partitioning

of the customers into three subsets has lowered the average bit requirement for trans-

mitting the credit risk status of the customers to 0.5944 bits. Lower entropy is good.

This entropy reduction can be viewed as information gain, so that we have gained

on average H(T)−Hsavings(T)= 0.9544− 0.5944= 0.36 bits of information by using

the savings partition. We will compare this to the information gained by the other

candidate splits, and choose the split with the largest information gain as the optimal

split for the root node.

For candidate split 2 (assets), two of the records have high assets, four of the

records have medium assets, and two of the records have low assets, so we have

Phigh = 2∕8, Pmedium = 4∕8, Plow = 2∕8. Both of the records with high assets are

classified as good credit risks, which means that the entropy for high assets will be

zero, just as it was for medium savings above.

Three of the records with medium assets are good credit risks and one is a

bad credit risk, giving us entropy −3∕4 log 2(3∕4) − 1∕4 log 2(1∕4) = 0.8113. And

both of the records with low assets are bad credit risks, which results in the entropy

for low assets equaling zero. Combining the entropies of these three subsets, using

equation (11.2) and the proportions of the subsets Pi, we have Hassets(T) = (2∕8)(0) +
(4∕8)(0.8113) + (2∕8)(0) = 0.4057. The entropy for the assets split is lower than the

entropy (0.5944) for the savings split, which indicates that the assets split contains

less noise and is to be preferred over the savings split. This is measured directly

using the information gain, as follows: H(T)−Hassets(T)= 0.9544− 0.4057= 0.5487

bits. This information gain of 0.5487 bits is larger than that for the savings split of

0.36 bits, verifying that the assets split is preferable.

While C4.5 partitions the categorical variables differently from CART, the

partitions for the numerical variables are similar. Here we have four observed

values for income: 25,000, 50,000, 75,000, and 100,000, which provide us with

three thresholds for partitions, as shown in Table 11.6. For candidate split 3

from Table 11.6, income≤ $25,000 versus income> $25,000, three of the records

have income≤ $25,000, with the other five records having income> $25,000,

giving us P
income≤$25,000

= 3∕8, P
income>$25,000

= 5∕8. Of the records with

income≤ $25,000, one is a good credit risk and two are bad, giving us the

entropy for income≤ $25,000 as −1∕3 log 2(1∕3) − 2∕3 log 2(2∕3) = 0.9483.

Four of the five records with income> $25,000 are good credit risks, so that
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the entropy for income> $25,000 is −4∕5 log 2(4∕5) − 1∕5 log 2(1∕5) = 0.7219.

Combining, we find the entropy for candidate split 3 to be H
income≤$25,000

(T) =
(3∕8)(0.9183) + (5∕8)(0.7219) = 0.7956. Then the information gain for this split is

H(T) − H
income≤$25,000

(T) = 0.9544 − 0.7956 = 0.1588 bits, which is our poorest

choice yet.

For candidate split 4, income≤ $50,000 versus income> $50,000, two of the

five records with income≤ $50,000 are good credit risks, and three are bad, while all

three of the records with income> $50,000 are good credit risks. This gives us the

entropy for candidate split 4 as

H
income≤$50,000

(T) = 5

8

(
−2

5
log 2

2

5
− 3

5
log 2

3

5

)

+ 3

8

(
−3

3
log 2

3

3
− 0

3
log 2

0

3

)
= 0.6069

The information gain for this split is thus H(T)−Hincome≤ $50,000(T)= 0.9544−
0.6069= 0.3475, which is not as good as for assets. Finally, for candidate split

5, income≤ $75,000 versus income> $75,000, four of the seven records with

income≤ $75,000 are good credit risks, and three are bad, while the single record

with income> $75,000 is a good credit risk. Thus, the entropy for candidate

split 4 is

H
income≤$75,000

(T) = 7

8

(
−4

7
log 2

4

7
− 3

7
log 2

3

7

)
+ 1

8

(
−1

1
log 2

1

1
− 0

1
log 2

0

1

)
= 0.8621

The information gain for this split is H(T)−Hincome≤ $75,000(T)= 0.9544− 0.8621=
0.0923, making this split the poorest of the five candidate splits.

Table 11.7 summarizes the information gain for each candidate split at the root

node. Candidate split 2, assets, has the largest information gain, and so is chosen

for the initial split by the C4.5 algorithm. Note that this choice for an optimal split

concurs with the partition preferred by CART, which split on assets= low versus

assets= {medium, high}. The partial decision tree resulting from C4.5’s initial split

is shown in Figure 11.6.

Good credit risk
(records 1, 6)

Assets = high

Assets = high

Assets = med
Assets = low

Assets = low vs
Assets = medium vs

Decision node A
(records 3, 4, 5, 8)

Bad credit risk
(records 2, 7)

Root node (all records)

Figure 11.6 C4.5 concurs with CART in choosing assets for the initial partition.
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TABLE 11.7 Information gain for each candidate
split at the root node

Candidate

Split

Child

Nodes

Information Gain

(Entropy Reduction)

1 Savings= low 0.36 bits

Savings=medium

Savings= high

2 Assets= low 0.5487 bits

Assets=medium

Assets= high

3 Income≤ $25,000 0.1588 bits

Income> $25,000

4 Income≤ $50,000 0.3475 bits

Income> $50,000

5 Income≤ $75,000 0.0923 bits

Income> $75,000

The initial split has resulted in the creation of two terminal leaf nodes and

one new decision node. As both records with low assets have bad credit risk, this

classification has 100% confidence, and no further splits are required. It is similar

for the two records with high assets. However, the four records at decision node A
(assets=medium) contain both good and bad credit risks, so that further splitting is

called for.

We proceed to determine the optimal split for decision node A, containing

records 3, 4, 5, and 8, as indicated in Table 11.8. Because three of the four records

are classified as good credit risks, with the remaining record classified as a bad credit
risk, the entropy before splitting is

H(A) = −
∑

j

pj log 2(pj) = −3

4
log 2

(
3

4

)
− 1

4
log 2

(
1

4

)
= 0.8113

The candidate splits for decision node A are shown in Table 11.9.

For candidate split 1, savings, the single record with low savings is a good credit

risk, along with the two records with medium savings. Perhaps counterintuitively,

the single record with high savings is a bad credit risk. So the entropy for each of

these three classes equals zero, because the level of savings determines the credit

TABLE 11.8 Records available at decision node A for classifying credit risk

Customer Savings Assets Income ($1000s) Credit Risk

3 High Medium 25 Bad

4 Medium Medium 50 Good

5 Low Medium 100 Good

8 Medium Medium 75 Good



11.4 C4.5 ALGORITHM 331

TABLE 11.9 Candidate splits at decision node A

Candidate

Split

Child

Nodes

1 Savings= low Savings=medium Savings= high

3 Income≤ $25,000 Income> $25,000

4 Income≤ $50,000 Income> $50,000

5 Income≤ $75,000 Income> $75,000

risk completely. This also results in a combined entropy of zero for the assets split,

Hassets(A)= 0, which is optimal for decision node A. The information gain for this split

is thus H(A)−Hassets(A)= 0.8113− 0.0= 0.8113. This is, of course, the maximum

information gain possible for decision node A. We therefore need not continue our

calculations, because no other split can result in a greater information gain. As it

happens, candidate split 3, income≤ $25,000 versus income> $25,000, also results

in the maximal information gain, but again we arbitrarily select the first such split

encountered, the savings split.

Figure 11.7 shows the form of the decision tree after the savings split. Note

that this is the fully grown form, because all nodes are now leaf nodes, and C4.5 will

grow no further nodes. Comparing the C4.5 tree in Figure 11.7 with the CART tree in

Figure 11.4, we see that the C4.5 tree is “bushier,” providing a greater breadth, while

the CART tree is one level deeper. Both algorithms concur that assets is the most

important variable (the root split) and that savings is also important. Finally, once

the decision tree is fully grown, C4.5 engages in pessimistic postpruning. Interested

readers may consult Kantardzic.4

4Mehmed Kantardzic, Data Mining: Concepts, Models, Methods, and Algorithms, Wiley-Interscience,

Hoboken, NJ, second edition.

Root node (all records)

Assets = low vs

Assets = medium vs

Assets = high

Decision node A
(records 3, 4, 5, 8)

Good credit risk
(records 1, 6)

Good credit risk
(records 4, 8)

Good credit risk
(record 5)

Bad credit risk
(records 2, 7)

Bad credit risk
(record 3)

Assets = high

Assets = med

Savings = highSavings = medSavings = low

Assets = low

Figure 11.7 C4.5 Decision tree: fully grown form.
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11.5 DECISION RULES

One of the most attractive aspects of decision trees lies in their interpretability, espe-

cially with respect to the construction of decision rules. Decision rules can be con-

structed from a decision tree simply by traversing any given path from the root node to

any leaf. The complete set of decision rules generated by a decision tree is equivalent

(for classification purposes) to the decision tree itself. For example, from the decision

tree in Figure 11.7, we may construct the decision rules given in Table 11.10.

Decision rules come in the form if antecedent, then consequent, as shown in

Table 11.10. For decision rules, the antecedent consists of the attribute values from the

branches taken by the particular path through the tree, while the consequent consists

of the classification value for the target variable given by the particular leaf node.

The support of the decision rule refers to the proportion of records in the data

set that rest in that particular terminal leaf node. The confidence of the rule refers to

the proportion of records in the leaf node for which the decision rule is true. In this

small example, all of our leaf nodes are pure, resulting in perfect confidence levels of

100%= 1.00. In real-world examples, such as in the next section, one cannot expect

such high confidence levels.

11.6 COMPARISON OF THE C5.0 AND CART
ALGORITHMS APPLIED TO REAL DATA

Next, we apply decision tree analysis using IBM/SPSS Modeler on a real-world data

set. We use a subset of the data set adult, which was drawn from US census data

by Kohavi.5 You may download the data set used here from the book series web-

site, www.dataminingconsultant.com. Here we are interested in classifying whether

5Ronny Kohavi, Scaling up the accuracy of naive Bayes classifiers: A decision tree hybrid, Proceedings
of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, 1996.

TABLE 11.10 Decision rules generated from decision tree in Figure 11.7

Antecedent Consequent Support Confidence

If assets= low then bad credit risk
2

8
1.00

If assets= high then good credit risk
2

8
1.00

If assets=medium and savings= low then good credit risk
1

8
1.00

If assets=medium and savings=medium then good credit risk
2

8
1.00

If assets=medium and savings= high then bad credit risk
1

8
1.00

http://www.dataminingconsultant.com
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or not a person’s income is less than $50,000, based on the following set of predictor

fields.

• Numerical variables

Age

Years of education

Capital gains

Capital losses

Hours worked per week.

• Categorical variables

Race

Gender

Work class

Marital status.

The numerical variables were normalized so that all values ranged between 0

and 1. Some collapsing of low-frequency classes was carried out on the work class
and marital status categories. Modeler was used to compare the C5.0 algorithm (an

update of the C4.5 algorithm) with CART. The decision tree produced by the CART

algorithm is shown in Figure 11.8.

Here, the tree structure is displayed horizontally, with the root node at the

left and the leaf nodes on the right. For the CART algorithm, the root node split

is on marital status, with a binary split separating married persons from all others

(Marital_Status in [“Divorced” “Never-married” “Separated” “Widowed”]). That is,

this particular split on marital status maximized the CART split selection criterion

[equation (11.1)]:

Φ(s|t) = 2PLPR

#classes∑
j=1

|P(j|tL) − P(j|tR)|
Note that the mode classification for each branch is less than or equal to $50,000.

The married branch leads to a decision node, with several further splits downstream.

Figure 11.8 CART decision tree for the adult data set.
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However, the nonmarried branch is a leaf node, with a classification of less than or

equal to $50,000 for the 9228 such records, with 93.7% confidence. In other words,

of the 9228 persons in the data set who are not presently married, 93.7% of them have

incomes of at most $50,000.

The root node split is considered to indicate the most important single variable

for classifying income. Note that the split on the Marital_Status attribute is binary,

as are all CART splits on categorical variables. All the other splits in the full CART

decision tree shown in Figure 11.8 are on numerical variables. The next decision node

is Years of education_mm, representing the min–max normalized number of years

of education. The split occurs at Years of education_mm ≤ 0.700 (mode≤ $50,000)

versus Years of education_mm > 0.700 (mode> $50,000). However, your client may

not understand what the normalized value of 0.700 represents. So, when reporting

results, the analyst should always denormalize, to identify the original field values.

The min–max normalization was of the form X∗ = X−min(X)
range(X) = X−min(X)

max(X)−min(X) . Years of

education ranged from 16 (maximum) to 1 (minimum), for a range of 15. Therefore,

denormalizing, we have X = X∗ × range(X) + min(X) = 0.700 × 15 + 1 = 11.5.
Thus, the split occurs at 11.5 years of education. It seems that those who have

graduated high school tend to have higher incomes than those who have not.

Interestingly, for both education groups, Capital gains represents the next most

important decision node. For the branch with more years of education, there are two

further splits, on Capital loss, and then Hours (worked per week).

Now, will the information-gain splitting criterion and the other characteristics

of the C5.0 algorithm lead to a decision tree that is substantially different from or

largely similar to the tree derived using CART’s splitting criteria? Compare the CART

decision tree above with Modeler’s C5.0 decision tree of the same data displayed in

Figure 11.9. (We needed to specify only three levels of splits. Modeler gave us eight

levels of splits, which would not have fit on the page.)

Differences emerge immediately at the root node. Here, the root split is on the

Capital gains_mm attribute, with the split occurring at the relatively low normalized

level of 0.068. As the range of capital gains in this data set is $99,999 (maximum=
99,999, minimum= 0), this is denormalized as X = X∗ × range(X) + min(X) =
0.0685 × 99, 999 + 0 = $6850. More than half of those with capital gains greater

than $6850 have incomes above $50,000, whereas more than half of those with

capital gains of less than $6850 have incomes below $50,000. This is the split that

was chosen by the information-gain criterion as the optimal split among all possible

splits over all fields. Note, however, that there are 23 times more records in the

low-capital-gains category than in the high-capital-gains category (23,935 vs 1065

records).

For records with lower capital gains, the second split occurs on capital loss,

with a pattern similar to the earlier split on capital gains. Most people (23,179 records)

had low capital loss, and most of these have incomes below $50,000. Most of the few

(756 records) who had higher capital loss had incomes above $50,000.

For records with low capital gains and low capital loss, consider the next split,

which is made on marital status. Note that C5.0 provides a separate branch for each
categorical field value, whereas CART was restricted to binary splits. A possible
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Figure 11.9 C5.0 decision tree for the adult data set.

drawback of C5.0’s strategy for splitting categorical variables is that it may lead to

an overly bushy tree, with many leaf nodes containing few records.

Although the CART and C5.0 decision trees do not agree in the details, we may

nevertheless glean useful information from the broad areas of agreement between

them. For example, the most important variables are clearly marital status, education,

capital gains, capital losses, and perhaps hours per week. Both models agree that these

fields are important, but disagree as to the ordering of their importance. Much more

modeling analysis may be called for.

For a soup-to-nuts application of decision trees to a real-world data set, from

data preparation through model building and decision rule generation, see the Case

Study in Chapter 29–32.

THE R ZONE

# Read in and prepare the data

adult <− read.csv(file = "C:/… /adult.txt", stringsAsFactors=TRUE)

# Collapse some of the categories by giving them the same factor label

levels(adult$marital.status); levels(adult$workclass)

levels(adult$marital.status)[2:4] <− "Married"

levels(adult$workclass)[c(2,3,8)] <− "Gov"

levels(adult$workclass)[c(5, 6)] <− "Self"

levels(adult$marital.status); levels(adult$workclass)
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# Standardize the numeric variables

adult$age.z <− (adult$age - mean(adult$age))/sd(adult$age)

adult$education.num.z <− (adult$education.num-

mean(adult$education.num))/sd(adult$education.num)

adult$capital.gain.z <− (adult$capital.gain - mean(adult$capital.gain))/sd(adult$capital.gain)

adult$capital.loss.z <− (adult$capital.loss - mean(adult$capital.loss))/sd(adult$capital.loss)

adult$hours.per.week.z <− (adult$hours.per.week-

mean(adult$hours.per.week))/sd(adult$hours.per.week)

# Use predictors to classify whether or not a person’s income is less than $50K

# Requires package “rpart”

library("rpart")

cartfit <− rpart(income ∼ age.z + education.num.z + capital.gain.z + capital.loss.z +
hours.per.week.z + race + sex + workclass + marital.status,

data = adult,

method = "class")

print(cartfit)

# Plot the decision tree

# Requires package “rpart.plot”

library("rpart.plot")

rpart.plot(cartfit, main =
"Classification Tree") marital.s = Dvr,Nv-,Spr,Wdw

education < 0.95capital.g < 0.81

<=50K

<=50K

>50K

>50K

>50K

>50K

yes no

capital.I < 4.3

capital.g < 0.54

Classification Tree

# C5.0

# Requires package “C50”

library("C50")

names(adult)

x <− adult[,c(2,6, 9, 10, 16, 17, 18, 19, 20)]

y <− adult$income

c50fit1 <− C5.0(x, y)

summary(c50fit1)
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# C5.0 - Pruned

c50fit2 <− C5.0(x, y, control =
C5.0Control(CF=.1))

summary(c50fit2)

R REFERENCES

1. Kuhn M, Weston S, Coulter N. 2013. C code for C5.0 by R. Quinlan. C50: C5.0 decision trees and

rule-based models. R package version 0.1.0-15. http://CRAN.R-project.org/package=C50.

2. Milborrow S. 2012. rpart.plot: Plot rpart models. An enhanced version of plot.rpart. R package version

1.4-3. http://CRAN.R-project.org/package=rpart.plot.

3. Therneau T, Atkinson B, Ripley B. 2013. rpart: Recursive partitioning. R package version 4.1-3.

http://CRAN.R-project.org/package=rpart.

4. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Founda-

tion for Statistical Computing; 2012. ISBN: 3-900051-07-0, http://www.R-project.org/.

EXERCISES

CLARIFYING THE CONCEPTS

1. Describe the possible situations when no further splits can be made at a decision node.

2. Suppose that our target variable is continuous numeric. Can we apply decision trees directly

to classify it? How can we work around this?

3. True or false: Decision trees seek to form leaf nodes to maximize heterogeneity in

each node.

4. Discuss the benefits and drawbacks of a binary tree versus a bushier tree.

WORKING WITH THE DATA

Consider the data in Table 11.11. The target variable is salary. Start by discretizing salary as

follows:

• Less than $35,000, Level 1

• $35,000 to less than $45,000, Level 2

• $45,000 to less than $55,000, Level 3

• Above $55,000, Level 4.

5. Construct a classification and regression tree to classify salary based on the other vari-

ables. Do as much as you can by hand, before turning to the software.

6. Construct a C4.5 decision tree to classify salary based on the other variables. Do as much

as you can by hand, before turning to the software.

http://CRAN.R-project.org/package=C50
http://CRAN.R-project.org/package=rpart.plot
http://CRAN.R-project.org/package=rpart
http://www.R-project.org


338 CHAPTER 11 DECISION TREES

TABLE 11.11 Decision tree data

Occupation Gender Age Salary

Service Female 45 $48,000

Male 25 $25,000

Male 33 $35,000

Management Male 25 $45,000

Female 35 $65,000

Male 26 $45,000

Female 45 $70,000

Sales Female 40 $50,000

Male 30 $40,000

Staff Female 50 $40,000

Male 25 $25,000

7. Compare the two decision trees and discuss the benefits and drawbacks of each.

8. Generate the full set of decision rules for the CART decision tree.

9. Generate the full set of decision rules for the C4.5 decision tree.

10. Compare the two sets of decision rules and discuss the benefits and drawbacks of each.

HANDS-ON ANALYSIS

For the following exercises, use the churn data set available at the book series web site.

Normalize the numerical data and deal with the correlated variables.

11. Generate a CART decision tree.

12. Generate a C4.5-type decision tree.

13. Compare the two decision trees and discuss the benefits and drawbacks of each.

14. Generate the full set of decision rules for the CART decision tree.

15. Generate the full set of decision rules for the C4.5 decision tree.

16. Compare the two sets of decision rules and discuss the benefits and drawbacks of each.



C H A P T E R 12
NEURAL NETWORKS

The inspiration for neural networks was the recognition that complex learning

systems in the animal brains consisted of closely interconnected sets of neurons.

Although a particular neuron may be relatively simple in structure, dense networks of

interconnected neurons could perform complex learning tasks such as classification

and pattern recognition. The human brain, for example, contains approximately

1011 neurons, each connected on average to 10,000 other neurons, making a total

of 1,000,000,000,000,000= 1015 synaptic connections. Artificial neural networks
(hereafter, neural networks) represent an attempt at a very basic level to imitate the

type of nonlinear learning that occurs in the networks of neurons found in nature.

As shown in Figure 12.1, a real neuron uses dendrites to gather inputs from

other neurons and combines the input information, generating a nonlinear response

(“firing”) when some threshold is reached, which it sends to other neurons using the

axon. Figure 12.1 also shows an artificial neuron model used in most neural networks.

The inputs (xi) are collected from upstream neurons (or the data set) and combined

through a combination function such as summation (
∑

), which is then input into

(usually nonlinear) activation function to produce an output response (y), which is

then channeled downstream to other neurons.

What types of problems are appropriate for neural networks? One of the advan-

tages of using neural networks is that they are quite robust with respect to noisy data.

Because the network contains many nodes (artificial neurons), with weights assigned

to each connection, the network can learn to work around these uninformative (or even

erroneous) examples in the data set. However, unlike decision trees, which produce

intuitive rules that are understandable to nonspecialists, neural networks are relatively

opaque to human interpretation, as we shall see. Also, neural networks usually require

longer training times than decision trees, often extending into several hours.

12.1 INPUT AND OUTPUT ENCODING

One possible drawback of neural networks is that all attribute values must be

encoded in a standardized manner, taking values between 0 and 1, even for categori-

cal variables. Later, when we examine the details of the back-propagation algorithm,

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
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339



340 CHAPTER 12 NEURAL NETWORKS

Dendrites

Cell body Axon

y

x1

x2

xn

Σ

Figure 12.1 Real neuron and artificial neuron model.

we shall understand why this is necessary. For now, however, how does one go about

standardizing all the attribute values?

For continuous variables, this is not a problem, as we discussed in Chapter 2.

We may simply apply the min–max normalization:

X∗ = X − min(X)
range(X)

= X − min(X)
max(X) − min(X)

This works well as long as the minimum and maximum values are known and all

potential new data are bounded between them. Neural networks are somewhat robust

to minor violations of these boundaries. If more serious violations are expected, cer-

tain ad hoc solutions may be adopted, such as rejecting values that are outside the

boundaries, or assigning such values to either the minimum or the maximum value.

Categorical variables are more problematical, as might be expected. If the num-

ber of possible categories is not too large, one may use indicator (flag) variables. For

example, many data sets contain a gender attribute, containing values female, male,

and unknown. As the neural network could not handle these attribute values in their

present form, we could, instead, create indicator variables for female and male. Each

record would contain values for each of these two indicator variables. Records for

females would have values of 1 for female and 0 for male, while records for males

would have values of 0 for female and 1 for male. Records for persons of unknown

gender would have values of 0 for female and 0 for male. In general, categorical vari-

ables with k classes may be translated into k− 1 indicator variables, as long as the

definition of the indicators is clearly defined.

Be wary of recoding unordered categorical variables into a single variable with

a range between 0 and 1. For example, suppose that the data set contains informa-

tion on a marital status attribute. Suppose that we code the attribute values divorced,

married, separated, single, widowed, and unknown, as 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0,

respectively. Then this coding implies, for example, that divorced is “closer” to mar-
ried than it is to separated, and so on. The neural network would be aware only of the
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numerical values in the marital status field, not of their preencoded meanings, and

would thus be naive of their true meaning. Spurious and meaningless findings may

result.

With respect to output, we shall see that neural network output nodes always

return a continuous value between 0 and 1 as output. How can we use such continuous

output for classification?

Many classification problems have a dichotomous result, an up-or-down deci-

sion, with only two possible outcomes. For example, “Is this customer about to leave

our company’s service?” For dichotomous classification problems, one option is to

use a single output node (such as in Figure 12.2), with a threshold value set a pri-

ori that would separate the classes, such as “leave” or “stay.” For example, with the

threshold of “leave if output ≥ 0.67,” an output of 0.72 from the output node would

classify that record as likely to leave the company’s service.

Single output nodes may also be used when the classes are clearly ordered. For

example, suppose that we would like to classify elementary school reading prowess

based on a certain set of student attributes. Then, we may be able to define the thresh-

olds as follows:

• If 0≤ output< 0.25, classify first-grade reading level.

• If 0.25≤ output< 0.50, classify second-grade reading level.

• If 0.50≤ output< 0.75, classify third-grade reading level.

• If output≥ 0.75, classify fourth-grade reading level.

Fine-tuning of the thresholds may be required, tempered by the experience and

the judgment of domain experts.

Not all classification problems, however, are soluble using a single output node

only. For instance, suppose that we have several unordered categories in our target

variable, as, for example, with the marital status variable mentioned above. In this

case, we would choose to adopt 1-of-n output encoding, where one output node is

used for each possible category of the target variable. For example, if marital status
was our target variable, the network would have six output nodes in the output layer,

one for each of the six classes divorced, married, separated, single, widowed, and

Input layer Hidden layer Output layer

Node 1

Node 2

Node 3

Node Z

Node A

Node B

W1A

W1B

W2B

W2A

W3B
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W0Z

W0A

W3A

Figure 12.2 Simple neural network.
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unknown. The output node with the highest value is then chosen as the classification

for that particular record.

One benefit of using 1-of-n output encoding is that it provides a measure of con-

fidence in the classification, in the form of the difference between the highest-value

output node and the second-highest-value output node. Classifications with low confi-

dence (small difference in node output values) can be flagged for further clarification.

12.2 NEURAL NETWORKS FOR ESTIMATION
AND PREDICTION

Clearly, as neural networks produce continuous output, they may quite naturally be

used for estimation and prediction. Suppose, for example, that we are interested in

predicting the price of a particular stock 3 months in the future. Presumably, we would

have encoded price information using the min–max normalization above. However,

the neural network would output a value between 0 and 1, which (one would hope)

does not represent the predicted price of the stock.

Rather, the min–max normalization needs to be inverted, so that the neural

network output can be understood on the scale of the stock prices. In general, this

denormalization is as follows:

Prediction = output(data range) + minimum

where output represents the neural network output in the (0,1) range, data range rep-

resents the range of the original attribute values on the nonnormalized scale, and

minimum represents the smallest attribute value on the nonnormalized scale. For

example, suppose that the stock prices ranged from $20 to $30 and that the network

output was 0.69. Then the predicted stock price in 3 months is

Prediction = output(data range) + minimum = 0.69($10) + $20 = $26.90

12.3 SIMPLE EXAMPLE OF A NEURAL NETWORK

Let us examine the simple neural network shown in Figure 12.2. A neural network

consists of a layered, feedforward, completely connected network of artificial neu-

rons, or nodes. The feedforward nature of the network restricts the network to a single

direction of flow and does not allow looping or cycling. The neural network is com-

posed of two or more layers, although most networks consist of three layers: an input
layer, a hidden layer, and an output layer. There may be more than one hidden layer,

however, most networks contain only one, which is sufficient for most purposes. The

neural network is completely connected, meaning that every node in a given layer is

connected to every node in the next layer, however, not to other nodes in the same

layer. Each connection between nodes has a weight (e.g., W1A) associated with it. At

initialization, these weights are randomly assigned to values between 0 and 1.

The number of input nodes usually depends on the number and type of attributes

in the data set. The number of hidden layers and the number of nodes in each hidden
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layer are both configurable by the user. One may have more than one node in the

output layer, depending on the particular classification task at hand.

How many nodes should one have in the hidden layer? As more nodes in the hid-

den layer increases the power and flexibility of the network for identifying complex

patterns, one might be tempted to have a large number of nodes in the hidden layer.

However, an overly large hidden layer leads to overfitting, memorizing the training

set at the expense of generalizability to the validation set. If overfitting is occurring,

one may consider reducing the number of nodes in the hidden layer; conversely, if

the training accuracy is unacceptably low, one may consider increasing the number

of nodes in the hidden layer.

The input layer accepts inputs from the data set, such as attribute values, and

simply passes these values along to the hidden layer without further processing. Thus,

the nodes in the input layer do not share the detailed node structure that the hidden

layer nodes and the output layer nodes share.

We will investigate the structure of hidden layer nodes and output layer nodes

using the sample data provided in Table 12.1. First, a combination function (usually

summation,
∑

) produces a linear combination of the node inputs and the connection

weights into a single scalar value, which we will term as net. Thus, for a given node j,

Netj =
∑

i

Wijxij = W0jx0j + W1jx1j + · · · + WIjxIj

where xij represents the ith input to node j, Wij represents the weight associated with

the ith input to node j, and there are I+ 1 inputs to node j. Note that x1, x2, … , xI
represent inputs from upstream nodes, while x0 represents a constant input, analogous

to the constant factor in regression models, which by convention uniquely takes the

value x0j = 1. Thus, each hidden layer or output layer node j contains an “extra” input

equal to a particular weight W0jx0j =W0j, such as W0B for node B.

For example, for node A in the hidden layer, we have

NetA =
∑

i

WiAxiA = W0A(1) + W1Ax1A + W2Ax2A + W3Ax3A

= 0.5 + 0.6(0.4) + 0.80(0.2) + 0.6(0.7) = 1.32

Within node A, this combination function netA = 1.32 is then used as an input to an

activation function. In biological neurons, signals are sent between neurons when

the combination of inputs to a particular neuron crosses a certain threshold, and the

neuron “fires.” This is nonlinear behavior, as the firing response is not necessarily

linearly related to the increment in input stimulation. Artificial neural networks model

this behavior through a nonlinear activation function.

TABLE 12.1 Data inputs and initial values for neural network weights

x0 = 1.0 W0A = 0.5 W0B = 0.7 W0Z = 0.5

x1 = 0.4 W1A = 0.6 W1B = 0.9 WAZ = 0.9

x2 = 0.2 W2A = 0.8 W2B = 0.8 WBZ = 0.9

x3 = 0.7 W3A = 0.6 W3B = 0.4
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The most common activation function is the sigmoid function:

y = 1

1 + e−x

where e is base of natural logarithms, equal to about 2.718281828. Thus, within node

A, the activation would take netA = 1.32 as input to the sigmoid activation function,

and produce an output value of y= 1/(1+ e–1.32)= 0.7892. Node A’s work is done

(for the moment), and this output value would then be passed along the connection to

the output node Z, where it would form (via another linear combination) a component

of netZ.

But before we can compute netZ, we need to find the contribution of node B.

From the values in Table 12.1, we have

NetB =
∑

i

WiBxiB = W0B(1) + W1Bx1B + W2Bx2B + W3Bx3B

= 0.7 + 0.9(0.4) + 0.80(0.2) + 0.4(0.7) = 1.5

Then,

f (netB) =
1

1 + e−1.5
= 0.8176

Node Z then combines these outputs from nodes A and B, through netZ, a weighted

sum, using the weights associated with the connections between these nodes. Note

that the inputs xi to node Z are not data attribute values but the outputs from the

sigmoid functions from upstream nodes:

NetZ =
∑

i

WiZxiZ = W0Z(1) + WAZxAZ + WBZxBZ

= 0.5 + 0.9(0.7892) + 0.9(0.8176) = 1.9461

Finally, netZ is input into the sigmoid activation function in node Z, resulting in

f (netZ) =
1

1 + e−1.9461
= 0.8750

This value of 0.8750 is the output from the neural network for this first pass through

the network, and represents the value predicted for the target variable for the first

observation.

12.4 SIGMOID ACTIVATION FUNCTION

Why use the sigmoid function? Because it combines nearly linear behavior,

curvilinear behavior, and nearly constant behavior, depending on the value of the

input. Figure 12.3 shows the graph of the sigmoid function y= f(x)= 1/(1+ e–x),

for −5< x< 5 (although f(x) may theoretically take any real-valued input). Through

much of the center of the domain of the input x (e.g., −1< x< 1), the behavior of f(x)

is nearly linear. As the input moves away from the center, f(x) becomes curvilinear.

By the time the input reaches extreme values, f(x) becomes nearly constant.

Moderate increments in the value of x produce varying increments in the value

of f(x), depending on the location of x. Near the center, moderate increments in
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Figure 12.3 Graph of the sigmoid function y= f(x)= 1/(1+ e−x).

the value of x produce moderate increments in the value of f(x); however, near the

extremes, moderate increments in the value of x produce tiny increments in the value

of f(x). The sigmoid function is sometimes called a squashing function, as it takes

any real-valued input and returns an output bounded between 0 and 1.

12.5 BACK-PROPAGATION

How does the neural network learn? Neural networks represent a supervised learn-

ing method, requiring a large training set of complete records, including the target

variable. As each observation from the training set is processed through the network,

an output value is produced from the output node (assuming that we have only one

output node, as in Figure 12.2). This output value is then compared to the actual value

of the target variable for this training set observation, and the error (actual− output)

is calculated. This prediction error is analogous to the residuals in regression models.

To measure how well the output predictions fit the actual target values, most neural

network models use the sum of squared errors (SSE):

SSE =
∑

records

∑
output nodes

(actual − output)2

where the squared prediction errors are summed over all the output nodes and over

all the records in the training set.

The problem is therefore to construct a set of model weights that will minimize

the SSE. In this way, the weights are analogous to the parameters of a regression

model. The “true” values for the weights that will minimize SSE are unknown, and

our task is to estimate them, given the data. However, due to the nonlinear nature of

the sigmoid functions permeating the network, there exists no closed-form solution

for minimizing SSE as exists for least-squares regression.
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12.6 GRADIENT-DESCENT METHOD

We must therefore turn to optimization methods, specifically gradient-descent meth-

ods, to help us find the set of weights that will minimize SSE. Suppose that we have

a set (vector) of m weights w=w0, w1, w2, … , wm in our neural network model and

we wish to find the values for each of these weights that, together, minimize SSE.

We can use the gradient-descent method, which gives us the direction that we should
adjust the weights in order to decrease SSE. The gradient of SSE with respect to the

vector of weights w is the vector derivative:

∇SSE(w) =
[
𝜕SSE

𝜕w0

,
𝜕SSE

𝜕w1

, … ,
𝜕SSE

𝜕wm

]
that is, the vector of partial derivatives of SSE with respect to each of the weights.

To illustrate how gradientdescent works, let us consider the case where there is

only a single weight w1. Consider Figure 12.4, which plots the error SSE against the

range of values for w1. We would prefer values of w1 that would minimize the SSE.

The optimal value for the weight w1 is indicated as w∗
1
. We would like to develop a

rule that would help us move our current value of w1 closer to the optimal value w∗
1

as follows: wnew =wcurrent +Δwcurrent, where Δwcurrent is the “change in the current

location of w.”

Now, suppose that our current weight value wcurrent is near w1L. Then we would

like to increase our current weight value to bring it closer to the optimal value w∗
1
.

However, if our current weight value wcurrent were near w1R, we would instead prefer

to decrease its value, to bring it closer to the optimal value w∗
1
. Now the derivative

𝜕SSE/𝜕w1 is simply the slope of the SSE curve at w1. For values of w1 close to w1L,

this slope is negative, and for values of w1 close to w1R, this slope is positive. Hence,

the direction for adjusting wcurrent is the negative of the sign of the derivative of SSE

at wcurrent, that is, −sign(𝜕SSE/𝜕wcurrent).

Now, how far should wcurrent be adjusted in the direction of −sign(𝜕SSE/

𝜕wcurrent)? Suppose that we use the magnitude of the derivative of SSE at wcurrent.

When the curve is steep, the adjustment will be large, as the slope is greater in

magnitude at those points. When the curve is nearly flat, the adjustment will be

SSE

w1L w1R w1w∗
1

Figure 12.4 Using the slope of SSE with respect to w1 to find weight adjustment direction.
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smaller, due to less slope. Finally, the derivative is multiplied by a positive constant

𝜂 (Greek lowercase eta), called the learning rate, with values ranging between 0 and

1. (We discuss the role of 𝜂 in more detail below.) The resulting form of Δwcurrent is

as follows: Δwcurrent =−𝜂(𝜕SSE/𝜕wcurrent), meaning that the change in the current

weight value equals negative a small constant times the slope of the error function at

wcurrent.

12.7 BACK-PROPAGATION RULES

The back-propagation algorithm takes the prediction error (actual− output) for a par-

ticular record and percolates the error back through the network, assigning partitioned

responsibility for the error to the various connections. The weights on these connec-

tions are then adjusted to decrease the error using gradient descent.

Using the sigmoid activation function and gradient descent, Mitchell1 derives

the back-propagation rules as follows:

wij,new = wij,current + Δwij, where Δwij = 𝜂𝛿jxij

Now we know that 𝜂 represents the learning rate and xij signifies the ith input to node

j, but what does 𝛿j represent? The component 𝛿j represents the responsibility for a

particular error belonging to node j. The error responsibility is computed using the

partial derivative of the sigmoid function with respect to netj and takes the following

forms, depending on whether the node in question lies in the output layer or the hidden

layer:

𝛿j =
⎧⎪⎨⎪⎩

outputj
(
1 − outputj

)
(actualj − outputj) for output layernode

outputj(1 − outputj)
∑

downstream

Wjkδj for hidden layer nodes

where
∑

downstream Wjk𝛿j refers to the weighted sum of the error responsibilities for

the nodes downstream from the particular hidden layer node. (For the full derivation,

see Mitchell.)

Also, note that the back-propagation rules illustrate why the attribute values

need to be normalized to between 0 and 1. For example, if income data, with values

ranging into six figures, were not normalized, the weight adjustment Δwij = 𝜂𝛿jxij
would be dominated by the data value xij. Hence, the error propagation (in the form

of 𝛿j) through the network would be overwhelmed, and learning (weight adjustment)

would be stifled.

12.8 EXAMPLE OF BACK-PROPAGATION

Recall from our introductory example that the output from the first pass through the

network was output= 0.8750. Assume that the actual value of the target attribute is

1Tom M. Mitchell, Machine Learning, McGraw-Hill, New York, 1997.
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actual= 0.8 and that we will use a learning rate of 𝜂 = 0.1. Then the prediction error
equals 0.8− 0.8750=−0.075, and we may apply the foregoing rules to illustrate

how the back-propagation algorithm works to adjust the weights by portioning

out responsibility for this error to the various nodes. Although it is possible to

update the weights only after all records have been read, neural networks use

stochastic (or online) back-propagation, which updates the weights after each

record.

First, the error responsibility 𝛿Z for node Z is found. As node Z is an output

node, we have

𝛿Z = outputZ(1 − outputZ)(actualZ − outputZ)
= 0.8751(1 − 0.875)(0.8 − 0.875) = −0.0082

We may now adjust the “constant” weight W0Z (which transmits an “input” of 1) using

the back-propagation rules as follows:

ΔW0Z = 𝜂𝛿Z(1) = 0.1(−0.0082)(1) = −0.00082

w0Z,new = w0Z,current + Δw0Z = 0.5 − 0.00082 = 0.49918

Next, we move upstream to node A. As node A is a hidden layer node, its error respon-

sibility is

𝛿A = outputA(1 − outputA)
∑

downstream

WAk𝛿k

The only node downstream from node A is node Z. The weight associated with this

connection is WAZ = 0.9, and the error responsibility at node Z is −0.0082, so that

𝛿A = 0.7892(1− 0.7892)(0.9)(−0.0082)=−0.00123.

We may now update weight WAZ using the back-propagation rules as follows:

ΔWAZ = 𝜂𝛿Z ⋅ outputA = 0.1(−0.0082)(0.7892) = −0.000647

wAZ,new = wAZ,current + ΔwAZ = 0.9 − 0.000647 = 0.899353

The weight for the connection between hidden layer node A and output layer node Z
has been adjusted from its initial value of 0.9 to its new value of 0.899353.

Next, we turn to node B, a hidden layer node, with error responsibility

𝛿B = outputB(1 − outputB)
∑

downstream

WBk𝛿k

Again, the only node downstream from node B is node Z, giving us 𝛿B = 0.8176(1−
0.8176)(0.9)(−0.0082)=−0.0011.

Weight WBZ may then be adjusted using the back-propagation rules as follows:

ΔWBZ = 𝜂𝛿Z ⋅ outputB = 0.1(−0.0082)(0.8176) = −0.00067

wBZ,new = wBZ,current + ΔwBZ = 0.9 − 0.00067 = 0.89933
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We move upstream to the connections being used as inputs to node A. For weight W1A
we have

ΔW1A = 𝜂𝛿Ax1 = 0.1(−0.00123)(0.4) = −0.0000492

w1A,new = w1A,current + Δw1A = 0.6 − 0.000492 = 0.5999508

For weight W2A we have

ΔW2A = 𝜂𝛿Ax2 = 0.1(−0.00123)(0.2) = −0.0000246

w2A,new = w2A,current + Δw2A = 0.8 − 0.0000246 = 0.7999754

For weight W3A we have

ΔW3A = 𝜂𝛿Ax3 = 0.1(−0.00123)(0.7) = −0.0000861

w3A,new = w3A,current + Δw3A = 0.6 − 0.0000861 = 0.5999139.

Finally, for weight W0A we have

ΔW0A = 𝜂𝛿A(1) = 0.1(−0.00123) = −0.000123

w0A,new = w0A,current + Δw0A = 0.5 − 0.000123 = 0.499877.

Adjusting weights W0B, W1B, W2B, and W3B is left as an exercise.

Note that the weight adjustments have been made based on only a single perusal

of a single record. The network calculated a predicted value for the target variable,

compared this output value to the actual target value, and then percolated the error

in prediction throughout the network, adjusting the weights to provide a smaller pre-

diction error. Showing that the adjusted weights result in a smaller prediction error is

left as an exercise.

12.9 TERMINATION CRITERIA

The neural network algorithm would then proceed to work through the training data

set, record by record, adjusting the weights constantly to reduce the prediction error.

It may take many passes through the data set before the algorithm’s termination cri-

terion is met. What, then, serves as the termination criterion, or stopping criterion?

If training time is an issue, one may simply set the number of passes through the

data, or the amount of real time the algorithm may consume, as termination criteria.

However, what one gains in short training time is probably bought with degradation

in model efficacy.

Alternatively, one may be tempted to use a termination criterion that assesses

when the SSE on the training data has been reduced to some low threshold level.

Unfortunately, because of their flexibility, neural networks are prone to overfitting,

memorizing the idiosyncratic patterns in the training set instead of retaining general-

izability to unseen data.
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Therefore, most neural network implementations adopt the following cross-

validation termination procedure:

1. Retain part of the original data set as a holdout validation set.

2. Proceed to train the neural network as above on the remaining training data.

3. Apply the weights learned from the training data on the validation data.

4. Monitor two sets of weights, one “current” set of weights produced by the train-

ing data, and one “best” set of weights, as measured by the lowest SSE so far

on the validation data.

5. When the current set of weights has significantly greater SSE than the best set

of weights, then terminate the algorithm.

Regardless of the stopping criterion used, the neural network is not guaranteed

to arrive at the optimal solution, known as the global minimum for the SSE. Rather,

the algorithm may become stuck in a local minimum, which represents a good, if not

optimal solution. In practice, this has not presented an insuperable problem.

• For example, multiple networks may be trained using different initialized

weights, with the best-performing model being chosen as the “final” model.

• Second, the online or stochastic back-propagation method itself acts as a guard

against getting stuck in a local minimum, as it introduces a random element to

the gradient descent (see Reed and Marks2).

• Alternatively, a momentum term may be added to the back-propagation algo-

rithm, with effects discussed below.

12.10 LEARNING RATE

Recall that the learning rate 𝜂, 0<𝜂 < 1, is a constant chosen to help us move the

network weights toward a global minimum for SSE. However, what value should 𝜂

take? How large should the weight adjustments be?

When the learning rate is very small, the weight adjustments tend to be very

small. Thus, if 𝜂 is small when the algorithm is initialized, the network will probably

take an unacceptably long time to converge. Is the solution therefore to use large val-

ues for 𝜂? Not necessarily. Suppose that the algorithm is close to the optimal solution

and we have a large value for 𝜂. This large 𝜂 will tend to make the algorithm overshoot

the optimal solution.

Consider Figure 12.5, where W* is the optimum value for weight W, which

has current value Wcurrent. According to the gradient-descent rule, Δwcurrent =
−𝜂(𝜕SSE/𝜕wcurrent), Wcurrent will be adjusted in the direction of W*. But if the

learning rate 𝜂, which acts as a multiplier in the formula for Δwcurrent, is too large,

the new weight value Wnew will jump right past the optimal value W*, and may in

fact end up farther away from W* than Wcurrent.

2Russell D. Reed and Robert J. Marks II, Neural Smithing: Supervised Learning in Feedforward Artificial
Neural Networks, MIT Press, Cambridge, MA, 1999.
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Figure 12.5 Large 𝜂 may cause algorithm to overshoot global minimum.

In fact, as the new weight value will then be on the opposite side of W*, the next

adjustment will again overshoot W*, leading to an unfortunate oscillation between

the two “slopes” of the valley and never settling down in the ravine (the minimum).

One solution is to allow the learning rate 𝜂 to change values as the training moves

forward. At the start of training, 𝜂 should be initialized to a relatively large value

to allow the network to quickly approach the general neighborhood of the optimal

solution. Then, when the network is beginning to approach convergence, the learning

rate should gradually be reduced, thereby avoiding overshooting the minimum.

12.11 MOMENTUM TERM

The back-propagation algorithm is made more powerful through the addition of a

momentum term 𝛼, as follows:

Δwcurrent = −𝜂 𝜕SSE

𝜕wcurrent

+ 𝛼Δwprevious

where Δwprevious represents the previous weight adjustment, and 0≤ 𝛼 < 1. Thus, the

new component 𝛼Δwprevious represents a fraction of the previous weight adjustment

for a given weight.

Essentially, the momentum term represents inertia. Large values of 𝛼 will influ-

ence the adjustment in the current weight, Δwcurrent, to move in the same direction

as previous adjustments. It has been shown (e.g., Reed and Marks) that including

momentum in the back-propagation algorithm results in the adjustment becoming an

exponential average of all previous adjustments:

Δwcurrent = −𝜂
∞∑

k=0

𝛼k 𝜕SSE

𝜕wcurrent−k

The 𝛼k term indicates that the more recent adjustments exert a larger influence. Large

values of 𝛼 allow the algorithm to “remember” more terms in the adjustment his-

tory. Small values of 𝛼 reduce the inertial effects as well as the influence of previous

adjustments, until, with 𝛼 = 0, the component disappears entirely.
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Clearly, a momentum component will help to dampen the oscillations around

optimality mentioned earlier, by encouraging the adjustments to stay in the same

direction. But momentum also helps the algorithm in the early stages of the algorithm,

by increasing the rate at which the weights approach the neighborhood of optimality.

This is because these early adjustments will probably be all in the same direction, so

that the exponential average of the adjustments will also be in that direction. Momen-

tum is also helpful when the gradient of SSE with respect to w is flat. If the momentum

term 𝛼 is too large, then the weight adjustments may again overshoot the minimum,

due to the cumulative influences of many previous adjustments.

For an informal appreciation of momentum, consider Figures 12.6 and 12.7. In

both figures, the weight is initialized at location I, local minima exist at locations A

and C, with the optimal global minimum at B. In Figure 12.6, suppose that we have

a small value for the momentum term 𝛼, symbolized by the small mass of the “ball”

on the curve. If we roll this small ball down the curve, it may never make it over the

first hill, and remain stuck in the first valley. That is, the small value for 𝛼 enables the

algorithm to easily find the first trough at location A, representing a local minimum,

but does not allow it to find the global minimum at B.

Next, in Figure 12.7, suppose that we have a large value for the momentum

term 𝛼, symbolized by the large mass of the “ball” on the curve. If we roll this large

ball down the curve, it may well make it over the first hill but may then have so much

momentum that it overshoots the global minimum at location B and settles for the

local minimum at location C.

SSE

B C wAI

Figure 12.6 Small momentum 𝛼 may cause algorithm to undershoot global minimum.

A B C wI

SSE

Figure 12.7 Large momentum 𝛼 may cause algorithm to overshoot global minimum.
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Thus, one needs to consider carefully what values to set for both the learning

rate 𝜂 and the momentum term 𝛼. Experimentation with various values of 𝜂 and 𝛼

may be necessary before the best results are obtained.

12.12 SENSITIVITY ANALYSIS

One of the drawbacks of neural networks is their opacity. The same wonderful flex-

ibility that allows neural networks to model a wide range of nonlinear behavior also

limits our ability to interpret the results using easily formulated rules. Unlike deci-

sion trees, no straightforward procedure exists for translating the weights of a neural

network into a compact set of decision rules.

However, a procedure is available, called sensitivity analysis, which does allow

us to measure the relative influence each attribute has on the output result. Using the

test data set mentioned above, the sensitivity analysis proceeds as follows:

1. Generate a new observation xmean, with each attribute value in xmean equal to

the mean of the various attribute values for all records in the test set.

2. Find the network output for input xmean. Call it outputmean.

3. Attribute by attribute, vary xmean to reflect the attribute minimum and maxi-

mum. Find the network output for each variation and compare it to outputmean.

The sensitivity analysis will find that varying certain attributes from their min-

imum to their maximum will have a greater effect on the resulting network output

than it has for other attributes. For example, suppose that we are interested in predict-

ing stock price based on price to earnings ratio, dividend yield, and other attributes.

Also, suppose that varying price to earnings ratio from its minimum to its maximum

results in an increase of 0.20 in the network output, while varying dividend yield from

its minimum to its maximum results in an increase of 0.30 in the network output when

the other attributes are held constant at their mean value. We conclude that the net-

work is more sensitive to variations in dividend yield and that therefore dividend yield

is a more important factor for predicting stock prices than is price to earnings ratio.

12.13 APPLICATION OF NEURAL NETWORK
MODELING

Next, we apply a neural network model using Insightful Miner on the adult data

set from the UCal Irvine Machine Learning Repository. The Insightful Miner neural

network software was applied to a training set of 25,000 cases, using a single hidden

layer with eight hidden nodes. The algorithm iterated 47 epochs (runs through the

data set) before termination. The resulting neural network is shown in Figure 12.8.

The squares on the left represent the input nodes. For the categorical variables, there

is one input node per class. The eight dark circles represent the hidden layer. The

light gray circles represent the constant inputs. There is only a single output node,

indicating whether or not the record is classified as having income less than or equal

to $50,000.
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Figure 12.8 Neural network for the adult data set generated by Insightful Miner.

In this algorithm, the weights are centered at 0. An excerpt of the computer

output showing the weight values is provided in Figure 12.9. The columns in the

first table represent the input nodes: 1= age, 2= education-num, and so on, while

the rows represent the hidden layer nodes: 22= first (top) hidden node, 23= second

hidden node, and so on. For example, the weight on the connection from age to the

topmost hidden node is −0.97, while the weight on the connection from Race: Amer-
ican Indian/Eskimo (the sixth input node) to the last (bottom) hidden node is −0.75.

The lower section of Figure 12.9 displays the weights from the hidden nodes to the

output node.

The estimated prediction accuracy using this very basic model is 82%, which

is in the ballpark of the accuracies reported by Kohavi.3 As over 75% of the subjects

have incomes at or below $50,000, simply predicted “less than or equal to $50,000”

for every person would provide a baseline accuracy of about 75%.

3Ronny Kohavi, Scaling up the accuracy of naïve Bayes classifiers: A decision tree hybrid, Proceedings
of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, 1996.
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Figure 12.9 Some of the neural network weights for the income example.

However, we would like to know which variables are most important for pre-

dicting (classifying) income. We therefore perform a sensitivity analysis using Mod-

eler, with results shown in Figure 12.10. Clearly, the amount of capital gains is the

best predictor of whether a person has income less than or equal to $50,000, followed

by the number of years of education. Other important variables include the number

of hours worked per week and marital status. A person’s gender does not seem to be

highly predictive of income.

Of course, there is much more involved in developing a neural network classi-

fication model. For example, further data preprocessing may be called for; the model

Figure 12.10 Most important variables: results from sensitivity analysis.
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would need to be validated using a holdout validation data set, and so on. For a

start-to-finish application of neural networks to a real-world data set, from data prepa-

ration through model building and sensitivity analysis, see the Case Study in Chapters

29–32.

The R Zone
# Read in and prepare the data

adult <− read.csv(file = "C:/… /adult.txt",

stringsAsFactors=TRUE)

# Collapse categories as in Chapter 11

# We will work with a small sample of data

adult <− adult[1:500,]

# Determine how many Indicator variables are needed

unique(adult$income) # One variable for income

unique(adult$sex) # One variable for sex

unique(adult$race) # Four variables for race

unique(adult$workclass) # Three variables for workclass

unique(adult$marital.status) # Four variables for marital.status

# Create indicator variables

adult$race_white <− adult$race_black <− adult$race_as.pac.is <−
adult$race_am.in.esk <− adult$wc_gov <− adult$wc_self <− adult$wc_priv <−
adult$ms_marr <− adult$ms_div <− adult$ms_sep <− adult$ms_wid <−
adult$income_g50K <− adult$sex2 <− c(rep(0, length(adult$income)))

for (i in 1:length(adult$income)) {

if(adult$income[i]==">50K.")

adult$income_g50K[i]<−1

if(adult$sex[i] == "Male")

adult$sex2[i] <− 1

if(adult$race[i] == "White") adult$race_white[i] <− 1

if(adult$race[i] == "Amer-Indian-Eskimo") adult$race_am.in.esk[i] <− 1

if(adult$race[i] == "Asian-Pac-Islander") adult$race_as.pac.is[i] <− 1

if(adult$race[i] == "Black") adult$race_black[i] <− 1

if(adult$workclass[i] == "Gov") adult$wc_gov[i] <− 1

if(adult$workclass[i] == "Self") adult$wc_self[i] <− 1

if(adult$workclass[i] == "Private" ) adult$wc_priv[i] <− 1

if(adult$marital.status[i] == "Married") adult$ms_marr[i] <− 1

if(adult$marital.status[i] == "Divorced" ) adult$ms_div[i] <− 1

if(adult$marital.status[i] == "Separated" ) adult$ms_sep[i] <− 1

if(adult$marital.status[i] == "Widowed" ) adult$ms_wid[i] <− 1

}
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# Minimax transform the continuous variables

adult$age_mm <− (adult$age - min(adult$age))/(max(adult$age)-min(adult$age))

adult$edu.num_mm <− (adult$education.num - min(adult$education.num))/

(max(adult$education.num)-min(adult$education.num))

adult$capital.gain_mm <− (adult$capital.gain - min(adult$capital.gain))/

(max(adult$capital.gain)- min(adult$capital.gain))

adult$capital.loss_mm <− (adult$capital.loss - min(adult$capital.loss))/

(max(adult$capital.loss)- min(adult$capital.loss))

adult$hours.p.w_mm <− (adult$hours.per.week - min(adult$hours.per.week))/

(max(adult$hours.per.week)-min(adult$hours.per.week))

newdat <− as.data.frame(adult[,-c(1:15)]) # Get rid of the variables we no longer need

# Run the neural net

library(nnet) # Requires package nnet

net.dat <− nnet(income_g50K ∼ ., data = newdat, size = 8)

table(round(net.dat$fitted.values, 1)) # If fitted values are all the same, rerun nnet

net.dat$wts # Weights

hist(net.dat$wts)

R REFERENCES

1. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Founda-

tion for Statistical Computing; 2012. ISBN: 3-900051-07-0, http://www.R-project.org/.

2. Venables WN, Ripley BD. Modern Applied Statistics with S. 4th ed. New York: Springer; 2002. ISBN:

0-387-95457-0.

EXERCISES

1. Suppose that you need to prepare the data in Table 6.10 for a neural network algorithm.

Define the indicator variables for the occupation attribute.

2. Clearly describe each of these characteristics of a neural network:

a. Layered

b. Feedforward

c. Completely connected

3. What is the sole function of the nodes in the input layer?

4. Should we prefer a large hidden layer or a small one? Describe the benefits and drawbacks

of each.

5. Describe how neural networks function nonlinearly.

6. Explain why the updating term for the current weight includes the negative of the sign of

the derivative (slope).

7. Adjust the weights W0B, W1B, W2B, and W3B from the example on back-propagation in the

text.

http://www.R-project.org
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8. Refer to Exercise 7. Show that the adjusted weights result in a smaller prediction error.

9. True or false: Neural networks are valuable because of their capacity for always finding

the global minimum of the SSE.

10. Describe the benefits and drawbacks of using large or small values for the learning rate.

11. Describe the benefits and drawbacks of using large or small values for the momentum

term.

HANDS-ON ANALYSIS

For Exercises 12–14, use the data set churn. Normalize the numerical data, recode the cate-

gorical variables, and deal with the correlated variables.

12. Generate a neural network model for classifying churn based on the other variables.

Describe the topology of the model.

13. Which variables, in order of importance, are identified as most important for classifying

churn?

14. Compare the neural network model with the classification and regression tree (CART)

and C4.5 models for this task in Chapter 11. Describe the benefits and drawbacks of the

neural network model compared to the others. Is there convergence or divergence of results

among the models?

For Exercises 15–17, use the ClassifyRisk data set.

15. Run a NN model predicting income based only on age. Use the default settings and make

sure there is one hidden layer with one neuron.

16. Consider the following quantity: (weight for Age-to-Neuron1)+ (weight for Bias-

to-Neuron1)*(weight for Neuron 1-to-Output node). Explain whether this makes sense,

given the data, and why.

17. Make sure the target variable takes the flag type. Compare the sign of (weight for

Age-to-Neuron1)+ (weight for Bias-to-Neuron1)*(weight for Neuron 1-to-Output node)

for the good risk output node, as compared to the bad loss output node. Explain whether

this makes sense, given the data, and why.

IBM/SPSS Modeler Analysis. For Exercises 18, 19, use the nn1 data set.

18. Set your neural network build options as follows: Use a Multilayer Perceptron and cus-

tomize number of units in Hidden Layer 1 to be 1 and Hidden Layer 2 to be 0. For Stopping

Rules, select ONLY Customize number of maximum training cycles. Start at 1 and go to

about 20. For Advanced, de-select Replicate Results.

19. Browse your model. In the Network window of the Model tab, select the Style: Coeffi-

cients. Record the Pred1-to-Neuron1 weight and the Pred2-to-Neuron1 weight for each

run. Describe the behavior of these weights. Explain why this is happening.



C H A P T E R 13
LOGISTIC REGRESSION

Linear regression is used to approximate the relationship between a continuous

response variable and a set of predictor variables. However, for many data applica-

tions, the response variable is categorical rather than continuous. For such cases,

linear regression is not appropriate. Fortunately, the analyst can turn to an analogous

method, logistic regression, which is similar to linear regression in many ways.

Logistic regression refers to methods for describing the relationship between

a categorical response variable and a set of predictor variables. In this chapter, we

explore the use of logistic regression for binary or dichotomous variables; those inter-

ested in using logistic regression for response variables with more than two categories

may refer to Hosmer and Lemeshow.1 To motivate logistic regression, and to illustrate

its similarities to linear regression, consider the following example.

13.1 SIMPLE EXAMPLE OF LOGISTIC REGRESSION

Suppose that medical researchers are interested in exploring the relationship between

patient age (x) and the presence (1) or absence (0) of a particular disease (y). The data

collected from 20 patients is shown in Table 13.1, and a plot of the data is shown in

Figure 13.1. The plot shows the least-squares regression line (dotted straight line),

and the logistic regression line (solid curved line), along with the estimation error for

patient 11 (age= 50, disease= 0) for both lines.

Note that the least-squares regression line is linear, which means that linear

regression assumes that the relationship between the predictor and the response is

linear. Contrast this with the logistic regression line that is nonlinear, meaning that

logistic regression assumes the relationship between the predictor and the response

is nonlinear. The scatter plot makes plain the discontinuity in the response variable;

scatter plots that look like this should alert the analyst not to apply linear regression.

Consider the prediction errors for patient 11, indicated in Figure 13.1. The dis-

tance between the data point for patient 11 (x= 50, y= 0) and the linear regression line

is indicated by the dotted vertical line, while the distance between the data point and

the logistic regression line is shown by the solid vertical line. Clearly, the distance

1Hosmer and Lemeshow, Applied Logistic Regression, 3rd edition, John Wiley and Sons, 2013.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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TABLE 13.1 Age of 20 patients, with indicator of disease

Patient ID 1 2 3 4 5 6 7 8 9 10

Age (x) 25 29 30 31 32 41 41 42 44 49

Disease (y) 0 0 0 0 0 0 0 0 1 1

Patient ID 11 12 13 14 15 16 17 18 19 20
Age (x) 50 59 60 62 68 72 79 80 81 84

Disease (y) 0 1 0 0 1 0 1 0 1 1

25 35 45 55

Age

0.0

0.5

1.0

65 75 85

D
is

e
a

s
e

Figure 13.1 Plot of disease versus age, with least squares and logistic regression lines.

is greater for the linear regression line, which means that linear regression does a

poorer job of estimating the presence of disease as compared to logistic regression

for patient 11. Similarly, this observation is also true for most of the other patients.

Where does the logistic regression curve come from? Consider the conditional
mean of Y given X = x, denoted as E(Y|x). This is the expected value of the response

variable for a given value of the predictor. Recall that, in linear regression, the

response variable is considered to be a random variable defined as Y = 𝛽0 + 𝛽1x + 𝜀.

Now, as the error term 𝜀 has mean zero, we then obtain E(Y|x) = 𝛽0 + 𝛽1x for linear

regression, with possible values extending over the entire real number line.

For simplicity, denote the conditional mean E(Y|x) as 𝜋(x). Then, the con-

ditional mean for logistic regression takes on a different form from that of linear

regression. Specifically,

𝜋(x) = e𝛽0+𝛽1x

1 + e𝛽0+𝛽1x
(13.1)

Curves of the form in equation (13.1) are called sigmoidal because they are S-shaped,

and therefore nonlinear. Statisticians have chosen the logistic distribution to model

dichotomous data because of its flexibility and interpretability. The minimum for

𝜋(x) is obtained at lim a→−∞

[
ea

1+ea

]
= 0, and the maximum for 𝜋(x) is obtained at

lim a→∞

[
ea

1+ea

]
= 1. Thus, 𝜋(x) is of a form that may be interpreted as a probability,
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with 0 ≤ 𝜋(x) ≤ 1. That is, 𝜋(x) may be interpreted as the probability that the posi-

tive outcome (e.g., disease) is present for records with X = x, and 1 − 𝜋(x) may be

interpreted as the probability that the positive outcome is absent for such records.

Linear regression models assume that Y = 𝛽0 + 𝛽1x + 𝜀, where the error term

𝜀 is normally distributed with mean zero and constant variance. The model assump-

tion for logistic regression is different. As the response is dichotomous, the errors can

take only one of two possible forms: If Y = 1 (e.g., disease is present), which occurs

with probability 𝜋(x) (the probability that the response is positive), then 𝜀 = 1 − 𝜋(x),
the vertical distance between the data point Y = 1 and the curve 𝜋(x) = e𝛽0+𝛽1x

1+e𝛽0+𝛽1x

directly below it, for X = x. However, if Y = 0 (e.g., disease is absent), which occurs

with probability 1 − 𝜋(x) (the probability that the response is negative), then 𝜀 =
0 − 𝜋(x) = −𝜋(x), the vertical distance between the data point Y = 0 and the curve

𝜋(x) directly above it, for X = x. Thus, the variance of 𝜀 is 𝜋(x)[1 − 𝜋(x)], which is the

variance for a binomial distribution, and the response variable in logistic regression

Y = 𝜋(x) + 𝜀 is assumed to follow a binomial distribution with probability of success

𝜋(x).
A useful transformation for logistic regression is the logit transformation, and

it is given as follows:

g(x) = ln

[
𝜋 (x)

1 − 𝜋(x)

]
= 𝛽0 + 𝛽1x

The logit transformation g(x) exhibits several attractive properties of the linear regres-

sion model, such as its linearity, its continuity, and its range from negative to positive

infinity.

13.2 MAXIMUM LIKELIHOOD ESTIMATION

One of the most attractive properties of linear regression is that closed-form solutions

for the optimal values of the regression coefficients may be obtained, courtesy of the

least-squares method. Unfortunately, no such closed-form solution exists for estimat-

ing logistic regression coefficients. Thus, we must turn to maximum-likelihood esti-
mation, which finds estimates of the parameters for which the likelihood of observing

the observed data is maximized.

The likelihood function l(𝛃|x) is a function of the parameters 𝛃 = 𝛽0, 𝛽1, … , 𝛽m
that expresses the probability of the observed data, x. By finding the values of 𝛃 =
𝛽0, 𝛽1, … , 𝛽m, which maximize l(𝛃|x), we thereby uncover the maximum-likelihood
estimators, the parameter values most favored by the observed data.

The probability of a positive response given the data is 𝜋(x) = P(Y = 1|x), and

the probability of a negative response given the data is given by 1 − 𝜋(x) = P(Y =
0|x). Then, observations where the response is positive, (Xi = xi, Yi = 1), will con-

tribute probability 𝜋(x) to the likelihood, while observations where the response is

negative, (Xi = xi, Yi = 0), will contribute probability 1 − 𝜋(x) to the likelihood.

Thus, as Yi = 0 or 1, the contribution to the likelihood of the ith observation may

be expressed as [𝜋(xi)]yi[1 − 𝜋(xi)]1−yi . The assumption that the observations are
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independent allows us to express the likelihood function l(𝛃|x) as the product of the

individual terms:

l(𝛃|x) = n∏
i=1

[𝜋(xi)]yi[1 − 𝜋(xi)]1−yi

The log-likelihood L(𝛃|x) = ln[l(𝛃|x)] is computationally more tractable:

L(𝛃|x) = ln[l(𝛃|x)] = n∑
i=1

{yi ln[𝜋(xi)] + (1 − yi) ln[1 − 𝜋(xi)]} (13.2)

The maximum-likelihood estimators may be found by differentiating L(𝛃|x) with

respect to each parameter, and setting the resulting forms equal to zero. Unfortu-

nately, unlike linear regression, closed-form solutions for these differentiations are

not available. Therefore, other methods must be applied, such as iterative weighted

least squares (see McCullagh and Nelder2).

13.3 INTERPRETING LOGISTIC REGRESSION OUTPUT

Let us examine the results of the logistic regression of disease on age, shown

in Table 13.2. The coefficients, that is, the maximum-likelihood estimates of the

unknown parameters 𝛽0 and 𝛽1, are given as b0 = −4.372 and b1 = 0.06696. Thus,

𝜋(x) = e𝛽0+𝛽1x

1+e𝛽0+𝛽1x is estimated as

𝜋(x) = eĝ(x)

1 + eĝ(x)
= e−4.372+0.06696(age)

1 + e−4.372+0.06696(age) ,

with the estimated logit

ĝ(x) = −4.372 + 0.06696(age).

These equations may then be used to estimate the probability that the disease is

present in a particular patient, given the patient’s age. For example, for a 50-year-old

patient, we have

ĝ(x) = −4.372 + 0.06696(50) = −1.024

and

𝜋(x) = eĝ(x)

1 + eĝ(x)
= e−1.024

1 + e−1.024
= 0.26

Thus, the estimated probability that a 50-year-old patient has the disease is 26%, and

the estimated probability that the disease is not present is 100%− 26% = 74%.

However, for a 72-year-old patient, we have

ĝ(x) = −4.372 + 0.06696(72) = 0.449

and

𝜋(x) = eĝ(x)

1 + eĝ(x)
= e0.449

1 + e0.449
= 0.61

2McCullagh and Nelder, Generalized Linear Models, 2nd edition, Chapman and Hall, London, 1989.
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TABLE 13.2 Logistic regression of disease on age, results from minitab

Logistic Regression Table
Odds        95% CI

Predictor       Coef      StDev        Z     P    Ratio    Lower    Upper
Constant      -4.372      1.966    -2.22 0.026
Age          0.06696    0.03223     2.08 0.038     1.07     1.00     1.14

Log-Likelihood = -10.101
Test that all slopes are zero: G = 5.696, DF = 1, P-Value = 0.017

The estimated probability that a 72-year-old patient has the disease is 61%, and the

estimated probability that the disease is not present is 39%.

13.4 INFERENCE: ARE THE PREDICTORS SIGNIFICANT?

Recall from simple linear regression that the regression model was considered sig-

nificant if mean square regression (MSR) was large compared to mean squared error

(MSE). The MSR is a measure of the improvement in estimating the response when

we include the predictor, as compared to ignoring the predictor. If the predictor vari-

able is helpful for estimating the value of the response variable, then MSR will be

large, the test statistic F = MSR

MSE
will also be large, and the linear regression model

will be considered significant.

Significance of the coefficients in logistic regression is determined analogously.

Essentially, we examine whether the model that includes a particular predictor pro-

vides a substantially better fit to the response variable than a model that does not

include this predictor.

Define the saturated model to be the model that contains as many parameters

as data points, such as a simple linear regression model with only two data points.

Clearly, the saturated model predicts the response variable perfectly, and there is no

prediction error. We may then look on the observed values of the response variable to

be the predicted values from the saturated model. To compare the values predicted by

our fitted model (with fewer parameters than data points) to predicted by the saturated

the values model, we use the deviance (McCullagh and Nelder3), as defined here:

Deviance = D = −2 ln
[

likelihood of the fitted model

likelihood of the saturated model

]
Here we have a ratio of two likelihoods, so that the resulting hypothesis test is called

a likelihood ratio test. In order to generate a measure whose distribution is known, we

must take −2 ln[likelihood ratio]. Denote the estimate of 𝜋(xi) from the fitted model

to be 𝜋i. Then, for the logistic regression case, and using equation (13.2), we have

3McCullagh and Nelder, Generalized Linear Models, 2nd edition, Chapman and Hall, London, 1989.
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deviance equal to:

Deviance = D = −2 ln

n∑
i=1

{
yi ln

[
𝜋i

yi

]
+ (1 − yi) ln

[
1 − 𝜋i

1 − yi

]}

The deviance represents the error left over in the model, after the predictors have been

accounted for. As such it is analogous to the sum of squares error in linear regression.

The procedure for determining whether a particular predictor is significant is

to find the deviance of the model without the predictor and subtract the deviance of

the model with the predictor, thus:

G = deviance(model without predictor) − deviance(model with predictor)

= −2 ln

[
likelihood without predictor

likelihood with predictor

]

Let n1 =
∑

yi and n0 =
∑

(1 − yi). Then, for the case of a single predictor only, we

have:

G = 2

{
n∑

i=1

[
yi ln

[
𝜋i

]
+ (1 − yi) ln[1 − 𝜋i]

]
− [n1 ln(n1) + n0 ln(n0) − n ln(n)]

}

For the disease example, note from Table 13.2 that the log-likelihood is given as

−10.101. Then,

G = 2{−10.101 − [7 ln(7) + 13 ln(13) − 20 ln(20)]} = 5.696

as indicated in Table 13.2.

The test statistic G follows a chi-square distribution with 1 degree of freedom

(i.e.,𝜒2
𝜈=1

), assuming that the null hypothesis is true that 𝛽1 = 0. The resulting p-value

for this hypothesis test is therefore P(𝜒2
1
) > Gobserved = P(𝜒2

1
) > 5.696 = 0.017, as

shown in Table 13.2. This fairly small p-value indicates that there is evidence that

age is useful in predicting the presence of disease.

Another hypothesis test used to determine whether a particular predictor is sig-

nificant is the Wald test (e.g., Rao4). Under the null hypothesis that 𝛽1 = 0, the ratio

ZWald =
b1

SE(b1)

follows a standard normal distribution, where SE refers to the standard error of the

coefficient, as estimated from the data and reported by the software. Table 13.2 pro-

vides the coefficient estimate and the standard error as follows: b1 = 0.06696 and

SE(b1) = 0.03223, giving us:

ZWald = 0.06696

0.03223
= 2.08

as reported under z for the coefficient age in Table 13.2. The p-value is then reported

as P(|z| > 2.08) = 0.038. This p-value is also fairly small, although not as small as

4Rao, Linear Statistical Inference and Its Application, 2nd edition, John Wiley and Sons, Inc., 1973.
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the likelihood ratio test, and therefore concurs in the significance of age for predicting

disease.

We may construct 100(1 − 𝛼)% confidence intervals for the logistic regression

coefficients, as follows.

b0 ± z ⋅ SE(b0)
b1 ± z ⋅ SE(b1)

where z represents the z-critical value associated with 100(1 − 𝛼)% confidence.

In our example, a 95% confidence interval for the slope 𝛽1 could be found thus:

b1 ± z ⋅ SE(b1) = 0.06696 ± (1.96)(0.03223)
= 0.06696 ± 0.06317

= (0.00379, 0.13013)

As zero is not included in this interval, we can conclude with 95% confidence that

𝛽1 ≠ 0, and that therefore the variable age is significant.

The above results may be extended from the simple (one predictor) logistic

regression model to the multiple (many predictors) logistic regression model. (See

Hosmer and Lemeshow5 for details.)

13.5 ODDS RATIO AND RELATIVE RISK

Recall from simple linear regression that the slope coefficient 𝛽1 was interpreted as

the change in the response variable for every unit increase in the predictor. The slope

coefficient 𝛽1 is interpreted analogously in logistic regression, but through the logit

function. That is, the slope coefficient 𝛽1 may be interpreted as the change in the value

of the logit for a unit increase in the value of the predictor. In other words,

𝛽1 = g(x + 1) − g(x)

In this section, we discuss the interpretation of 𝛽1 in simple logistic regression

for the following three cases:

1. A dichotomous predictor

2. A polychotomous predictor

3. A continuous predictor.

To facilitate our interpretation, we need to consider the concept of odds. Odds

may be defined as the probability that an event occurs divided by the probability that

the event does not occur. For example, earlier we found that the estimated probability

that a 72-year-old patient has the disease is 61%, and the estimated probability that the

72-year-old patient does not have the disease is 39%. Thus, the odds of a 72-year-old

patient having the disease equal odds = 0.61

0.39
= 1.56. We also found that the estimated

probabilities of a 50-year-old patient having or not having the disease are 26% and

5Hosmer and Lemeshow, Applied Logistic Regression, 3rd edition, John Wiley and Sons, 2013.
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74%, respectively, providing odds for the 50-year-old patient to be odds = 0.26

0.74
=

0.35.

Note that when the event is more likely than not to occur, then odds > 1; when

the event is less likely than not to occur, then odds < 1; and when the event is just as

likely as not to occur, then odds = 1. Note also that the concept of odds differs from

the concept of probability, because probability ranges from zero to one while odds

can range from zero to infinity. Odds indicate how much more likely it is that an event

occurred compared to it is not occurring.

In binary logistic regression with a dichotomous predictor, the odds that the

response variable occurred (y= 1) for records with x= 1 can be denoted as:

𝜋(1)
1 − 𝜋(1)

=
e𝛽0+𝛽1

1+e𝛽0+𝛽1

1

1+e𝛽0+𝛽1

= e𝛽0+𝛽1

Correspondingly, the odds that the response variable occurred for records with

x= 0 can be denoted as:

𝜋(0)
1 − 𝜋(0)

=
e𝛽0

1+e𝛽0

1

1+e𝛽0

= e𝛽0

The odds ratio (OR) is defined as the odds that the response variable occurred

for records with x= 1 divided by the odds that the response variable occurred for

records with x= 0. That is,

Odds ratio = OR =
𝜋(1)∕[1 − 𝜋(1)]
𝜋(0)∕[1 − 𝜋(0)]

= e𝛽0+𝛽1

e𝛽0

= e𝛽1 (13.3)

The OR is sometimes used to estimate the relative risk, defined as the probability that

the response occurs for x= 1 divided by the probability that the response occurs for

x= 0. That is,

Relative risk = 𝜋(1)
𝜋(0)

For the OR to be an accurate estimate of the relative risk, we must have [1−𝜋(0)]
[1−𝜋(1)] ≈ 1,

which we obtain when the probability that the response occurs is small, for both x= 1

and x= 0.

The OR has come into widespread use in the research community, because of

the above simply expressed relationship between the OR and the slope coefficient.

For example, if a clinical trial reports that the OR for endometrial cancer among

ever-users and never-users of estrogen replacement therapy is 5.0, then this may be

interpreted as meaning that ever-users of estrogen replacement therapy are five times

more likely to develop endometrial cancer than are never-users. However, this inter-

pretation is valid only when
[1−𝜋(0)]
[1−𝜋(1)] ≈ 1.
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13.6 INTERPRETING LOGISTIC REGRESSION FOR A
DICHOTOMOUS PREDICTOR

Recall the churn data set,

where we were interested

in predicting whether a

customer would leave the

cell phone company’s

service (churn), based on

a set of predictor

variables. For this simple

logistic regression

example, assume that the

only predictor available is

Voice Mail Plan, a flag

variable indicating

membership in the plan.

The cross-tabulation of churn by Voice Mail Plan membership is shown in

Table 13.3.

The likelihood function is then given by:

l(𝛃|x) = [𝜋(0)]403 × [1 − 𝜋(0)]2008 × [𝜋(1)]80 × [1 − 𝜋(1)]842

Note that we may use the entries from Table 13.3 to construct the odds and the

OR directly.

• Odds of those with Voice Mail Plan churning= 𝜋(1)
[1 − 𝜋(1)]

= 80

842
= 0.0950

• Odds of those without Voice Mail Plan churning= 𝜋(0)
[1 − 𝜋(0)]

= 403

2008
=

0.2007, and

Odds ratio = OR =
𝜋(1)∕[1 − 𝜋(1)]
𝜋(0)∕[1 − 𝜋(0)]

=
80∕842

403∕2008
= 0.47

TABLE 13.3 Cross-tabulation of churn by membership in the voice mail plan

VMail = No

x = 0

VMail = Yes

x = 1

Total

Churn = False

y = 0

2008 842 2850

Churn = True

y = 1

403 80 483

Total 2411 922 3333
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That is, the odds of churning for those with the Voice Mail Plan is only 0.47 as

large as the odds of churning for those without the Voice Mail Plan. Note that the OR

can also be calculated as the following cross product:

Odds ratio = OR = 𝜋(1) ⋅ [1 − 𝜋(0)]
𝜋(0) ⋅ [1 − 𝜋(1)]

= 80 ⋅ 2008

403 ⋅ 842
= 0.47

The logistic regression can then be performed, with the results shown in Table 13.4.

TABLE 13.4 Results of logistic regression of churn on voice mail plan

Logistic Regression Table

Odds     95% CI
Predictor       Coef    SE Coef       Z      P  Ratio  Lower  Upper
Constant    -1.60596  0.0545839  -29.42  0.000
VMail      -0.747795   0.129101   -5.79  0.000   0.47   0.37   0.61

Log-Likelihood = -1360.165
Test that all slopes are zero: G = 37.964, DF = 1, P-Value = 0.000

First, note that the OR reported by Minitab equals 0.47, the same value we

found using the cell counts directly. Next, equation (13.3) tells us that OR = e𝛽1 . We

verify this by noting that b1 = −0.747795, so that eb1 = 0.47.

Here we have b0 = −1.60596 and b1 = −0.747795. So, the probability of

churning for a customer belonging (x = 1) or not belonging (x = 0) to the voice mail

plan is estimated as:

𝜋(x) = eĝ(x)

1 + eĝ(x)
= e−1.60596+−0.747795(x)

1 + e−1.60596+−0.747795(x) ,

with the estimated logit:

ĝ(x) = −1.60596 − 0.747795(x).

For a customer belonging to the plan, we estimate his or her probability of

churning:

ĝ(1) = −1.60596 − 0.747795(1) = −2.3538

and

𝜋(1) = eĝ(x)

1 + eĝ(x)
= e−2.3538

1 + e−2.3538
= 0.0868

So, the estimated probability that a customer who belongs to the voice mail plan

will churn is only 8.68%, which is less than the overall proportion of churners

in the data set, 14.5%, indicating that belonging to the voice mail plan protects

against churn. Also, this probability could have been found directly from Table 13.3,

P(churn|voice mail plan) = 80

922
= 0.0868.

For a customer not belonging to the voice mail plan, we estimate the probability

of churning:

ĝ(0) = −1.60596 − 0.747795(0) = −1.60596
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and

𝜋(0) = eĝ(x)

1 + eĝ(x)
= e−1.60596

1 + e−1.60596
= 0.16715

This probability is slightly higher than the overall proportion of churners in the data

set, 14.5%, indicating that not belonging to the voice mail may be slightly indicative

of churning. This probability could also have been found directly from Table 13.3,

P(churn|not voice mail plan) = 403

2411
= 0.16715.

Next, we apply the Wald test for the significance of the parameter for voice

mail plan. We have b1 = −0.747795, and SE(b1) = 0.129101, giving us:

ZWald = −0.747795

0.129101
= −5.79,

as reported under z for the coefficient Voice Mail Plan in Table 13.4. The p-value is

P(|z| > 5.79) ≅ 0.000, which is strongly significant. There is strong evidence that the

Voice Mail Plan variable is useful for predicting the churn.

A 100(1 − 𝛼)% confidence interval for the OR may be found thus:

exp[b1 ± z ⋅ ŜE(b1)]

where exp[a] represents ea.

Thus, here we have a 95% confidence interval for the OR given by:

exp[b1 ± z ⋅ ŜE(b1)] = exp[−0.747795 ± (1.96) ⋅ (0.129101)]
= (e−1.0008, e−0.4948)
= (0.37, 0.61)

as reported in Table 13.4. Thus, we are 95% confident that the OR for churning among

voice mail plan members and nonmembers lies between 0.37 and 0.61. As the interval

does not include e0 = 1, the relationship is significant with 95% confidence.

We can use the cell entries to estimate the standard error of the coefficients

directly, as follows (result from Bishop, Feinberg, and Holland6). The standard error

for the logistic regression coefficient b1 for Voice Mail Plan is estimated as follows:

ŜE(b1) =
√

1

403
+ 1

2008
+ 1

80
+ 1

842
= 0.129101

In this churn example, the voice mail members were coded as 1 and the non-

members coded as 0. This is an example of reference cell coding, where the reference

cell refers to the category coded as zero. ORs are then calculated as the comparison of

the members relative to the nonmembers, that is, with reference to the nonmembers.

In general, for variables coded as a and b rather than 0 and 1, we have:

ln[OR(a, b)] = ĝ(x = a) − ĝ(x = b)
= (b0 + b1 ⋅ a) − (b0 + b1 ⋅ b)
= b1(a − b) (13.4)

6Bishop, Feinberg, and Holland, Discrete Multivariate Analysis: Theory and Practice, MIT Press, 1975.
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So an estimate of the OR in this case is given by:

exp(b1(a − b))

which becomes eb1 when a = 1 and b = 0.

13.7 INTERPRETING LOGISTIC REGRESSION FOR A
POLYCHOTOMOUS PREDICTOR

For the churn data set, suppose we categorize the customer service calls variable into

a new variable CSC as follows:

• Zero or one customer service calls: CSC= Low

• Two or three customer service calls: CSC=Medium

• Four or more customer service calls: CSC=High.

Then, CSC is a trichotomous predictor. How will logistic regression handle this? First,

the analyst will need to code the data set using indicator (dummy) variables and ref-

erence cell coding. Suppose we choose CSC= Low to be our reference cell. Then

we assign the indicator variable values to two new indicator variables CSC_Med and

CSC_Hi, given in Table 13.5. Each record will have assigned to it a value of zero or

one for each of CSC_Med and CSC_Hi. For example, a customer with 1 customer

service call will have values CSC_Med= 0 and CSC_Hi= 0, a customer with three

customer service calls will have CSC_Med= 1 and CSC_Hi= 0, and a customer with

seven customer service calls will have CSC_Med= 0 and CSC_Hi= 1.

Table 13.6 shows a cross-tabulation of churn by CSC.

Using CSC= Low as the reference class, we can calculate the ORs using the

cross products as follows:

• For CSC=Medium, we have OR = 131 ⋅ 1664

214 ⋅ 1057
= 0.963687 ≈ 0.96;

TABLE 13.5 Reference cell encoding for customer service calls indicator variables

CSC_Med CSC_Hi

Low (0–1 calls) 0 0

Medium (2–3 calls) 1 0

High (≥ 4 calls) 0 1

TABLE 13.6 Cross-tabulation of churn by CSC

CSC = Low CSC = Medium CSC = High Total

Churn = False y = 0 1664 1057 129 2850

Churn = True y = 1 214 131 138 483

Total 1878 1188 267 3333
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• For CSC=High, we have OR = 138 ⋅ 1664

214 ⋅ 129
= 8.31819 ≈ 8.32.

The logistic regression is then performed, with the results shown in Table 13.7.

TABLE 13.7 Results of logistic regression of churn on CSC

Logistic Regression Table

Odds     95% CI
Predictor        Coef    SE Coef       Z      P  Ratio  Lower  Upper
Constant     -2.05100  0.0726213  -28.24  0.000
CSC-Med    -0.0369891   0.117701   -0.31  0.753   0.96 0.77   1.21
CSC-Hi        2.11844   0.142380   14.88  0.000   8.32   6.29  11.00

Log-Likelihood = -1263.368
Test that all slopes are zero: G = 231.557, DF = 2, P-Value = 0.000

Note that the ORs reported by Minitab are the same that we found using the

cell counts directly. We verify the ORs given in Table 13.7 using equation (13.3):

• CSC_Med: ÔR = eb1 = e−0.0369891 = 0.96

• CSC_Hi: ÔR = eb2 = e2.11844 = 8.32

Here we have b0 = −2.051, b1 = −0.0369891, and b2 = 2.11844. So, the prob-

ability of churning is estimated as:

𝜋(x) = eĝ(x)

1 + eĝ(x)
= e−2.051−0.0369891(CSC Med)+2.11844(CSC Hi)

1 + e−2.051−0.0369891(CSC Med)+2.11844(CSC Hi)

with the estimated logit:

ĝ(x) = −2.051 − 0.0369891 (CSC_Med) + 2.11844(CSC_Hi)

For a customer with low customer service calls, we estimate his or her proba-

bility of churning:

ĝ(0, 0) = −2.051 − 0.0369891(0) + 2.11844(0) = −2.051

and

𝜋(0, 0) = eĝ(0,0)

1 + eĝ(0,0)
= e−2.051

1 + e−2.051
= 0.114

So, the estimated probability that a customer with low numbers of customer service

calls will churn is 11.4%, which is less than the overall proportion of churners in

the data set, 14.5%, indicating that such customers churn somewhat less frequently

than the overall group. Also, this probability could have been found directly from

Table 13.6, P(churn|CSC = low) = 214

1878
= 0.114.

For a customer with medium customer service calls, the probability of churn is

estimated as:

ĝ(1, 0) = −2.051 − 0.0369891(1) + 2.11844(0) = −2.088
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and

𝜋(1, 0) = eĝ(1,0)

1 + eĝ(1,0)
= e−2.088

1 + e−2.088
= 0.110

The estimated probability that a customer with medium numbers of customer ser-

vice calls will churn is 11.0%, which is about the same as that for customers with

low numbers of customer service calls. The analyst may consider collapsing the dis-

tinction between CSC_Med and CSC_Low. This probability could have been found

directly from Table 13.6, P(churn|CSC = medium) = 131

1188
= 0.110.

For a customer with high customer service calls, the probability of churn is

estimated as:

ĝ(0, 1) = −2.051 − 0.0369891(0) + 2.11844(1) = 0.06744

and

𝜋(0, 1) = eĝ(0,1)

1 + eĝ(0,1)
= e0.06744

1 + e0.06744
= 0.5169

Thus, customers with high levels of customer service calls have a much higher esti-

mated probability of churn, over 51%, which is more than triple the overall churn

rate. Clearly, the company needs to flag customers who make four or more customer

service calls, and intervene with them before they leave the company’s service. This

probability could also have been found directly from Table 13.6, P(churn|CSC =
high) = 138

267
= 0.5169.

Applying the Wald test for the significance of the CSC_Med parameter, we have

b1 = −0.0369891, and SE(b1) = 0.117701, giving us:

ZWald = −0.0369891

0.117701
= −0.31426,

as reported under z for the coefficient CSC_Med in Table 13.7. The p-value is P(|z| >
0.31426) = 0.753, which is not significant. There is no evidence that the CSC_Med
versus CSC_Low distinction is useful for predicting the churn.

For the CSC_Hi parameter, we have b1 = 2.11844, and SE(b1) = 0.142380,

giving us:

ZWald = 2.11844

0.142380
= 14.88

as shown for the coefficient CSC_Hi in Table 13.7. The p-value, P(|z| > 14.88) ≅
0.000, indicates that there is strong evidence that the distinction CSC_Hi versus

CSC_Low is useful for predicting the churn.

Examining Table 13.7, note that the ORs for both CSC=Medium and

CSC=High are equal to those we calculated using the cell counts directly. Also note

that the logistic regression coefficients for the indicator variables are equal to the

natural log of their respective ORs:

bCSC-Med = ln(0.96) ≈ ln(0.963687) = −0.0369891

bCSC-High = ln(8.32) ≈ ln(8.31819) = 2.11844
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For example, the natural log of the OR of CSC_High to CSC_Low can be

derived using equation (13.4) as follows:

ln[OR(High,Low)] = ĝ(High) − ĝ(Low)
= [b0 + b1 ⋅ (CSC_Med = 0) + b2 ⋅ (CSC_Hi = 1)]
− [b0 + b1 ⋅ (CSC_Med = 0) + b2 ⋅ (CSC_Hi = 0)]

= b2 = 2.11844

Similarly, the natural log of the OR of CSC_Medium to CSC_Low is given by:

ln[OR(Medium,Low)] = ĝ(Medium) − ĝ(Low)
= [b0 + b1 ⋅ (CSC_Med = 1) + b2 ⋅ (CSC_Hi = 0)]
− [b0 + b1 ⋅ (CSC_Med = 0) + b2 ⋅ (CSC_Hi = 0)]

= b1 = −0.0369891

Just as for the dichotomous case, we may use the cell entries to estimate the

standard error of the coefficients directly. For example, the standard error for the

logistic regression coefficient b1 for CSC_Med is estimated as follows:

ŜE(b1) =
√

1

131
+ 1

1664
+ 1

214
+ 1

1057
= 0.117701

Also similar to the dichotomous case, we may calculate 100(1 − 𝛼)% confi-

dence intervals for the ORs, for the ith predictor, as follows:

exp[bi ± z ⋅ ŜE(bi)]

For example, a 95% confidence interval for the OR between CSC_Hi and

CSC_Low is given by:

exp[b2 ± z ⋅ ŜE(b2)] = exp[2.11844 ± (1.96) ⋅ (0.142380)]
= (e1.8394, e2.3975)
= (6.29, 11.0),

as reported in Table 13.7. We are 95% confident that the OR for churning for cus-

tomers with high customer service calls compared to customers with low customer

service calls lies between 6.29 and 11.0. As the interval does not include e0 = 1, the

relationship is significant with 95% confidence.

However, consider the 95% confidence interval for the OR between CSC_Med
and CSC_Low:

exp[b1 ± z ⋅ ŜE(b1)] = exp[−0.0369891 ± (1.96) ⋅ (0.117701)]
= (e−0.2677, e0.1937)
= (0.77, 1.21),

as reported in Table 13.7. We are 95% confident that the OR for churning for cus-

tomers with medium customer service calls compared to customers with low cus-

tomer service calls lies between 0.77 and 1.21. As this interval does include e0 = 1,
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then the relationship is not significant with 95% confidence. Depending on other mod-

eling factors, the analyst may consider collapsing CSC_Med and CSC_Low into a

single category.

13.8 INTERPRETING LOGISTIC REGRESSION FOR A
CONTINUOUS PREDICTOR

Our first example of predicting the presence of disease based on age was an instance of

using a continuous predictor in logistic regression. Here we present another example,

based on the churn data set. Suppose we are interested in predicting churn based on

a single continuous variable, Day Minutes.

We first examine an individual value plot of the day minute usage among churn-

ers and non-churners, provided in Figure 13.2.

The plot seems to indicate that churners have slightly higher mean day

minute usage than non-churners, meaning that heavier usage may be a predictor

of churn. We verify this using the descriptive statistics given in Table 13.8. The

mean and five-number-summary for the churn= true customers indicates higher day

minutes usage than for the churn= false customers, supporting the observation from

Figure 13.2.

Is this difference significant? A two-sample t-test is carried out, with the null

hypothesis being that there is no difference in true mean day minute usage between

churners and non-churners. The results are shown in Table 13.9.

The resulting t-statistic is −9.68, with a p-value rounding to zero, representing

strong significance. That is, the null hypothesis that there is no difference in true mean

day minute usage between churners and non-churners is strongly rejected.
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Individual value plot of day minutes vs churn
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Figure 13.2 Churners have slightly higher mean day minutes usage.
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TABLE 13.8 Descriptive statistics for day minutes by churn

Descriptive Statistics: Day Mins 
Five – Number - Summary

Variable  Churn   N      Mean   StDev   Min   Q1     Median    Q3        Max
Day Mins  False 2850   175.18  50.18  0.00  142.75  177.20   210.30   315.60

True 483   206.91  69.00  0.00  153.10  217.60   266.00   350.80

TABLE 13.9 Results of two-sample t-test for day minutes by churn

Two-Sample T-Test and CI: Day Mins, Churn 

Two-sample T for Day Mins

Churn     N   Mean  StDev  SE Mean
False  2850  175.2   50.2     0.94
True    483  206.9   69.0      3.1

Difference = mu (False) - mu (True)
Estimate for difference:  -31.7383
95% CI for difference:  (-38.1752, -25.3015)
T-Test of difference = 0 (vs not =): T-Value = -9.68  P-Value = 0.000  DF = 571

Let us reiterate our word of caution about carrying out inference in data mining

problems, or indeed in any problem where the sample size is very large. Most statisti-

cal tests become very sensitive at very large sample sizes, rejecting the null hypothesis

for tiny effects. The analyst needs to understand that, just because the effect is found

to be statistically significant because of the huge sample size, it does not necessarily

follow that the effect is of practical significance. The analyst should keep in mind the

constraints and desiderata of the business or research problem, seek confluence of

results from a variety of models, and always retain a clear eye for the interpretability

of the model and the applicability of the model to the original problem.

Note that the t-test does not give us an idea of how an increase in Day Minutes
affects the odds that a customer will churn. Neither does the t-test provide a method

for finding the probability that a particular customer will churn, based on the cus-

tomer’s day minutes usage. To learn this, we must turn to logistic regression, which

we now carry out, with the results given in Table 13.10.

First, we verify the relationship between the OR for Day Minutes and its coef-

ficient. ÔR = eb1 = e0.0112717 = 1.011335 ≅ 1.01, as shown in Table 13.10. We dis-

cuss interpreting this value a bit later. In this example we have b0 = −3.92929 and

b1 = 0.0112717. Thus, the probability of churning 𝜋(x) = e𝛽0+𝛽1x

1+e𝛽0+𝛽1x for a customer

with a given number of day minutes is estimated as:

𝜋(x) = eĝ(x)

1 + eĝ(x)
= e−3.92929+0.0112717(day minutes)

1 + e−3.92929+0.0112717(day minutes)
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TABLE 13.10 Results of logistic regression of churn on day minutes

Logistic Regression Table

Odds     95% CI
Predictor       Coef    SE Coef Z      P  Ratio  Lower  Upper
Constant    -3.92929   0.202822  -19.37  0.000
Day Mins   0.0112717  0.0009750   11.56  0.000   1.01   1.01   1.01

Log-Likelihood = -1307.129
Test that all slopes are zero: G = 144.035, DF = 1, P-Value = 0.000

with the estimated logit:

ĝ(x) = −3.92929 + 0.0112717(day minutes).

For a customer with 100 day minutes, we can estimate his or her probability of

churning:

ĝ(100) = −3.92929 + 0.0112717(100) = −2.80212

and

𝜋(100) = eĝ(100)

1 + eĝ(100)
= e−2.80212

1 + e−2.80212
= 0.0572

Thus, the estimated probability that a customer with 100 day minutes will churn is

less than 6%. This is less than the overall proportion of churners in the data set, 14.5%,

indicating that low day minutes somehow protects against churn.

However, for a customer with 300 day minutes, we have

ĝ(300) = −3.92929 + 0.0112717(300) = −0.54778

and

𝜋(300) = eĝ(300)

1 + eĝ(300)
= e−0.54778

1 + e−0.54778
= 0.3664

The estimated probability that a customer with 300 day minutes will churn is over

36%, which is more than twice the overall proportion of churners in the data set,

indicating that heavy-use customers have a higher propensity to churn.

The deviance difference G for this example is given by:

G = deviance(model without predictor) − deviance(model with predictor)

= −2 ln

[
likelihood without predictor

likelihood with predictor

]

= 2

{
n∑

i=1

[
yi ln

[
𝜋i

]
+ (1 − yi) ln[1 − 𝜋i]

]
− [n1 ln(n1) + n0 ln(n0) − n ln(n)]

}

= 2{−1307.129 − [483 ln(483) + 2850 ln(2850) − 3333 ln(3333)]}
= 144.035

as indicated in Table 13.10.
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The p-value for the chi-square test for G, under the assumption that the null

hypothesis is true (𝛽1 = 0), is given by P(𝜒2
1
) > Gobserved = P(𝜒2

1
) > 144.035 ≅

0.000, as shown in Table 13.10. Thus, the logistic regression concludes that there is

strong evidence that Day Minutes is useful in predicting churn.

Applying the Wald test for the significance of the Day Minutes parameter, we

have b1 = 0.0112717, and SE(b1) = 0.0009750, giving us:

ZWald = 0.0112717

0.0009750
= 11.56,

as shown in Table 13.10. The associated p-value of P(|z| > 11.56) ≅ 0.000, using

𝛼 = 0.05, indicates strong evidence for the usefulness of the Day Minutes variable

for predicting churn.

Examining Table 13.10, note that the coefficient for Day Minutes is equal to

the natural log of its OR:

bday minutes = ln(1.01) ≈ ln(1.011335) = 0.0112717

Also, this coefficient may be derived as follows, similarly to equation (13.4),

as follows:

ln[OR(day minutes)] = ĝ(x + 1) − ĝ(x)
= [b0 + b1 ⋅ (x + 1)]
− [b0 + b1 ⋅ (x)]

= b1 = 0.0112717 (13.5)

This derivation provides us with the interpretation of the value for b1. That is, b1

represents the estimated change in the log OR, for a unit increase in the predictor.
In this example, b1 = 0.0112717, which means that, for every additional day minute

that the customer uses, the log OR for churning increases by 0.0112717.

The value for the OR we found above, ÔR = eb1 = e0.0112717 = 1.011335 ≅
1.01, may be interpreted as the odds of a customer with x+ 1 minutes churning com-

pared to the odds of a customer with x minutes churning. For example, a customer

with 201 minutes is about 1.01 times as likely to churn as compared to a customer

with 200 minutes.

This unit-increase interpretation may be of limited usefulness, because the ana-

lyst may prefer to interpret the results using a different scale, such as 10 or 60 min,

or even (conceivably) 1 s. We therefore generalize the interpretation of the logistic

regression coefficient as follows:

INTERPRETING THE LOGISTIC REGRESSION COEFFICIENT FOR A
CONTINUOUS PREDICTOR

For a constant c, the quantity c ⋅ b1 represents the estimated change in the log OR, for an

increase of c units in the predictor.
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This result can be seen to follow from the substitution of ĝ(x + c) − ĝ(x) for

ĝ(x + 1) − ĝ(x) in equation (13.5):

ĝ(x + c) − ĝ(x) = [b0 + b1 ⋅ (x + c)]
= [b0 + b1 ⋅ (x)]
= c ⋅ b1

For example, let c = 60, so that we are interested in the change in the log OR for

an increase of 60 day minutes of cell phone usage. This increase would be estimated

as c ⋅ b1 = 60 ⋅ (0.0112717) = 0.676302. Consider a customer A, who had 60 more

day minutes than customer B. Then we would estimate the OR for customer A to

churn compared to customer B to be e0.676302 = 1.97. That is, an increase of 60 day

minutes nearly doubles the odds that a customer will churn.

Similar to the categorical predictor case, we may calculate 100(1 − 𝛼)% confi-

dence intervals for the ORs, as follows:

exp[bi ± z ⋅ ŜE(bi)]

For example, a 95% confidence interval for the OR for Day Minutes is given

by:

exp[b1 ± z ⋅ ŜE(b1)] = exp[0.0112717 ± (1.96) ⋅ (0.0009750)]
= (e0.0093607, e0.0131827)
= (1.0094, 1.0133)
≅ (1.01, 1.01),

as reported in Table 13.10. We are 95% confident that the OR for churning for cus-

tomers with one additional day minute lies between 1.0094 and 1.0133. As the inter-

val does not include e0 = 1, the relationship is significant with 95% confidence.

Confidence intervals may also be found for the OR for the ith predictor, when

there is a change in c units in the predictor, as follows:

exp[c ⋅ bi ± z ⋅ c ⋅ ŜE(bi)]

For example, earlier we estimated the increase in the OR, when the day minutes

increased by c= 60 minutes, to be 1.97. The 99% confidence interval associated with

this estimate is given by:

exp[c ⋅ bi ± z ⋅ c ⋅ ŜE(bi)] = exp[60 ⋅ (0.0112717) ± 2.576 ⋅ (60) ⋅ (0.0009750)]
= exp[0.6763 ± 0.1507]
= (1.69, 2.29)

So, we are 99% confident that an increase of 60 day minutes will increase the OR of

churning by a factor of between 1.69 and 2.29.

13.9 ASSUMPTION OF LINEARITY

Now, if the logit is not linear in the continuous variables, then there may be problems

with the application of estimates and confidence intervals for the OR. The reason is
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that the estimated OR is constant across the range of the predictor. For example, the

estimated OR of 1.01 is the same for every unit increase of Day Minutes, whether

it is the 23rd minute or the 323rd minute. The same is true of the estimated OR for

the increase of 60 day minutes; the estimated OR of 1.97 is the same whether we are

referring to the 0–60 min timeframe or the 55–115 min timeframe, and so on.

Such an assumption of constant OR is not always warranted. For example, sup-

pose we performed a logistic regression of churn on Customer Service Calls (the

original variable, not the set of indicator variables), which takes values 0–9. The

results are shown in Table 13.11.

TABLE 13.11 Questionable results of logistic regression of churn on customer service calls

Logistic Regression Table

Odds     95% CI
Predictor           Coef    SE Coef       Z      P  Ratio  Lower  Upper
Constant        -2.49016  0.0863180  -28.85  0.000
CustServ Calls  0.396169  0.0345617   11.46  0.000   1.49   1.39   1.59

Log-Likelihood = -1313.618
Test that all slopes are zero: G = 131.058, DF = 1, P-Value = 0.000

The estimated OR of 1.49 indicates that the OR for churning increases by this

factor for every additional customer service call that is made. We would therefore

expect that a plot of Customer Service Calls with a churn overlay would form a fairly

regular steplike pattern. However, consider Figure 13.3, which shows a normalized

histogram of Customer Service Calls with a churn overlay. (The normalization makes

0 1 2 3 4 5 6 7 8 9

Figure 13.3 Normalized histogram of customer service calls with churn overlay.
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each rectangle the same length, thereby increasing the contrast, at the expense of

information about bin size.) Darker portions indicate the proportion of customers

who churn.

Note that we do not encounter a gradual step-down pattern as we proceed left

to right. Instead, there is a single rather dramatic discontinuity at four customer ser-

vice calls. This is the pattern we uncovered earlier when we performed binning on

customer service calls, and found that those with three or fewer calls had a much

different propensity to churn than did customers with four or more.

Specifically, the results in Table 13.11 assert that, for example, moving from

zero to one customer service calls increases the OR by a factor of 1.49. This is not

the case, as fewer customers with one call churn than do those with zero calls. For

example, Table 13.12 shows the counts of customers churning and not churning for

the 10 values of Customer Service Calls, along with the estimated OR for the one

additional customer service call. For example, the estimated OR for moving from

zero to one call is 0.76, which means that churning is less likely for those making one

call than it is for those making none. The discontinuity at the fourth call is represented

by the OR of 7.39, meaning that a customer making his or her fourth call is more than

seven times as likely to churn as a customer who has made three calls.

TABLE 13.12 Customer service calls by churn, with estimated odds ratios

Customer Service Calls

0 1 2 3 4 5 6 7 8 9

Churn = False 605 1059 672 385 90 26 8 4 1 0

Churn = True 92 122 87 44 76 40 14 5 1 2

Odds ratio — 0.76 1.12 0.88 7.39 1.82 1.14 0.71 0.8 Undefined

Note that the OR of 1.49, which results from an inappropriate application of

logistic regression, is nowhere reflected in the actual data. If the analyst wishes to

include customer service calls in the analysis (and it should be included), then certain

accommodations to nonlinearity must be made, such as the use of indicator variables

(see the polychotomous example) or the use of higher order terms (e.g., x2, x3, … ).

Note the undefined OR for the 9 column that contains a zero cell. We discuss the

zero-cell problem below.

For another example of the problem of nonlinearity, we turn to the Adult data

set,7 which was extracted from data provided by the US Census Bureau. The task

is to find the set of demographic characteristics that can best predict whether or not

the individual has an income of over $50,000 per year. We restrict our attention to

the derived variable, capnet, which equals the capital gains amount minus the capital

7Blake and Merz, Adult data set, UCI Repository of machine learning databases (http://www.ics

.udi.edu/∼mlearn/MLRepository.html), University of California at Irvine, Department of Information

and Computer Science, 1998. Adult data set donated by Ron Kohavi. Also available at book website,

www.DataMiningConsultant.com.

http://www.ics.udi.edu/%E2%88%BCmlearn/MLRepository.html%00%00
http://www.ics.udi.edu/%E2%88%BCmlearn/MLRepository.html%00%00
http://www.DataMiningConsultant.com
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losses, expressed in dollars. The naïve application of logistic regression of income on

capnet provides the results shown in Table 13.13.

TABLE 13.13 Results of questionable logistic regression of income on capnet

Logistic Regression Table

Odds     95% CI
Predictor       Coef    SE Coef       Z      P  Ratio  Lower  Upper
Constant    -1.32926  0.0159903  -83.13  0.000
capnet     0.0002561  0.0000079   32.58  0.000   1.00   1.00   1.00

Log-Likelihood = -12727.406
Test that all slopes are zero: G = 2062.242, DF = 1, P-Value = 0.000

The OR for the capnet variable is reported as 1.00, with both endpoints of the

confidence interval also reported as 1.00. Do we conclude from this that capnet is not

significant? And if so, then how do we resolve the apparent contradiction with the

strongly significant Z-test p-value of approximately zero?

Actually, of course, there is no contradiction. The problem lies in the fact that

the OR results are reported only to two decimal places. More detailed 95% confidence

intervals are provided here:

CI(ORcapnet) = exp[b1 ± z ⋅ ŜE(b1)]
= exp[0.0002561 ± (1.96) ⋅ (0.0000079)]
= (e0.0002406, e0.0002716)
= (1.000241, 1.000272),

Thus, the 95% confidence interval for the capnet variable does not include the null

value of e0 = 1, indicating that this variable is in fact significant. Why is such preci-

sion needed? Because capnet is measured in dollars. One additional dollar in capital

gains, for example, would presumably not increase the probability of a high income

very dramatically. Hence, the tiny but significant OR. (Of course, requesting more

decimal points in the output would have uncovered similar results.)

However, nearly 87% of the records have zero capnet (neither capital gains nor

capital losses). What effect would this have on the linearity assumption? Table 13.14

provides the income level counts for a possible categorization of the capnet variable.

TABLE 13.14 Income level counts for categories of capnet

Income Capnet Categories

Loss None Gain <$3000 Gain ≥$3000

≤$50,000 574 49.7% 17,635 81.0% 370 100% 437 25.6%

>$50,000 582 50.3% 4133 19.0% 0 0% 1269 74.4%

Total 1156 21,768 370 1706
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Note that high income is associated with either capnet loss or capnet gain
≥$3000, while low income is associated with capnet none or capnet gain <$3000.

Such relationships are incompatible with the assumption of linearity. We would there-

fore like to rerun the logistic regression analysis, this time using the capnet catego-

rization shown in Table 13.14.

13.10 ZERO-CELL PROBLEM

Unfortunately, we are now faced with a new problem, the presence of a zero-count

cell in the cross-classification table. There are no records of individuals in the data

set with income greater than $50,000 and capnet gain less than $3000. Zero cells

play havoc with the logistic regression solution, causing instability in the analysis

and leading to possibly unreliable results.

Rather than omitting the “gain< $3000” category, we may try to collapse the

categories or redefine them somehow, in order to find some records for the zero cell.

In this example, we will try to redefine the class limits for the two capnet gains cate-

gories, which will have the added benefit of finding a better balance of records in these

categories. The new class boundaries and cross-classification is shown in Table 13.15.

The logistic regression of income on the newly categorized capnet has results

that are shown in Table 13.16.

TABLE 13.15 Income level counts for categories of capnet, new categorization

Income Capnet Categories

Loss None Gain < $5000 Gain ≥$5000

≤$50,000 574 49.7% 17,635 81.0% 685 83.0% 122 9.8%

>$50,000 582 50.3% 4133 19.0% 140 17.0% 1129 90.2%

Total 1156 21,768 370 1706

TABLE 13.16 Results from logistic regression of income on categorized capnet

Logistic Regression Table

Odds     95% CI
Predictor             Coef    SE Coef       Z      P  Ratio  Lower  Upper
Constant          -1.45088  0.0172818  -83.95  0.000
capnet-cat
gain < $5,000   -0.136894  0.0943471   -1.45  0.147   0.87   0.72   1.05
gain >= $5,000    3.67595  0.0968562   37.95  0.000  39.49  32.66  47.74
loss              1.46472  0.0613110   23.89  0.000   4.33   3.84   4.88

Log-Likelihood = -12156.651
Test that all slopes are zero: G = 3203.753, DF = 3, P-Value = 0.000
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The reference category is zero capnet. The category of gain <$5000 is not sig-

nificant, because its proportions of high and low income are quite similar to those of

zero capnet, as shown in Table 13.15. The categories of loss and gain ≥$5000 are

both significant, but at different orders of magnitude. Individuals showing a capital

loss are 4.33 times as likely to have high income than zero capnet individuals, while

people showing a capnet gain of at least $5000 are nearly 40 times more likely to

have high income than the reference category.

The variability among these results reinforces the assertion that the relation-

ship between income and capnet is nonlinear, and that naïve insertion of the capnet
variable into a logistic regression would be faulty.

For a person showing a capnet loss, we can estimate his or her probability of

having an income above $50,000. First the logit:

ĝ(0, 1) = −1.45088 + 3.67595(0) + 1.46472(1) = 0.01384

with probability:

𝜋(0, 1) = eĝ(0,1)

1 + eĝ(0,1)
= e0.01384

1 + e0.01384
= 0.5035

So, the probability that a person with a capnet loss has an income above $50,000 is

about 50–50. Also, we can estimate the probability that a person showing a capnet

gain of at least $5000 will have an income above $50,000. The logit is:

ĝ(1, 0) = −1.45088 + 3.67595(1) + 1.46472(0) = 2.22507

and the probability is:

𝜋(1, 0) = eĝ(1,0)

1 + eĝ(1,0)
= e2.22507

1 + e2.22507
= 0.9025

Note that these probabilities are the same as could be found using the cell counts in

Table 13.15. It is similar for a person with a capnet gain of under $5000. However,

this category was found to be not significant. What, then, should be our estimate of

the probability that a person with a small capnet gain will have high income?

Should we use the estimate provided by the cell counts and the logistic

regression (probability= 17%), even though it was found to be not significant?

The answer is no, not for formal estimation. To use nonsignificant variables for

estimation increases the chances that the estimation will not be generalizable. That

is, the generalizability (and hence, usefulness) of the estimation will be reduced.

Now, under certain circumstances, such as a cross-validated (see validating the

logistic regression, below) analysis, where all subsamples concur that the variable is

nearly significant, then the analyst may annotate the estimation with a note that there

may be some evidence for using this variable in the estimation. However, in general,

retain for estimation and prediction purposes only those variables that are significant.

Thus, in this case, we would estimate the probability that a person with a small capnet

gain will have high income as follows:

ĝ(0, 0) = −1.45088
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with probability:

𝜋(0, 0) = eĝ(0,0)

1 + eĝ(0,0)
= e−1.45088

1 + e−1.45088
= 0.1899

which is the same as the probability that a person with zero capnet will have high

income.

13.11 MULTIPLE LOGISTIC REGRESSION

Thus far, we have examined logistic regression using only one variable at a time.

However, very few data mining data sets are restricted to one variable! We therefore

turn to multiple logistic regression, in which more than one predictor variable is used

to classify the binary response variable.

Returning to the churn data set, we examine whether a relationship exists

between churn and the following set of predictors.

• International Plan, a flag variable

• Voice Mail Plan, a flag variable

• CSC-Hi, a flag variable indicating whether or not a customer had high (≥ 4)

level of customer services calls

• Account length, continuous

• Day Minutes, continuous

• Evening Minutes, continuous

• Night Minutes, continuous

• International Minutes, continuous.

The results are provided in Table 13.17.

First, note that the overall regression is significant, as shown by the p-value

of approximately zero for the G-statistic. Therefore, the overall model is useful for

classifying churn.

However, not all variables contained in the model need necessarily be useful.

Examine the p-values for the (Wald) z-statistics for each of the predictors. All p-values

are small except one, indicating that there is evidence that each predictor belongs in

the model, except Account Length, the standardized customer account length. The

Wald z-statistic for account length is 0.56, with a large p-value of 0.578, indicating

that this variable is not useful for classifying churn. Further, the 95% confidence

interval for the OR includes 1.0, reinforcing the conclusion that Account Length does

not belong in the model.

Therefore, we now omit Account Length from the model, and proceed to run

the logistic regression again with the remaining variables. The results are shown in

Table 13.18. Comparing Table 13.18 to Table 13.17, we see that the omission of

Account Length has barely affected the remaining analysis. All remaining variables

are considered significant, and retained in the model.

The positive coefficients indicate predictors for which an increase in the value

of the predictor is associated with an increase in the probability of churning. Similarly,
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TABLE 13.17 Results of multiple logistic regression of churn on several variables

Logistic Regression Table

Odds     95% CI
Predictor            Coef    SE Coef       Z      P  Ratio  Lower  Upper
Constant         -8.15980   0.536092  -15.22  0.000
Account Length  0.0008006  0.0014408    0.56  0.578   1.00   1.00   1.00
Day Mins        0.0134755  0.0011192   12.04  0.000   1.01   1.01   1.02
Eve Mins        0.0073029  0.0011695    6.24  0.000   1.01   1.01   1.01
Night Mins      0.0042378  0.0011474    3.69  0.000   1.00   1.00   1.01
Intl Mins       0.0853508  0.0210217    4.06  0.000   1.09   1.05   1.13
Int_l Plan
yes              2.03287   0.146894   13.84  0.000   7.64   5.73  10.18
VMail Plan
yes             -1.04435   0.150087   -6.96  0.000   0.35   0.26   0.47
CSC-Hi
1                2.67683   0.159224   16.81  0.000  14.54  10.64  19.86

Log-Likelihood = -1036.038
Test that all slopes are zero: G = 686.218, DF = 8, P-Value = 0.000

TABLE 13.18 Results of multiple logistic regression after omitting account length

Logistic Regression Table

Odds     95% CI
Predictor        Coef    SE Coef       Z      P  Ratio  Lower  Upper
Constant     -8.07374   0.512446  -15.76  0.000
Day Mins    0.0134735  0.0011190   12.04  0.000   1.01   1.01   1.02
Eve Mins    0.0072939  0.0011694    6.24  0.000   1.01   1.01   1.01
Night Mins  0.0042223  0.0011470    3.68  0.000   1.00   1.00   1.01
Intl Mins   0.0853509  0.0210212    4.06  0.000   1.09   1.05   1.13
Int_l Plan
yes          2.03548   0.146822   13.86  0.000   7.66   5.74  10.21
VMail Plan
yes         -1.04356   0.150064   -6.95  0.000   0.35   0.26   0.47
CSC-Hi

Log-Likelihood = -1036.192
Test that all slopes are zero: G = 685.910, DF = 7, P-Value = 0.000

negative coefficients indicate predictors associated with reducing the probability of

churn. Unit increases for each of the minutes variables are associated with an increase

in the probability of churn, as well as membership in the International Plan, and

customers with high levels of customer service calls. Only membership in the Voice
Mail Plan reduces the probability of churn.
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Table 13.18 provides the estimated logit:

ĝ(x) = −8.07374 + 0.0134735(DayMins) + 0.0072939(EveMins)
+ 0.0042223(NightMins) + 0.0853509(IntlMins)
+ 2.03548(Int_l Plan = Yes) − 1.04356(VMail Plan = Yes)
+ 2.67697(CSC − Hi = 1)

where Intl Plan = Yes, VMail Plan = Yes, and CSC-Hi = 1 represent indicator

(dummy) variables. Then, using

𝜋(x) = eĝ(x)

1 + eĝ(x)
,

we may estimate the probability that a particular customer will churn, given various

values for the predictor variables. We will estimate the probability of churn for the

following customers:

1. A low usage customer belonging to no plans with few calls to customer service.

2. A moderate usage customer belonging to no plans with few calls to customer

service.

3. A high usage customer belonging to the International Plan but not the Voice

Mail Plan, with many calls to customer service.

4. A high usage customer belonging to the Voice Mail Plan but not the Interna-

tional Plan, with few calls to customer service.

∘ A low usage customer belonging to no plans with few calls to customer ser-

vice. This customer has 100 minutes for each of day, evening, and night

minutes, and no international minutes. The logit looks like:

ĝ(x) = −8.07374 + 0.0134735(100) + 0.0072939(100)
+ 0.0042223(100) + 0.0853509(0)
+ 2.03548(0) − 1.04356(0) + 2.67697(0)

= −5.57477

The probability that customer (1) will churn is therefore:

𝜋(x) = eĝ(x)

1 + eĝ(x)
= e−5.57477

1 + e−5.57477
= 0.003778

That is, a customer with low usage, belonging to no plans, and making few

customer service calls has less than a 1% chance of churning.

∘ A moderate usage customer belonging to no plans with few calls to customer

service. This customer has 180 day minutes, 200 evening and night minutes,

and 10 international minutes, each number near the average for the category.
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Here is the logit:

ĝ(x) = −8.07374 + 0.0134735(180) + 0.0072939(200)
+ 0.0042223(200) + 0.0853509(10)
+ 2.03548(0) − 1.04356(0) + 2.67697(0)

= −2.491761

The probability that customer (2) will churn is:

𝜋(x) = eĝ(x)

1 + eĝ(x)
= e−2.491761

1 + e−2.491761
= 0.076435

A customer with moderate usage, belonging to no plans, and making few

customer service calls still has less than an 8% probability of churning.

∘ A high usage customer belonging to the International Plan but not the Voice

Mail Plan, with many calls to customer service. This customer has 300 day,

evening, and night minutes, and 20 international minutes. The logit is:

ĝ(x) = −8.07374 + 0.0134735(300) + 0.0072939(300)
+ 0.0042223(300) + 0.0853509(20)
+ 2.03548(1) − 1.04356(0) + 2.67697(1)

= 5.842638

Thus, the probability that customer (3) will churn is:

𝜋(x) = eĝ(x)

1 + eĝ(x)
= e5.842638

1 + e5.842638
= 0.997107

High usage customers, belonging to the International Plan but not the Voice

Mail Plan, and with many calls to customer service, have as astonishing

99.71% probability of churning. The company needs to deploy interventions

for these types of customers as soon as possible, to avoid the loss of these

customers to other carriers.

∘ A high usage customer belonging to the Voice Mail Plan but not the Interna-

tional Plan, with few calls to customer service. This customer also has 300

day, evening, and night minutes, and 20 international minutes. The logit is:

ĝ(x) = −8.07374 + 0.0134735(300) + 0.0072939(300)
+ 0.0042223(300) + 0.0853509(20)
+ 2.03548(0) − 1.04356(1) + 2.67697(0)

= 0.086628

Hence, the probability that customer (4) will churn is:

𝜋(x) = eĝ(x)

1 + eĝ(x)
= e0.086628

1 + e0.086628
= 0.5216

This type of customer has over a 50% probability of churning, which is more

than three times the 14.5% overall churn rate.
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For data that are missing one or more indicator variable values, it would not be

appropriate to simply ignore these missing variables when making an estimation. For

example, suppose for customer (4), we had no information regarding membership in

the Voice Mail Plan. If we then ignored the Voice Mail Plan variable when forming

the estimate, then we would get the following logit:

ĝ(x) = −8.07374 + 0.0134735(300) + 0.0072939(300)
+ 0.0042223(300) + 0.0853509(20)
+ 2.03548(0) + 2.67697(0)

= 1.130188

Note that this is the same value for ĝ(x) that we would obtain for a customer who

was known to not be a member of the Voice Mail Plan. To estimate the probability of

a customer whose Voice Mail Plan membership was unknown using this logit would

be incorrect. This logit would instead provide the probability of a customer who did

not have the Voice Mail Plan, but was otherwise similar to customer (4), as follows:

𝜋(x) = eĝ(x)

1 + eĝ(x)
= e1.130188

1 + e1.130188
= 0.7559

Such a customer would have a churn probability of about 76%.

13.12 INTRODUCING HIGHER ORDER TERMS TO
HANDLE NONLINEARITY

We illustrate how to check the assumption of linearity in multiple logistic regression

by returning to the Adult data set. For this example, we shall use only the following

variables:

• Age

• Education-num

• Hours-per-week

• Capnet (=capital gain – capital loss)

• Marital-status

• Sex

• Income: the target variable, binary, either ≤$50,000 or >$50,000.

The three “Married” categories in marital-status in the raw data were collapsed

into a single “Married” category. A normalized histogram of age with an overlay of

the target variable income is shown in Figure 13.4.

The darker bands indicate the proportion of high incomes. Clearly, this propor-

tion increases until about age 52, after which it begins to drop again. This behavior is

nonlinear and should not be naively modeled as such in the logistic regression. Sup-

pose, for example, that we went ahead and performed a logistic regression of income
on the singleton predictor age. The results are shown in Table 13.19.



13.12 INTRODUCING HIGHER ORDER TERMS TO HANDLE NONLINEARITY 389

20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000

Age

Income

≤50 K.

>50 K.

0

20

40

60

80

100

P
e
rc

e
n
t

Figure 13.4 Normalized histogram of Age with Income overlay shows quadratic relationship.

TABLE 13.19 Results of naïve application of logistic regression of income on age

Logistic Regression Table

Odds     95% CI
Predictor       Coef    SE Coef       Z      P  Ratio  Lower  Upper
Constant    -2.72401  0.0486021  -56.05  0.000
age        0.0388221  0.0010994   35.31  0.000   1.04   1.04   1.04

Table 13.19 shows that the predictor age is significant, with an estimated OR

of 1.04. Recall that the interpretation of this OR is as follows: that the odds of having

high income for someone of age x + 1 are 1.04 times higher than for someone of

age x.

Now consider this interpretation in light of Figure 13.4. The OR of 1.04 is

clearly inappropriate for the subset of subjects older than 50 or so. This is because

the logistic regression assumes linearity, while the actual relationship is nonlinear.

There are a couple of approaches we could take to alleviate this problem. First,

we could use indicator variables as we did earlier. Here, we use an indicator vari-

able age 33–65, where all records falling in this range are coded as 1 and all other

records coded as 0. This coding was used because the higher incomes were found in

the histogram to fall within this range. The resulting logistic regression is shown in

Table 13.20. The OR is 5.01, indicating that persons between 33 and 65 years of age

are about five times more likely to have high income than persons outside this age

range.
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TABLE 13.20 Logistic regression of income on age 33–65

Logistic Regression Table

                                                  Odds     95% CI
Predictor        Coef    SE Coef       Z      P  Ratio  Lower  Upper
Constant     -2.26542  0.0336811  -67.26  0.000 
age 33 - 65   1.61103  0.0379170   42.49  0.000   5.01   4.65   5.39

An alternative modeling method would be to directly model the quadratic

behavior of the relationship by introducing an age2 (age-squared) variable. The

logistic regression results are shown in Table 13.21.

TABLE 13.21 Introducing a quadratic term age2 to model the nonlinearity of age

Logistic Regression Table

                                                    Odds     95% CI 
Predictor          Coef    SE Coef       Z      P  Ratio  Lower  Upper
Constant       -9.08016   0.194526  -46.68  0.000 
age            0.347807  0.0089465   38.88  0.000   1.42   1.39   1.44
age-squared  -0.0034504  0.0000992  -34.77  0.000   1.00   1.00   1.00

The OR for the age variable has increased from the value of 1.04, previously

determined, to 1.42. For the age2 term, the OR and the endpoints of the confidence

interval are reported as 1.00, but this is only due to rounding. We use the fact that

OR = eb2 to find the more accurate estimate of the OR as OR = eb2 = e−0.0034504 =
0.99656. Also, the 95% confidence interval is given by

CI(OR) = exp[b2 ± z ⋅ ŜE(b2)]
= exp[−0.0034504 ± (1.96) ⋅ (0.0000992)]
= (e−0.003645, e−0.003256)
= (0.9964, 0.9967),

which concurs with the p-value regarding the significance of the term.

The age2 term acts as a kind of penalty function, reducing the probability of

high income for records with high age. We examine the behavior of the age and age2

terms working together by estimating the probability that each of the following people

will have incomes greater than $50,000:

1. A 30-year-old person

2. A 50-year-old person

3. A 70-year-old person.
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We have the estimated logit:

ĝ(age, age2) = −9.08016 + 0.347807(age) − 0.0034504(age2)

which has the following values for our three individuals:

1. ĝ(30, 302) = −9.08016 + 0.347807 (30) − 0.0034504 (302) = −1.75131

2. ĝ(50, 502) = −9.08016 + 0.347807 (50) − 0.0034504 (502) = −0.31581

3. ĝ(70, 702) = −9.08016 + 0.347807(70) − 0.0034504(702) = −1.64063

Note that the logit is greatest for the 50-year-old, which models the behavior

seen in Figure 13.4. Then, the estimated probability of having an income greater than

$50,000 is then found for our three people:

𝜋(x) = eĝ(x)

1 + eĝ(x)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1) = e−1.75131

1 + e−1.75131
= 0.1479

(2) = e−0.31581

1 + e−0.31581
= 0.4217

(3) = e−1.64063

1 + e−1.64063
= 0.1624

The probabilities that the 30-year-old, 50-year-old, and 70-year-old have an income

greater than $50,000 are 14.79%, 42.17%, and 16.24%, respectively. This is com-

pared to the overall proportion of the 25,000 records in the training set that have

income greater than $50,000, which is
5984

25,000
= 23.94%.

One benefit of using the quadratic term (together with the original age variable)

rather than the indicator variable is that the quadratic term is continuous, and can

presumably provide tighter estimates for a variety of ages. For example, the indicator

variable age 33–65 categorizes all records into two classes, so that a 20-year-old is

binned together with a 32-year-old, and the model (all other factors held constant)

generates the same probability of high income for the 20-year-old as the 32-year-old.

The quadratic term, however, will provide a higher probability of high income for the

32-year-old than the 20-year-old (see exercises).

Next, we turn to the education-num variable, which indicates the number

of years of education the subject has had. The relationship between income and

education-num is shown in Figure 13.5.

The pattern shown in Figure 13.5 is also quadratic, although perhaps not as

manifestly so as in Figure 13.4. As education increases, the proportion of subjects

having high income also increases, but not at a linear rate. Until eighth grade or so,

the proportion increases slowly, and then more quickly as education level increases.

Therefore, modeling the relationship between income and education level as strictly

linear would be an error; we again need to introduce a quadratic term.

Note that, for age, the coefficient of the quadratic term age2 was negative, rep-

resenting a downward influence for very high ages. For education-num, however, the

proportion of high incomes is highest for the highest levels of income, so that we
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Figure 13.5 Normalized histogram of education-num with income overlay.

would expect a positive coefficient for the quadratic term education2. The results of

a logistic regression run on education-num and education2 are shown in Table 13.22.

TABLE 13.22 Results from logistic regression of income on education-num and education2

Logistic Regression Table

                                                      Odds     95% CI 
Predictor            Coef    SE Coef       Z      P  Ratio  Lower  Upper
Constant         -3.10217   0.235336  -13.18  0.000 
education-num  -0.0058715  0.0443558   -0.13  0.895   0.99   0.91   1.08
educ-squared    0.0170305  0.0020557    8.28  0.000   1.02   1.01   1.02

As expected, the coefficient for education2 is positive. However, note that the

variable education-num is not significant, because it has a large p-value, and the con-

fidence interval contains 1.0. We therefore omit education-num from the analysis and

perform a logistic regression of income on education2 alone, with results shown in

Table 13.23.

Here, the education2 term is significant, and we have OR = eb1 = e0.0167617 =
1.0169, with the 95% confidence interval given by:

CI(OR) = exp[b1 ± z ⋅ ŜE(b1)]
= exp[0.0167617 ± (1.96) ⋅ (0.0003193)]
= (e0.01614, e0.01739)
= (1.01627, 1.01754)
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TABLE 13.23 Results from logistic regression of income on education2 alone

Logistic Regression Table

                                                    Odds     95% CI 
Predictor          Coef    SE Coef       Z      P  Ratio  Lower  Upper
Constant       -3.13280  0.0431422  -72.62  0.000 
educ-squared  0.0167617  0.0003193   52.50  0.000   1.02   1.02   1.02

We estimate the probability that persons with the following years of education

will have incomes greater than $50,000:

1. 12 years of education

2. 16 years of education.

The estimated logit:

ĝ(x) = −3.1328 + 0.0167617 (education2)

has the following values:

1. ĝ(x) = −3.1328 + 0.0167617 (122) = −0.719115

2. ĝ(x) = −3.1328 + 0.0167617 (162) = 1.1582

Then, we can find the estimated probability of having an income greater than

$50,000 as:

𝜋(x) = eĝ(x)

1 + eĝ(x)

⎧⎪⎪⎨⎪⎪⎩

(1) = e−0.719115

1 + e−0.719115
= 0.3276

(2) = e1.1582

1 + e1.1582
= 0.7610

The probabilities that people with 12 years and 16 years of education will have

an income greater than $50,000 are 32.76% and 76.10%, respectively. Evidently, for

this population, it pays to stay in school.

Finally, we examine the variable hours-per-week, which represents the number

of hours worked per week for the subject. The normalized histogram is shown in

Figure 13.6.

In Figure 13.6, we certainly find nonlinearity. A quadratic term would seem

indicated by the records up to 50 h per week. However, at about 50 h per week, the

pattern changes, so that the overall curvature is that of a backwards S-curve. Such

a pattern is indicative of the need for a cubic term, where the cube of the original

variable is introduced. We therefore do so here, introducing hours3, and performing

the logistic regression of income on hours-per-week, hours2, and hours3, with the

results shown in Table 13.24.
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Figure 13.6 Normalized histogram of hours-per-week with income overlay.

TABLE 13.24 Results from logistic regression of income on hours-per-week, hours2, and
hours3

Logistic Regression Table

                                                       Odds     95% CI 
Predictor             Coef    SE Coef       Z      P  Ratio  Lower  Upper
Constant          -3.04582   0.232238  -13.12  0.000 
hours-per-week  -0.0226237  0.0155537   -1.45  0.146   0.98   0.95   1.01
hours squared    0.0026616  0.0003438    7.74  0.000   1.00   1.00   1.00
hours cubed     -0.0000244  0.0000024  -10.14  0.000   1.00   1.00   1.00

Note that the original variable, hours-per-week, is no longer significant. We

therefore rerun the analysis, including only hours2 and hours3, with the results shown

in Table 13.25. Both the hours2 and hours3 terms are significant. Analysis and inter-

pretation of these results is left to the exercises.

Putting all the previous results from this section together, we construct a logistic

regression model for predicting income based on the following variables:

• Age

• Age2

• Education2

• Hours2

• Hours3
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TABLE 13.25 Results from logistic regression of income on hours2 and hours3

Logistic Regression Table

                                                      Odds     95% CI 
Predictor            Coef    SE Coef       Z      P  Ratio  Lower  Upper
Constant         -3.37144  0.0708973  -47.55  0.000 
hours squared   0.0021793  0.0000780   27.96  0.000   1.00   1.00   1.00
hours cubed    -0.0000212  0.0000009  -22.64  0.000   1.00   1.00   1.00

• Capnet-cat

• Marital-status

• Sex.

The results, provided in Table 13.26, are analyzed and interpreted in the

exercises.

TABLE 13.26 Results from multiple logistic regression of income

Logistic Regression Table

                                                        Odds     95% CI 
Predictor              Coef    SE Coef       Z      P  Ratio  Lower  Upper
Constant           -11.5508   0.282276  -40.92  0.000 
age                0.235060 0.0115234   20.40  0.000   1.26   1.24   1.29
age-squared      -0.0023038  0.0001253  -18.38  0.000   1.00   1.00   1.00
educ-squared      0.0163723  0.0004017   40.76  0.000   1.02   1.02   1.02
hours squared     0.0012647  0.0000888   14.25  0.000   1.00   1.00   1.00
hours cubed      -0.0000127  0.0000010  -12.35  0.000   1.00   1.00   1.00
capnet-cat
gain < $5,000    -0.189060   0.109220   -1.73  0.083   0.83   0.67   1.03
gain >= $5,000     3.46054   0.114327   30.27  0.000  31.83  25.44  39.83
loss               1.15582  0.0793780   14.56  0.000   3.18   2.72   3.71

marital-status
Married            2.15226  0.0749850   28.70  0.000   8.60   7.43   9.97
Never-married    -0.124760  0.0931762   -1.34  0.181   0.88   0.74   1.06
Separated       -0.0212868   0.175555   -0.12  0.903   0.98   0.69   1.38
Widowed           0.372877   0.169419    2.20  0.028   1.45   1.04   2.02

sex 
Male              0.209341  0.0554578    3.77  0.000   1.23   1.11   1.37

Log-Likelihood = -8238.566 
Test that all slopes are zero: G = 11039.923, DF = 13, P-Value = 0.000

13.13 VALIDATING THE LOGISTIC REGRESSION
MODEL

Hosmer and Lebeshow8 provide details for assessing the fit of a logistic regression

model, including goodness-of-fit statistics and model diagnostics. Here, however, we

8Hosmer and Lemeshow, Applied Logistic Regression, 3rd edition, John Wiley and Sons, 2013.



396 CHAPTER 13 LOGISTIC REGRESSION

investigate validation of the logistic regression model through the traditional method

of a hold-out sample.

The training data set of 25,000 records was partitioned randomly into two data

sets, training set A of 12,450 records and training set B of 12,550 records. Training

set A has 2953 records (23.72%) with income greater than $50,000, while training set

B has 3031 (24.15%) such records. Therefore, we cannot expect that the parameter

estimates and ORs for the two data sets will be exactly the same. Indicator variables

are provided for marital status and sex. The reference categories (where all indicators

equal zero) are divorced and female, respectively. The logistic regression results for

training sets A and B are provided in Tables 13.27 and 13.28, respectively.

TABLE 13.27 Logistic regression results for training set A

Logistic Regression Table

                                                       Odds     95% CI 
Predictor             Coef    SE Coef       Z      P  Ratio  Lower  Upper
Constant          -9.06305   0.232199  -39.03  0.000 
age              0.0278994  0.0023420   11.91  0.000   1.03   1.02   1.03
education-num     0.374356  0.0120668   31.02  0.000   1.45   1.42   1.49
marital-status
Married           2.02743   0.103258   19.63  0.000   7.59   6.20   9.30
Never-married   -0.489140   0.127005   -3.85  0.000   0.61 0.48   0.79
Separated       -0.369533   0.278258   -1.33  0.184   0.69   0.40   1.19
Widowed        -0.0760889   0.233292   -0.33  0.744   0.93   0.59   1.46
sex 
Male             0.166622  0.0757310    2.20  0.028   1.18   1.02   1.37
hours-per-week 0.0309548  0.0023358   13.25  0.000   1.03   1.03   1.04
capnet           0.0002292  0.0000127   17.98  0.000   1.00   1.00   1.00

Log-Likelihood = -4358.063
Test that all slopes are zero: G = 4924.536, DF = 9, P-Value = 0.000 

Note that, for both data sets, all parameters are significant (as shown by the

Wald-Z p-values) except the separated and widowed indicator variables for marital
status. Overall, the coefficient values are fairly close to each other, except those with

high variability, such as male and separated.

The estimated logit for training sets A and B are:

ĝA(x) = −9.06305 + 0.0278994(Age) + 0.374356(Education_num)
+ 2.02743(Married) − 0.489140(Never_married)
− 0.369533(Separated) − 0.0760889(Widowed) + 0.166622(Male)
+ 0.0309548(Hours_per_week) + 0.0002292(Capnet)

ĝB(x) = −8.85216 + 0.0224645(Age) + 0.368721(Education_num)
+ 2.02076(Married) − 0.587585(Never_married)
− 0.094394(Separated) − 0.181349(Widowed) + 0.311218(Male)
+ 0.0316433(Hours_per_week) + 0.0002455(Capnet)
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TABLE 13.28 Logistic regression results for training set B

Logistic Regression Table
                                           Odds     95% CI
Predictor            Coef    SE Coef       Z      P  Ratio  Lower  Upper
Constant         -8.85216   0.230298  -38.44  0.000
age             0.0224645  0.0023381    9.61  0.000   1.02   1.02   1.03
education-num    0.368721  0.0121961   30.23  0.000   1.45   1.41   1.48
marital-status
Married          2.02076   0.100676   20.07  0.000   7.54   6.19   9.19
Never-married  -0.587585   0.126032   -4.66  0.000   0.56   0.43   0.71
Separated      0.0943940   0.222559    0.42  0.671   1.10   0.71   1.70
Widowed        -0.181349   0.246958   -0.73  0.463   0.83   0.51   1.35
sex 
Male            0.311218  0.0745234    4.18  0.000   1.37   1.18   1.58
hours-per-week  0.0316433  0.0023875   13.25  0.000   1.03   1.03   1.04
capnet          0.0002455  0.0000135   18.16  0.000   1.00   1.00   1.00

Log-Likelihood = -4401.957
Test that all slopes are zero: G = 5071.837, DF = 9, P-Value = 0.000 

For each of these logits, we will estimate the probability that each of the fol-

lowing types of people have incomes over $50,000:

1. A 50-year-old married male with 20 years of education working 40 hours per

week with a capnet of $500.

2. A 50-year-old married male with 16 years of education working 40 hours per

week with no capital gains or losses.

3. A 35-year-old divorced female with 12 years of education working 30 hours

per week with no capital gains or losses.

1. For the 50-year-old married male with 20 years of education working 40 hours

per week with a capnet of $500, we have the following logits for training sets

A and B:

ĝA(x) = −9.06305 + 0.0278994(50) + 0.374356(20)
+ 2.02743(1) − 0.489140(0)
− 0.369533(0) − 0.0760889(0) + 0.166622(1)
+ 0.0309548(40) + 0.0002292(500)

= 3.365884

ĝB(x) = −8.85216 + 0.0224645(50) + 0.368721(20)
+ 2.02076(1) − 0.587585(0)
− 0.094394(0) − 0.181349(0) + 0.311218(1)
+ 0.0316433(40) + 0.0002455(500)

= 3.365945
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Thus, the estimated probability that this type of person will have an income

exceeding $50,000 is for each data set:

𝜋A(x) =
eĝ(x)

1 + eĝ(x)
= e3.365884

1 + e3.365884
= 0.966621

𝜋B(x) =
eĝ(x)

1 + eĝ(x)
= e3.365945

1 + e3.365945
= 0.966623

That is, the estimated probability that a 50-year-old married male with 20 years

of education working 40 hours per week with a capnet of $500 will have an

income exceeding $50,000 is 96.66%, as reported by both data sets with a dif-

ference of only 0.000002 between them. If sound, then the similarity of these

estimated probabilities shows strong evidence for the validation of the logistic

regression.

Unfortunately, these estimates are not sound, because they represent extrapo-

lation on the education variable, whose maximum value in this data set is only

16 years. Therefore, these estimates should not be used in general, and should

certainly not be used for model validation.

2. For the 50-year-old married male with 16 years of education working 40 hours

per week with a capnet of $500, the logits look like this:

ĝA(x) = −9.06305 + 0.0278994(50) + 0.374356(16)
+ 2.02743(1) − 0.489140(0)
− 0.369533(0) − 0.0760889(0) + 0.166622(1)
+ 0.0309548(40) + 0.0002292(500)

= 1.86846

ĝB(x) = −8.85216 + 0.0224645(50) + 0.368721(16)
+ 2.02076(1) − 0.587585(0)
− 0.094394(0) − 0.181349(0) + 0.311218(1)
+ 0.0316433(40) + 0.0002455(500)

= 1.891061

The estimated probability that a 50-year-old married male with 16 years of

education working 40 hours per week with a capnet of $500 will have an income

exceeding $50,000 is therefore for each data set:

𝜋A(x) =
eĝ(x)

1 + eĝ(x)
= e1.86846

1 + e1.86846
= 0.8663

𝜋B(x) =
eĝ(x)

1 + eĝ(x)
= e1.891061

1 + e1.891061
= 0.8689

That is, the estimated probability that such a person will have an income greater

than $50,000 is reported by models based on both data sets to be about 87%.

There is a difference of only 0.0026 between the point estimates, which may be

considered small, although, of course, what constitutes small depends on the

particular research problem, and other factors.
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3. For the 35-year-old divorced female with 12 years of education working

30 hours per week with no capital gains or losses, we have the following logits:

ĝA(x) = −9.06305 + 0.0278994(35) + 0.374356(12)
+ 2.02743(0) − 0.489140(0)
− 0.369533(0) − 0.0760889(0) + 0.166622(0)
+ 0.0309548(30) + 0.0002292(0)

= −2.66566

ĝB(x) = −8.85216 + 0.0224645(35) + 0.368721(12)
+ 2.02076(0) − 0.587585(0)
− 0.094394(0) − 0.181349(0) + 0.311218(0)
+ 0.0316433(30) + 0.0002455(0)

= −2.69195

Therefore, for each data set, the estimated probability that this type of person

will have an income exceeding $50,000 is:

𝜋A(x) =
eĝ(x)

1 + eĝ(x)
= e−2.66566

1 + e−2.66566
= 0.06503

𝜋B(x) =
eĝ(x)

1 + eĝ(x)
= e−2.69195

1 + e−2.69195
= 0.06345

That is, the estimated probability that a 35-year-old divorced female with 12

years of education working 30 hours per week with no capital gains or losses

will have an income greater than $50,000 is reported by models based on both

data sets to be between 6.3% and 6.5%. There is a difference of only 0.00158

between the point estimates, which is slightly better (i.e., smaller) than the esti-

mate for the 50-year-old male.

13.14 WEKA: HANDS-ON ANALYSIS USING LOGISTIC
REGRESSION

In this exercise, a logistic regression model is built using Waikato Environment for

Knowledge Analysis (WEKA’s) Logistic class. A modified version of the cereals

data set is used as input, where the RATING field is discretized by mapping records

with values greater than 42 to “High,” while those less than or equal to 42 become

“Low.” This way, our model is used to classify a cereal as having either a “High” or

“Low” nutritional rating. Our data set consists of the three numeric predictor fields

PROTEIN, SODIUM, and FIBER.

The data set is split into separate training and test files. The training file cere-
als_train.arff consists of 24 instances and is used to train our logistic regression

model. The file is balanced 50–50 where half the instances take on class value “High,”
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while the other half have the value “Low.” The mean values for the predictor fields

PROTEIN, SODIUM, and FIBER are 2.667, 146.875, and 2.458, respectively. The

complete training file is shown in Table 13.29.

TABLE 13.29 ARFFTraining Filecereals_train.arff

@relation cereals_train.arff

@attribute PROTEIN numeric
@attribute SODIUM numeric
@attribute FIBER numeric
@attribute RATING {High,Low}

@data
3,200,3.000000,High
3,230,3.000000,High
3,200,3.000000,High
3,0,4.000000,High
4,150,2.000000,High
3,0,3.000000,High
4,260,9.000000,High
3,140,3.000000,High
2,0,3.000000,High
2,0,2.000000,High
3,80,1.000000,High
2,200,4.000000,High
2,180,1.500000,Low
4,150,3.000000,Low
2,140,2.000000,Low
4,95,3.000000,Low
1,220,0.000000,Low
2,180,0.000000,Low
3,140,4.000000,Low
3,170,2.000000,Low
2,200,1.000000,Low
3,250,1.500000,Low
2,200,1.000000,Low
1,140,0.000000,Low

Our training and test files are both represented in ARFF format, which is

WEKA’s standard method of representing the instances and attributes found in data

sets. The keyword relation indicates the name for the file, which is followed by a

block defining each attribute in the data set. Notice that the three predictor fields are

defined as type numeric, whereas the target variable RATING is categorical. The data
section lists each instance, which corresponds to a specific cereal. For example, the

first line in the data section describes a cereal having PROTEIN= 3, SODIUM= 200,

FIBER= 3.0, and RATING=High.

Let us load the training file and build the Logistic model.

1. Click Explorer from the WEKA GUI Chooser dialog.

2. On the Preprocess tab, press Open file and specify the path to the training file,

cereals_train.arff.
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The WEKA Explorer Panel displays several characteristics of the training

file as shown in Figure 13.7. The three predictor attributes and class variable are

shown on the attributes pane (left). Statistics for PROTEIN, including range (1–4),

mean (2.667), and standard deviation (0.868) are shown on the selected attribute

pane (right). The status bar at the bottom of the panel tells us WEKA loaded the file

successfully.

1. Next, select the Classify tab.

2. Under Classifier, press the Choose button.

3. Select Classifiers → Functions → Logistic from the navigation hierarchy.

4. In our modeling experiment, we have separate training and test sets; therefore,

under Test options, choose the Use training set option.

5. Click Start to build the model.

Figure 13.7 WEKA explorer panel: preprocess tab.

WEKA creates the logistic regression model and reports results in the Classi-

fier output window. Although the results (not shown) indicate that the classification

accuracy of the model, as measured against the training set, is 75%
(

18

24

)
, we are

interested in using the model to classify the unseen data found in the test set. The

ORs and values for the regression coefficients 𝛽0, 𝛽1, 𝛽2, and 𝛽3 are also reported by
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the model as shown in Table 13.30. We will revisit these values shortly, but first let

us evaluate our model against the test set.

TABLE 13.30 Logistic regression coefficients

Class

Variable   High

====================

PROTEIN      -0.0423

SODIUM       -0.0107

FIBER         0.9476

Intercept    -0.5478

Odds Ratios...

Class

Variable        High

====================

PROTEIN       0.9586

SODIUM        0.9893

FIBER         2.5795

1. Under Test options, choose Supplied test set. Click Set.

2. Click Open file, specify the path to the test file, cereals_test.arff. Close the Test

Instances dialog.

3. Next, click the More options button.

4. Check the Output text predictions on test set option. Click OK.

5. Click the Start button to evaluate the model against the test set.

Again, the results appear in the Classifier output window; however, now the out-

put shows that the logistic regression model has classified 62.5%
(

5

8

)
of the instances

in the test set correctly. In addition, the model now reports the actual predictions, and

probabilities by which it classified each instance, as shown in Table 13.31.



13.14 WEKA: HANDS-ON ANALYSIS USING LOGISTIC REGRESSION 403

For example, the first instance is incorrectly predicted (classified) to be “Low”

with probability 0.567. The plus (+) symbol in error column indicates this classi-

fication is incorrect according to the maximum (*0.567) probability. Let us com-

pute the estimated logit ĝ(x) for this instance according to the coefficients found in

Table 13.30.

However, we first examine the test file cereals_test.arff and determine the

first record contains the attribute-value pairs PROTEIN= 4, SODIUM= 135,

FIBER= 2.0, and RATING=High. Therefore, the estimated logit equals:

ĝ(x) = −0.5478 − 0.0423(4) − 0.0107(135) + 0.9476(2) = −0.2663

It follows that,

𝜋(x) = e−0.2663

1 + e−0.2663
= 0.43382

Therefore, the estimated probability equals about 43.4% that a cereal with protein

(4 g), sodium (135 mg), and fiber (2 g) is of high nutritional value. Note that WEKA

reports this same probability (except for slight rounding variations) for the first

instance in Table 13.31. It follows that the model estimates a probability equal to

1 − 𝜋(x) = 56.6% that this cereal has a low nutritional rating. Therefore, based on

the higher probability, the model incorrectly classified the record as “Low.”

Table 13.31 also shows reports of the ORs for the three continuous predictors.

For example, the OR for PROTEIN is ÔR = eb1 = e−0.0423 = 0.9586. This is inter-

preted as the odds of a cereal with x+ 1 grams of protein being of high nutritional

value, as compared to a cereal with x grams of protein being highly nutritious.

TABLE 13.31 Logistic regression test set predictions

=== Predictions on test split ===

inst#,    actual, predicted, error, probability distribution

1     1:High      2:Low      +   0.433 *0.567

2     1:High      2:Low      +   0.357 *0.643

3     1:High     1:High         *0.586  0.414

4     1:High     1:High         *0.578  0.422

5      2:Low      2:Low          0.431 *0.569

6      2:Low      2:Low          0.075 *0.925

7      2:Low      2:Low          0.251 *0.749

8      2:Low     1:High      +  *0.86   0.14
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THE R ZONE

# Logistic Regression

patients <− data.frame(age = c(25, … , 84),

disease = c(0, … , 1)) # Input the data

lm1 <− lm(disease ∼ age, data = patients)

lr1 <− glm(disease ∼ age, data = patients,

family=binomial)

plot(patients$age, patients$disease,

xlab = "Age", ylab = "Disease",

main = "Disease vs. Age",

xlim = c(20, 90), pch = 16)

abline(lm1, lty = 3)

curve(predict(lr1, data.frame(age=x),

type = "resp"),

add = TRUE, lwd = 2)

legend("topleft",

legend=c("LS", "Log."),

lty = c(3, 1), cex = .9)
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# Inference on parameters

with(lr1, null.deviance - deviance)

with(lr1, df.null - df.residual)

with(lr1, pchisq(null.deviance –

deviance,

df.null - df.residual,

lower.tail = FALSE))

# Make predictions

newd <− with(patients,

data.frame(age =
c(50, 72)))

predict.glm(lr1,

newdata = newd)

# log odds

predict.glm(lr1,

newdata = newd,

type="resp") # prob.
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# Odds Ratios

round(exp(coef(lr1)), 3)

# Dichotomous example

churn <− read.csv(file =
"C:/… /churn.txt",

stringsAsFactors=TRUE)

table(churn$Churn,

churn$VMail.Plan)

churn$VMP.ind <−
ifelse(churn$VMail.Plan==

"yes",

1, 0)

lr2 <− glm(Churn ∼ VMP.ind,

data = churn,

family = "binomial")

summary(lr2)

# Dichotomous example: Odds Ratios and Predictions

# Odds ratio

round(exp(coef(lr2)), 3)

# Make predictions

newd <− with(churn,

data.frame(VMP.ind = c(0,

1)))

predict.glm(lr2, newdata = newd)

predict.glm(lr2, newdata = newd,

type="resp")
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# Polychotomous example

# Redefine Customer Service

# Calls

churn$CSC <−
factor(churn$CustServ.Calls)

levels(churn$CSC)

levels(churn$CSC)[1:2] <− "Low"

levels(churn$CSC)[2:3] <−
"Medium"

levels(churn$CSC)[3:8] <− "High"

churn$CSC_Med <−
ifelse(churn$CSC ==

"Medium", 1, 0)

churn$CSC_Hi <−
ifelse(churn$CSC == "High",

1, 0)

table(churn$Churn, churn$CSC)

lr3 <− glm(Churn ∼ CSC_Med +
CSC_Hi, data = churn,

family = "binomial")

summary(lr3)

# Continuous example

lr4 <− glm(Churn ∼ Day.Mins,

data = churn,

family = "binomial")

summary(lr4)
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# Adult data example

# Read in data using stringsAs

Factors = TRUE

adult$over50K <−
ifelse(adult$income== ">50K.", 1, 0)

adult$"capnet"<− adult$capital.gain-

adult$capital.loss

lr5 <− glm(over50K ∼ capnet,

data = adult,

family = "binomial")

summary(lr5)

# Adult data example: Categorize capnet

adult$cap_lvl <− factor(adult$capnet)

levels(adult$cap_lvl)

levels(adult$cap_lvl)[1:88] <− "Loss"

levels(adult$cap_lvl)[2] <− "None"

levels(adult$cap_lvl)[3:77] <− "Gain < $5000"

levels(adult$cap_lvl)[4:44] <− "Gain >= $5000"

adult$cap_loss <− ifelse(adult$cap_lvl == "Loss", 1, 0)

adult$cap_l5K <− ifelse(adult$cap_lvl == "Gain < $5000", 1, 0)

adult$cap_ge5K <− ifelse(adult$cap_lvl == "Gain >= $5000", 1, 0)

# Adult data example: Regression model

lr6 <− glm(over50K ∼ cap_loss +
cap_l5K + cap_ge5K,

data = adult,

family = "binomial")

summary(lr6)
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# Multiple Logistic Regression

churn$IntlP.ind <−
ifelse(churn$Int.l.Plan ==

"yes",

1, 0)

churn$VMP.ind <−
ifelse(churn$VMail.Plan ==

"yes",

1, 0)

lr7 <− glm(Churn ∼
IntlP.ind+VMP.ind+CSC_Hi+
Day.Mins+Eve.Mins+
Night.Mins+ Intl.Mins,

data = churn,

family = "binomial")

summary(lr7)

# Higher order terms

adult$age.sq <− adult$age^2

lr8 <− glm(over50K ∼ age +
age.sq,

data = adult,

family = "binomial")

summary(lr8)

# Validating the model: Preparing the data

# Prepare the data

levels(adult$marital.status)

levels(adult$marital.status)[2:4] <− "Married"

levels(adult$marital.status)

adult$ms.married <− ifelse(adult$marital.status == "Married", 1, 0)

adult$ms.neverm <− ifelse(adult$marital.status == "Never-married", 1, 0)
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adult$ms.sep <− ifelse(adult$marital.status == "Separated", 1, 0)

adult$ms.widowed <− ifelse(adult$marital.status == "Widowed", 1, 0)

adult$capnet <− adult$capital.gain-adult$capital.loss

levels(adult$sex)

adult$male <− ifelse(adult$sex == "Male", 1, 0)

# Create hold-out sample

hold <− runif(dim(adult)[1], 0, 1)

trainA <− adult[which(hold < .5),]

trainB <− adult[which(hold >= .5),]

dim(trainA); dim(trainB)

# Validating the model: Run the models

lr11A <− glm(over50K ∼ age + education.num + ms.married + ms.neverm + ms.sep +
ms.widowed + male + hours.per.week + capnet,

data = trainA,

family = "binomial")

lr11B <− glm(over50K ∼ age + education.num + ms.married + ms.neverm + ms.sep +
ms.widowed + male + hours.per.week + capnet,

data = trainB,

family = "binomial")

summary(lr11A)

summary(lr11B)

R REFERENCES

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria:

R Foundation for Statistical Computing; 2012. 3-900051-07-0, http://www.R-project.org/.

Accessed 2014 Oct 5.

EXERCISES

CLARIFYING THE CONCEPTS

1. Indicate whether the following statements are true or false. If the statement is false, alter

it so that the statement becomes true.

a. Logistic regression refers to methods for describing the relationship between a cate-

gorical response variable and a set of categorical predictor variables.

b. Logistic regression assumes the relationship between the predictor and the response is

nonlinear.

c. 𝜋(x) may be interpreted as a probability.

d. Logistic regression models assume that the error term 𝜀 is normally distributed with

mean zero and constant variance.

http://www.R-project.org
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e. In logistic regression, closed-form solutions for the optimal values of the regression

coefficients may be obtained.

f. The saturated model predicts the response variable perfectly.

g. The deviance represents the total variability in the response.

h. Encoding a trichotomous predictor requires only two indicator variables.

i. The t-test provides a method for finding the response probabilities.

j. The interpretation of the logistic regression coefficient for a continuous predictor may

be extended from the usual unit increase to an increase of any arbitrary amount.

k. The estimated OR is constant across the range of the predictor.

2. By hand, derive the logit result g(x) = 𝛽0 + 𝛽1x.

3. Explain what is meant by maximum-likelihood estimation and maximum-likelihood esti-

mators.

4. Explain clearly how the slope coefficient 𝛽1, and its estimate b1, may be interpreted in

logistic regression. Provide at least two examples, using both a categorical and a contin-

uous predictor.

5. What are odds? What is the difference between odds and probability?

6. What is the definition of the odds ratio? What is the relationship between the odds ratio

and the slope coefficient 𝛽1? For what quantity is the odds ratio sometimes used as an

estimate?

7. Describe how we determine the statistical significance of the odds ratio, using a confidence

interval.

8. If the difference between a particular indicator variable and the reference category is not

significant, then what should the analyst consider doing?

9. Discuss the role of statistical inference with respect to the huge sample sizes prevalent in

data mining.

10. Discuss the assumption that the odds ratio is constant across the range of the predictor,

with respect to various types of relationships between the predictor and the response.

Provide modeling options for when this assumption may not be reflected in the data.

11. Discuss the use of predictors that turn out to be nonsignificant in estimating the response.

When might this be appropriate, if at all? Why would this not be appropriate in

general?

12. Explain why, for data that are missing one or more indicator variable values, it would

not be appropriate to simply ignore these missing variables when making an estimation.

Provide options for the data analyst in this case.

WORKING WITH THE DATA

For Exercises 13–18, use the following information. The logistic regression output shown in

Table 13.32 refers to the breast cancer data set. This data set was collected by Dr. William

H. Wohlberg from the University of Wisconsin Hospitals, Madison. Ten numeric predictors

are used to predict the class of malignant breast cancer tumor (class = 1), as opposed to a

benign tumor (class = 0).
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TABLE 13.32 Logistic regression results for Exercises 13

Logistic Regression Table
Odds

Predictor                          Coef    SE Coef      Z      P  Ratio
Constant                       -10.1039    1.17490  -8.60  0.000
Clump Thickness                0.535014   0.142018   3.77  0.000   1.71
Cell Size Uniformity         -0.0062797   0.209079  -0.03  0.976   0.99
Cell Shape Uniformity          0.322706   0.230602   1.40  0.162   1.38
Marginal Adhesion              0.330637   0.123451   2.68  0.007   1.39
Single Epithelial Cell Size   0.0966354   0.156593   0.62  0.537   1.10
Bare Nuclei                    0.383025  0.0938437   4.08  0.000   1.47
Bland Chromatin                0.447188   0.171383   2.61  0.009   1.56
Normal Nucleoli                0.213031   0.112874   1.89  0.059   1.24
Mitoses                        0.534836   0.328777   1.63  0.104   1.71

Log-Likelihood = -51.444
Test that all slopes are zero: G = 781.462, DF = 9, P-Value = 0.000 

13. What is the value of the deviance difference? Is the overall logistic regression signifi-

cant? How can you tell? What does it mean to say that the overall logistic regression is

significant?

14. Without reference to inferential significance, express the form of the logit.

15. Which variables do not appear to be significant predictors of breast tumor class? How can

you tell?

16. Discuss whether the variables you cited in Exercise 15 should be used in predicting the

class of tumor with a new unseen data set.

17. Discuss how you should handle the variables with p-values around 0.05, 0.10, or 0.15.

18. Explain what will happen to the deviance difference if we rerun the model, dropping the

nonsignificant variables. Work by analogy with the linear regression case.

For Exercises 19–24, use the following information. Continuing from the previous

exercises, the logistic regression for the breast cancer data set was run again, this time dropping

the cell size uniformity and single epithelial cell size variables, but retaining all the others. The

logistic regression output shown in Table 13.33 contains the results.

TABLE 13.33 Logistic regression results for Exercises 19–24

Logistic Regression Table

                                                           Odds     95% CI 
Predictor                  Coef    SE Coef      Z      P  Ratio  Lower  Upper
Constant               -9.98278    1.12607  -8.87  0.000
Clump Thickness        0.534002   0.140788   3.79  0.000   1.71   1.29   2.25
Cell Shape Uniformity  0.345286   0.171640   2.01  0.044   1.41   1.01   1.98
Marginal Adhesion      0.342491   0.119217   2.87  0.004   1.41   1.11   1.78
Bare Nuclei            0.388296  0.0935616   4.15  0.000   1.47   1.23   1.77
Bland Chromatin        0.461943   0.168195   2.75  0.006   1.59   1.14   2.21
Normal Nucleoli        0.226055   0.110970   2.04  0.042   1.25   1.01   1.56
Mitoses                0.531192   0.324454   1.64  0.102   1.70   0.90   3.21

Log-Likelihood = -51.633 
Test that all slopes are zero: G = 781.083, DF = 7, P-Value = 0.000 
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19. Explain why the deviance difference fell, but only by a small amount.

20. Did you drop cell shape uniformity in the previous exercise? Are you surprised that the

variable is now a significant predictor? Discuss the importance of retaining variables of

borderline significance in the early stages of model building.

21. Assume that our level of significance is 0.11. Express the logit, using all significant vari-

ables.

22. Find the probability that a tumor is malignant, given the following:

a. The values for all predictors are at the minimum (1).

b. The values for all predictors are at a moderate level (5).

c. The values for all predictors are at the maximum (10).

23. Calculate the 95% confidence intervals for the following predictor coefficients.

a. Clump thickness

b. Mitoses

c. Comment as to the evidence provided by the confidence interval for the mitoses coef-

ficient regarding its significance.

24. Clearly interpret the value of the coefficients for the following predictors:

a. Bland chromatin

b. Normal nucleoli

HANDS-ON ANALYSIS

For Exercises 25–37, use the adult data set.

25. Construct the logistic regression model developed in the text, with the age2 term and the

indicator variable age 33–65.

Verify that using the quadratic term provides a higher estimate of the probability of high

income for the 32-year-old than the 20-year-old.

Use Table 13.25 for Exercises 26–28.

26. Find the form of the estimated logit.

27. Find the probability of high income for someone working 30, 40, 50, and 60 hours

per week.

28. Construct and interpret a 95% confidence interval for each coefficient.

Use Table 13.26 for Exercises 29–31.

29. Consider the results from Table 13.26. Construct the logistic regression model that pro-

duced these results.

30. For indicator categories that are not significant, collapse the categories with the reference

category. (How are you handling the category with the 0.083 p-value?) Rerun the logistic

regression with these collapsed categories.

Use the results from your rerunning of the logistic regression for Exercises 31–34.

31. Find the estimated logit.
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32. Construct and interpret 95% confidence intervals for the coefficients for age, sex-male,

and educ-squared. Verify that these predictors belong in the model.

33. Find the probability of high income for a 20-year-old single female with 12 years educa-

tion working 20 hours per week with no capital gains or losses.

34. Find the probability of high income for a 50-year-old married male with 16 years educa-

tion working 40 hours per week with capital gains of $6000.

35. Open the data set, German, which is provided on the textbook website. The data set con-

sists of 20 predictors, both continuous and categorical, and a single response variable,

indicating whether the individual record represents a good or bad credit risk. The predic-

tors are as follows, with amounts in Deutsche marks (DM):

∘ Status of existing checking account

∘ Duration in months

∘ Credit history

∘ Loan purpose

∘ Credit amount

∘ Savings account/bonds

∘ Presently employed since

∘ Payment as percentage of disposable income

∘ Personal status and gender

∘ Other debtors/guarantors

∘ Present residence since

∘ Property

∘ Age

∘ Other installment plans

∘ Housing

∘ Number of existing credits at this bank

∘ Job

∘ Number of people being liable to provide maintenance for

∘ Telephone

∘ Foreign worker.

More information is available about this data set from the textbook website. Construct

the best logistic regression model you can, using as many of the methods we learned in

this chapter as possible. Provide strong interpretive support for your model, including

explanations of derived variables, indicator variables, and so on.

36. Open the breast cancer data set. Investigate, for each significant predictor, whether the

linearity assumption is warranted. If not, ameliorate the situation using the methods dis-

cussed in this chapter.

37. Recall the WEKA Logistic example for classifying cereals as either high or low. Compute

the probability that the fourth instance from the test set is classified either high or low.

Does your probability match that produced by WEKA?



C H A P T E R 14
NAÏVE BAYES AND BAYESIAN
NETWORKS

14.1 BAYESIAN APPROACH

In the field of statistics, there are two main approaches to probability. The usual

way probability is taught, for example in most typical introductory statistics courses,

represents the frequentist or classical approach. In the frequentist approach to proba-

bility, the population parameters are fixed constants whose values are unknown. These

probabilities are defined to be the relative frequencies of the various categories, where

the experiment is repeated an indefinitely large number of times. For example, if we

toss a fair coin 10 times, it may not be very unusual to observe 80% heads; but if

we toss the fair coin 10 trillion times, we can be fairly certain that the proportion of

heads will be near 50%. It is this “long-run” behavior that defines probability for the

frequentist approach.

However, there are situations for which the classical definition of probability

is unclear. For example, what is the probability that terrorists will strike New York

City with a dirty bomb? As such an occurrence has never occurred, it is difficult to

conceive what the long-run behavior of this gruesome experiment might be. In the

frequentist approach to probability, the parameters are fixed, and the randomness lies

in the data, which are viewed as a random sample from a given distribution with

unknown but fixed parameters.

The Bayesian approach to probability turns these assumptions around. In

Bayesian statistics, the parameters are considered to be random variables, and the

data are considered to be known. The parameters are regarded as coming from a

distribution of possible values, and Bayesians look to the observed data to provide

information on likely parameter values.

Let 𝜃 represent the parameters of the unknown distribution. Bayesian analysis

requires elicitation of a prior distribution for 𝜃, called the prior distribution, p(𝜃).
This prior distribution can model extant expert knowledge, if any, regarding the dis-

tribution of 𝜃. For example, churn1 modeling experts may be aware that a customer

1Churn represents customers leaving one company in favor of another company’s products or services.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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exceeding a certain threshold number of calls to customer service may indicate a

likelihood to churn. This knowledge can be distilled into prior assumptions about the

distribution of customer service calls, including its mean and standard deviation. If no

expert knowledge regarding the prior distribution is available, Bayesian analysts may

posit a so-called non-informative prior, which assigns equal probability to all values

of the parameter. For example, the prior probability of both churners and non-churners

could be set at 0.5, using a non-informative prior. (Note, if in this case, this assump-

tion does not seem reasonable, then you must be applying your expert knowledge

about churn modeling!) Regardless, because the field of data mining often encoun-

ters huge datasets, the prior distribution should be dominated by the overwhelming

amount of information to be found in the observed data.

Once the data have been observed, prior information about the distribution of

𝜃 can be updated, by factoring in the information about 𝜃 contained in the observed

data. This modification leads to the posterior distribution, p(𝜃|X), where X represents

the entire array of data.

This updating of our knowledge about 𝜃 from prior distribution to posterior

distribution was first performed by the Reverend Thomas Bayes, in his Essay Towards
Solving a Problem in the Doctrine of Chances,2 published posthumously in 1763.

The posterior distribution is found as follows: p(𝜃|X) = p(X|𝜃)p(𝜃)
p(X) , where p(X|𝜃)

represents the likelihood function, p(𝜃) is the prior distribution, and p(X) is a nor-

malizing factor called the marginal distribution of the data. As the posterior is a

distribution rather than a single value, we can conceivably examine any possible

statistic of this distribution that we are interested in, such as the first quartile, or the

mean absolute deviation (Figure 14.1).

However, it is common to choose the posterior mode, the value of 𝜃 which

maximizes p(𝜃|X), for an estimate, in which case we call this estimation method

Figure 14.1 The Reverend Thomas Bayes (1702–1761).

2Thomas Bayes, Essay Towards Solving a Problem in the Doctrine of Chances, Philosophical Transactions
of the Royal Society of London, 1763.
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the maximum a posteriori (MAP) method. For non-informative priors, the MAP esti-

mate and the frequentist maximum-likelihood estimate often coincide, because the

data dominate the prior. The likelihood function p(X|𝜃) derives from the assump-

tion that the observations are independently and identically distributed according to

a particular distribution f (X|𝜃), so that p(X|𝜃) = ∏n
i=1 f (Xi|𝜃).

The normalizing factor p(X) is essentially a constant, for a given data

set and model, so that we may express the posterior distribution such as this:

p(𝜃|X) ∝ p(X|𝜃)p(𝜃). That is, the posterior distribution of 𝜃, given the data, is

proportional to the product of the likelihood and the prior. Thus, when we have a

great deal of information coming from the likelihood, as we do in most data mining

applications, the likelihood will overwhelm the prior.

Criticism of the Bayesian framework has mostly focused on two potential draw-

backs. First, elicitation of a prior distribution may be subjective. That is, two differ-

ent subject matter experts may provide two different prior distributions, which will

presumably percolate through to result in two different posterior distributions. The

solution to this problem is (i) to select non-informative priors if the choice of priors

is controversial, and (ii) apply lots of data so that the relative importance of the prior

is diminished. Failing this, model selection can be performed on the two different

posterior distributions, using model adequacy and efficacy criteria, resulting in the

choice of the better model. Is reporting more than one model a bad thing?

The second criticism has been that Bayesian computation has been intractable

for most interesting problems, in data mining terms, where the approach suffered

from scalability issues. The curse of dimensionality hits Bayesian analysis rather

hard, because the normalizing factor requires integrating (or summing) over all pos-

sible values of the parameter vector, which may be computationally infeasible when

applied directly. However, the introduction of Markov chain Monte Carlo (MCMC)

methods such as Gibbs sampling and the Metropolis algorithm has greatly expanded

the range of problems and dimensions that Bayesian analysis can handle.

14.2 MAXIMUM A POSTERIORI (MAP)
CLASSIFICATION

How do we find the MAP estimate of 𝜃? Well, we need the value of 𝜃 that will max-

imize p(𝜃|X); this value is expressed as 𝜃MAP = argmax𝜃 p(𝜃|X), because it is the

argument (value) that maximizes p(𝜃|X) over all 𝜃. Then, using the formula for the

posterior distribution, we have, because p(X) has no 𝜃 term:

𝜃MAP = argmax
𝜃

p(𝜃|X) = argmax
𝜃

p(X|𝜃)p(𝜃)
p(X)

= argmax
𝜃

p(X|𝜃)p(𝜃) (14.1)

The Bayesian MAP classification is optimal; that is, it achieves the minimum error

rate for all possible classifiers (Mitchell,3 page 174). Next, we apply these formulas

3Optimal, that is, for the (0, 1) loss function. Mitchell, Machine Learning, WGB-McGraw-Hill, Boston,

1997.
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to a subset of the churn data set,4 specifically, so that we may find the MAP estimate

of churn for this subset.

First, however, let us step back for a moment and derive Bayes’ theorem for sim-

ple events. Let A and B be events in a sample space. Then the conditional probability
P(A|B) is defined as:

P(A|B) = P(A ∩ B)
P(B)

= #of outcomes in both A and B
#of outcomes in B

.

Also, P(B|A) = P(A∩B)
P(A) . Now, re-expressing the intersection, we have P(A ∩ B) =

P(B|A) ⋅ P(A), and substituting, we obtain

P(A|B) = P(B|A) ⋅ P(A)
P(B)

, (14.2)

which is Bayes’ theorem for simple events.

We shall restrict our example to only two categorical predictor variables, Inter-
national Plan and Voice Mail Plan, and the categorical target variable, churn. The

business problem is to classify new records as either churners or non-churners, based

on the associations of churn with the two predictor variables learned in the train-

ing set. Now, how are we to think about this churn classification problem in the

Bayesian terms addressed above? First, we let the parameter vector 𝜃 represent the

dichotomous variable churn, taking on the two values true and false. For clarity, we

denote 𝜃 as C for churn. The 3333 × 2 matrix X consists of the 3333 records in

the data set, each with two fields, specifying either yes or no for the two predictor

variables.

Thus, equation (14.1) can be reexpressed as:

𝜃MAP = CMAP = argmax
c,c

p(I ∩ V|C)p(C), (14.3)

where I represents the International Plan and V represents the Voice Mail Plan.

Denote:

• I to mean International Plan = yes

• I to mean International Plan = no

• V to mean Voice Mail Plan = yes

• V to mean Voice Mail Plan = no

• C to mean Churn = true

• C to mean Churn = false.

For example, for a new record containing (I ∩ V), we seek to calculate the fol-

lowing probabilities, using equation (14.3):

4Churn data set. Blake, C.L. & Merz, C.J. UCI Repository of machine learning databases [http://www.

ics.uci.edu/∼mlearn/MLRepository.html]. Irvine, CA: University of California, Department of Informa-

tion and Computer Science, 1998. Also available at textbook website, www.DataMiningConsultant.com.

http://www.ics.uci.edu/%E2%88%BCmlearn/MLRepository.html%00%00
http://www.ics.uci.edu/%E2%88%BCmlearn/MLRepository.html%00%00
http://www.DataMiningConsultant.com
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For customers who churn (churners):

P(International Plan = yes, Voice Mail Plan = yes|Churn = true)
⋅ P(Churn = true) = P(I ∩ V|C) ⋅ P(C), and

For customers who do not churn (non-churners):

P(International Plan = yes, Voice Mail Plan = yes|Churn = false)

⋅ P(Churn = false) = P(I ∩ V|C) ⋅ P(C).

We will then determine which value for churn produces the larger probability,

and select it as CMAP, the MAP estimate of churn.

We begin by finding a series of marginal and conditional probabilities, all of

which we shall use as we build toward our MAP estimates. Also, as we may examine

the entire training data set of 3333 records, we may calculate the posterior probabil-

ities directly, as given in Table 14.2.

Note that, using the probabilities given in Tables 14.1 and 14.2, we can easily

find the complement of these probabilities by subtracting from 1. For completeness,

we present these complement probabilities in Table 14.3.

TABLE 14.1 Marginal and conditional probabilities for the churn data set

Count Count Probability

International Plan No 3010 Yes 323 P(I) = 323

(323 + 3010)
= 0.0969

Voice Mail Plan No 2411 Yes 922 P(V) = 922

(922 + 2411)
= 0.2766

Churn False 2850 True 483 P(C) = 483

(483 + 2850)
= 0.1449

International Plan, given

churn= false

No 2664 Yes 186 P(I|C) = 186

(186 + 2664)
= 0.0653

Voice Mail Plan, given

churn= false

No 2008 Yes 842 P(V|C) = 842

(842 + 2008)
= 0.2954

International Plan, given

churn= true

No 346 Yes 137 P(I|C) = 137

(137 + 346)
= 0.2836

Voice Mail Plan, given

churn= true

No 403 Yes 80 P(V|C) = 80

(80 + 403)
= 0.1656

TABLE 14.2 Posterior probabilities for the churn training data set

Count Count Probability

Churn= true, given

International Plan= yes

False 186 True 137 P(C|I) = 137

(137 + 186)
= 0.4241

Churn= true, given Voice

Mail Plan=Yes

False 842 True 80 P(C|V) = 80

(80 + 842)
= 0.0868
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TABLE 14.3 Complement probabilities for the churn training data set

Complement Probabilities

P(I) = 1 − P(I) = 1 − 0.0969 = 0.9031 P(V) = 1 − 0.2766 = 0.7234

P(C) = 1 − 0.1449 = 0.8551 P(I|C) = 1 − 0.0653 = 0.9347

P(V|C) = 1 − 0.2954 = 0.7046 P(I|C) = 1 − 0.2836 = 0.7164

P(V|C) = 1 − 0.1656 = 0.8344 P(C|I) = 1 − 0.4241 = 0.5759

P(C|V) = 1 − 0.0868 = 0.9132

Let us verify Bayes’ theorem for this data set, using the probabilities in

Table 14.1. P(C|V) = P(V|C)⋅P(C)
P(V) = (0.1656)⋅(0.1449)

0.2766
= 0.0868, which is the value for

this posterior probability given in Table 14.2.

We are still not in a position to calculate the MAP estimate of churn. We must

first find joint conditional probabilities of the form P(I, V|C). The contingency

tables are shown in Table 14.4, allowing us to calculate joint conditional probabilities,

by counting the records for which the respective joint conditions are held.

TABLE 14.4 Joint conditional probabilities for the churn training data set

Churn

False True 

I ∩ V
No 2794 447 

Yes 56 36 

( | ) 36 (36 447) 0.0745p I V C

( | ) 56 (56 2794) 0.0196p I V C

Churn

False True 

I V∩
No 2720 382 

Yes 130 101 

( | ) 101 (101 382) 0.2091p I V C

( | ) 130 (130 2720) 0.0456p I V C

Churn

False True 

I V∩

∩ ∩

∩

=

=

=

=

+

+∩ =

= +

+

=

=

No 2064 439 

Yes 786 44 

( | ) 44 ( 44 439) 0.0911p I V C

( | ) 786 ( 786 2064) 0.2758p I V C

Churn

False True 

I V∩
No 972 181 

Yes 1878 302 

( | ) 302 (302 181) 0.6253p I V C

( | ) 1878 (1878 972) 0.6589p I V C

∩ + ∩ ==

= =+

= =+

∩ = =+∩
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Now we can find the MAP estimate of churn for the four combinations of Inter-
national Plan and Voice Mail Plan membership, using equation (14.3):

𝜃MAP = CMAP = argmax
c,c

p(I,V|C)p(C)

Suppose we have a new record, where the customer belongs to the International Plan
and Voice Mail Plan. Do we expect that this new customer will churn or not? That

is, what will be the MAP estimate of churn for this new customer? We will apply

equation (14.3) for each of the churn or non-churn cases, and select the classification

that provides the larger value.

Here, we have:

For churners:

P(International Plan = yes, Voice Mail Plan = yes|Churn = true)
⋅ P(Churn = true) = P(I ∩ V|C) ⋅ P(C) = (0.0745) ⋅ (0.1449) = 0.0108, and

For non-churners:

P(International Plan = yes, Voice Mail Plan = yes|Churn = false)

⋅ P(Churn = false) = P(I ∩ V|C) ⋅ P(C) = (0.0196)
⋅ (0.8551) = 0.0168.

As 0.0167 for churn = false is the maximum of the two cases, then 𝜃MAP = CMAP, the

MAP estimate of churn for this new customer, is churn = false. For customers belong-

ing to both plans, this MAP estimate of “Churn = false” becomes our prediction; that

is, we would predict that they would not churn.

Suppose a new customer belongs to the International Plan, but not the Voice
Mail Plan. Then P(I ∩ V|C) ⋅ P(C) = (0.2091) ⋅ (0.1449) = 0.0303, and

P(I ∩ V|C) ⋅ P(C) = (0.0456) ⋅ (0.8551) = 0.0390.

So that 𝜃MAP = CMAP is churn = false.

What if a new customer belongs to the Voice Mail Plan, but not the Interna-
tional Plan? Then P(I ∩ V|C) ⋅ P(C) = (0.0911) ⋅ (0.1449) = 0.0132, and

P(I ∩ V|C) ⋅ P(C) = (0.2758) ⋅ (0.8551) = 0.2358.

Here again 𝜃MAP = CMAP is churn = false.

Finally, suppose a new customer belongs to neither the International Plan, nor

the Voice Mail Plan. Then P(I ∩ V|C) ⋅ P(C) = (0.6253) ⋅ (0.1449) = 0.0906, and

P(I ∩ V|C) ⋅ P(C) = (0.6589) ⋅ (0.8551) = 0.5634.

So that, yet again, 𝜃MAP = CMAP is churn = false.

14.3 POSTERIOR ODDS RATIO

Therefore, the MAP estimate for churn is false for each combination of International
Plan and Voice Mail Plan membership. This result does not appear to be very helpful,
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because we will predict the same outcome for all customers regardless of their mem-

bership in the plans. However, not all of the classifications have the same strength

of evidence. Next, we consider the level of evidence in each case, as defined by the

posterior odds ratio. The posterior odds ratio represents a measure of the strength of

evidence in favor of a particular classification, and is calculated as follows:

POSTERIOR ODDS RATIO

p(𝜃c|X)

p(𝜃c|X)
=

p(X|𝜃c) ⋅ p(𝜃c)

p(X|𝜃c) ⋅ p(𝜃c)
where 𝜃c represents a particular classification of the unknown target variable.

A posterior odds ratio of exactly 1.0 would mean that the evidence from the

posterior distribution supports both classifications equally. That is, the combination

of information from the data and the prior distributions does not favor one category

over the other. A value greater than 1.0 indicates that the posterior distribution favors

the positive classification, while a value less than 1.0 represents evidence against the

positive classification (e.g., churn = true). The value of the posterior odds ratio may

be interpreted as indicating roughly the proportion or ratio of evidence provided by

the posterior distribution in favor of the positive classification against the negative

classification.

In our example, the posterior odds ratio for a new customer who belongs to

both plans is
P(I ∩ V|C) ⋅ P(C)
P(I ∩ V|C) ⋅ P(C)

= 0.0108

0.0168
= 0.6467

This means that there is 64.67% as much evidence from the posterior distribution in

support of churn = true as there is in support of churn = false for this customer.

For a new customer who belongs to the International Plan only, the posterior

odds ratio is
P(I ∩ V|C) ⋅ P(C)
P(I ∩ V|C) ⋅ P(C)

= 0.0303

0.0390
= 0.7769

indicating that there is 77.69% as much evidence from the posterior distribution in

support of churn = true as there is in support of churn = false for such a customer.

New customers who belong to the Voice Mail Plan only have a posterior odds

ratio of
P(I ∩ V|C) ⋅ P(C)
P(I ∩ V|C) ⋅ P(C)

= 0.0132

0.2358
= 0.0560

indicating that there is only 5.6% as much evidence from the posterior distribution in

support of churn = true as there is in support of churn = false for these customers.

Finally, for customers who belong to neither plan, the posterior odds ratio is

P(I ∩ V|C) ⋅ P(C)
P(I ∩ V|C) ⋅ P(C)

= 0.0906

0.5634
= 0.1608
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indicating that there is only 16.08% as much evidence from the posterior distribution

in support of churn = true as there is in support of churn = false for customers who

belong to neither plan.

Thus, although the MAP classification is churn = false in each case, the “confi-

dence” in the classification varies greatly, with the evidence for churn = true ranging

from 5.6% up to 77.69% of the evidence for churn = false. For the customers who

belong to the International Plan, the evidence for churn is much stronger. In fact,

note from the MAP calculations above that the joint conditional probabilities for cus-

tomers belonging to the International Plan (with or without the Voice Mail Plan)

favored churn = true, but were overwhelmed by the preponderance of non-churners

in the data set, from 85.51% to 14.49%, so that the MAP classification turned out

to be churn = false. Thus, the posterior odds ratio allows us to assess the strength

of evidence for our MAP classifications, which is more helpful to the analyst than a

simple up-or-down decision.

14.4 BALANCING THE DATA

However, as the classification decision was influenced by the preponderance of

non-churners in the data set, we may consider what might happen if we balanced the

data set. Some data mining algorithms operate best when the relative frequencies of

classes in the target variable are not extreme. For example, in fraud investigation,

such a small percentage of transactions are fraudulent, that an algorithm could

simply ignore such transactions, classify only non-fraudulent, and be correct 99.99%

of the time. Therefore, balanced sampling methods are used to reduce the disparity

among the proportions of target classes appearing in the training data.

In our case, we have 14.49% of the records representing churners, which may be

considered somewhat uncommon, although one could argue otherwise. Nevertheless,

let us balance the training data set, so that we have approximately 25% of the records

representing churners. In Chapter 4, we learned two methods for balancing the data.

1. Resample a number of rare records.

2. Set aside a number of non-rare records.

Here we will balance the data by setting aside a number of the more common,

non-churn records. This may be accomplished if we (i) accept all of the churn = true
records, and (ii) take a random sample of 50% of our churn = false records. As the

original data set had 483 churners and 2850 non-churners, this balancing procedure

would provide us with
483

(483+1425) = 25.3% churn = true records, as desired.

Hence, using the balanced churn data set, we once again compute the MAP esti-

mate for churn, for our four types of customers. Our updated probability of churning

is

P(CBal) =
483

(483 + 1425)
= 0.2531

and for not churning is

P(CBal) = 1 − 0.2531 = 0.7469



14.5 NAÏVE BAYES CLASSIFICATION 423

For new customers who belong to the International Plan and Voice Mail Plan, we

have

P(I ∩ V|CBal) ⋅ P(CBal) = (0.0745) ⋅ (0.2531) = 0.0189

and

P(I ∩ V|CBal) ⋅ P(CBal) = (0.0196) ⋅ (0.7469) = 0.0146

Thus, after balancing, CMAP, the MAP estimate of churn is churn = true, because

0.0189 is the greater value. Balancing has reversed the classification decision for this

category of customers.

For customers who belong to the International Plan only, we have

P(I ∩ V|CBal) ⋅ P(CBal) = (0.2091) ⋅ (0.2531) = 0.0529

and

P(I ∩ V|CBal) ⋅ P(CBal) = (0.0456) ⋅ (0.7469) = 0.0341

The MAP estimate CMAP is now churn = true, because 0.0529 is the greater value.

Once again, balancing has reversed the original classification decision for this cate-

gory of customers.

For new customers belonging only to the Voice Mail Plan, we have

P(I ∩ V|CBal) ⋅ P(CBal) = (0.0911) ⋅ (0.2531) = 0.0231

and

P(I ∩ V|CBal) ⋅ P(CBal) = (0.2758) ⋅ (0.7469) = 0.2060

The MAP estimate has not changed from the original CMAP: churn = false for mem-

bers of the Voice Mail Plan only.

Finally, for new customers belonging to neither plan, we have

P(I ∩ V|CBal) ⋅ P(CBal) = (0.6253) ⋅ (0.2531) = 0.1583

and

P(I ∩ V|CBal) ⋅ P(CBal) = (0.6589) ⋅ (0.7469) = 0.4921

Again, the MAP estimate has not changed from the original CMAP: churn = false for

customers belonging to neither plan.

In the original data, MAP estimates were churn = false for all customers, a

finding of limited actionability. Balancing the data set has provided different MAP
estimates for different categories of new customers, providing executives with simple

and actionable results. We may of course proceed to compute the posterior odds ratio

for each of these classification decisions, if we are interested in assessing the strength

of evidence for the classifications. The reader is invited to do so in the exercises.

14.5 NAÏVE BAYES CLASSIFICATION

For our simplified example using two dichotomous predictors and one dichotomous

target variable, finding the MAP classification posed no computational difficulties.
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However, Hand, Mannila, and Smyth5 (page 354) state that, in general, the num-

ber of probabilities that would need to be calculated to find the MAP classifica-

tion would be on the order of km, where k is the number of classes for the target

variable, and m is the number of predictor variables. In our example, we had k= 2

classes in churn, and m= 2 predictors, meaning that we had to find four probabili-

ties to render a classification decision, for example, P(I ∩ V|C), P(C), P(I ∩ V|C),
and P(C).

However, suppose we are trying to predict the marital status (k= 5: single,

married, divorced, widowed, separated) of individuals based on a set of m= 10

demographic predictors. Then, the number of probabilities to calculate would be

on the order of km = 510 = 9, 765, 625 probabilities. Note further that each of these

9,765,625 probabilities would need to be calculated based on relative frequencies of

the appropriate cells in the 10-dimensional array. Using a minimum of 10 records

per cell to estimate the relative frequencies, and on the unlikely assumption that the

records are distributed uniformly across the array, the minimum requirement would

be nearly 100 million records.

Thus, MAP classification is impractical to apply directly to any interesting

real-world data mining scenarios. What, then, can be done?

MAP classification requires that we find:

argmax
𝜃

p(X|𝜃)p(𝜃) = argmax
𝜃

p(X1 = x1,X2 = x2, … ,Xm = xm|𝜃)p(𝜃).
The problem is not calculating p(𝜃), for which there is usually a small number of

classes. Rather, the problem is the curse of dimensionality; that is, finding p(X1 =
x1,X2 = x2, … ,Xm = xm|𝜃) for all the possible combinations of the X-variables (the

predictors). Here is where the search space explodes, so, if there is a way to cut down

on the search space for this problem, then it is to be found right here.

Here is the key: Suppose we make the simplifying assumption that the predictor

variables are conditionally independent, given the target value (e.g., churn= false).

Two events A and B are said to be conditionally independent if, for a given event C,
p(A ∩ B|C) = p(A|C) ⋅ p(B|C). For example, conditional independence would state

that, for customers who churn, membership in one of the two plans (I or V) would not

affect the probability of membership in the other plan. Similarly, the idea extends to

customers who do not churn.

In general, the assumption of conditional independence may be expressed as

follows:

p(X1 = x1,X2 = x2, … ,Xm = xm|𝜃) = m∏
i=1

p(Xi = xi|𝜃).
The naïve Bayes classification is therefore 𝜃NB = argmax𝜃

∏m

i=1
p(Xi = xi|𝜃)p(𝜃).

When the conditional independence assumption is valid, the naïve Bayes clas-

sification is the same as the MAP classification. Therefore, we investigate whether

5David Hand, Heiki Mannila and Padhraic Smyth, Principles of Data Mining, MIT Press, Cambridge,

Mass, 2001.
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the assumption of conditional independence holds for our churn data set example, as

shown in Table 14.5. In each case, note that the approximation for the non-churners

is several times closer than for the churners. This may indicate that the assumption

of conditional independence assumption is best validated for non-rare categories,

another argument in support of balancing when necessary.

TABLE 14.5 Checking the conditional independence assumption for churn data set
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∩

=
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We now proceed to calculate naïve Bayes classifications for the churn data set.

For a new customer belonging to both plans, we have for churners,

p(I|C) ⋅ p(V|C) ⋅ p(C) = (0.0470) ⋅ (0.1449) = (0.0068)

and for non-churners,

p(I|C) ⋅ p(V|C) ⋅ p(C) = (0.0193) ⋅ (0.8551) = (0.0165)

The naïve Bayes classification for new customers who belong to both plans is there-

fore churn = false because 0.0165 is the larger of the two values. It turns out that,

just as for the MAP classifier, all four cases return a naïve Bayes classification of

churn = false. Also, after
25.31%
74.69% balancing, new customers who belong to the Inter-

national Plan are classified by naïve Bayes as churners, regardless of Voice Mail Plan
membership, just as for the MAP classifier. These results are left to the exercises for

verification.

When using naïve Bayes classification, far fewer probabilities need to be esti-

mated, just k ⋅ m probabilities rather than km for the MAP classifier; in other words,

just the number of predictor variables times the number of distinct values of the target

variable. In the marital status example, where we had k= 5 distinct marital statuses

and m= 10 predictor variables, we would need to compute only k ⋅ m = 5 ⋅ 10 = 50

probabilities, rather than the 9.7 million needed for the MAP classifier. At 10 records

per cell, that would mean that only 500 records would be needed, compared to the

nearly 100 million calculated earlier. Clearly, the conditional independence assump-

tion, when valid, makes our computational life much easier. Further, as the naïve

Bayes classification is the same as the MAP classification when the conditional inde-

pendence assumption is met, then the naïve Bayes classification is also optimal, in the

sense of minimizing the error rate over all classifiers. In practice, however, departures

from the conditional independence assumption tend to inhibit the optimality of the

naïve Bayes classifier.

The conditional independence assumption should not be made blindly. Cor-

related predictors, for example, violate the assumption. For example, in classifying

risk for credit default, total assets and annual income would probably be correlated.

However, naïve Bayes would, for each classification (default, no default), consider

total assets and annual income to be independent and uncorrelated. Of course, care-

ful data mining practice includes dealing with correlated variables at the exploratory

data analysis (EDA) stage anyway, because the correlation can cause problems for

several different data methods. Principal components analysis can be used to handle

correlated variables. Another option is to construct a user-defined composite, a linear

combination of a small set of highly correlated variables. (See Chapter 1 for more

information on handling correlated variables.)

14.6 INTERPRETING THE LOG POSTERIOR ODDS
RATIO

Next, we examine the log of the posterior odds ratio, which can provide us with

an intuitive measure of the amount that each variable contributes toward the
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classification decision. The posterior odds ratio takes the form:

p(𝜃c|X)
p(𝜃c|X)

=
p(X|𝜃c) ⋅ p(𝜃c)
p(X|𝜃c) ⋅ p(𝜃c)

=
p(X1 = x1,X2 = x2, … ,Xm = xm|𝜃) ⋅ p(𝜃c)
p(X1 = x1,X2 = x2, … ,Xm = xm|𝜃) ⋅ p(𝜃c)

conditional
independence
assumption

=

m∏
i=1

p(Xi = xi|𝜃) ⋅ p(𝜃c)

m∏
i=1

p(Xi = xi|𝜃) ⋅ p(𝜃c)
,

which is the form of the posterior odds ratio for naïve Bayes.

Next, consider the log of the posterior odds ratio. As the log of a product is the

sum of the logs, we have:

log

⎛⎜⎜⎜⎜⎜⎝

m∏
i=1

p
(
Xi = xi|𝜃) ⋅ p(𝜃c)

m∏
i=1

p(Xi = xi|𝜃) ⋅ p(𝜃c)

⎞⎟⎟⎟⎟⎟⎠
= log

(
m∏

i=1

p
(
Xi = xi|𝜃)

)
+ m log p(𝜃c) − log

(
m∏

i=1

p
(

Xi = xi|𝜃)
)

− m log p(𝜃c)

= m log
p(𝜃c)

p(𝜃c)
+

m∑
i=1

log

(
p
(
Xi = xi|𝜃)

p(Xi = xi|𝜃)
)

.

This form of the log posterior odds ratio is useful from an interpretive point of view,

because each term,

log

(
p
(
Xi = xi|𝜃)

p(Xi = xi|𝜃)
)

relates to the additive contribution, either positive or negative, of each attribute.

For example, consider the log posterior odds ratio for a new customer who

belongs to both the International Plan and Voice Mail Plan. Then, for the Interna-
tional Plan, we have

log

(
p (I|C)
p(I|C)

)
= log

(
0.2836

0.0653

)
= 0.6378

and for the Voice Mail Plan, we have

log

(
p (V|C)
p(V|C)

)
= log

(
0.1656

0.2954

)
= −0.2514
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Thus, we see that membership in the International Plan contributes in a positive way

to the likelihood that a particular customer will churn, while membership in the Voice

Mail Plan decreases the churn probability. These findings concur with our exploratory

results from Chapter 3, Exploratory Data Analysis.

14.7 ZERO-CELL PROBLEM

As we saw in Chapter 13, Logistic Regression, a cell with frequency zero can pose

difficulties for the analysis. Now, for naïve Bayes estimation, what if a particular cell

(combination of attribution values) has a zero frequency? For example, of the 483

customers who churned, 80 had the Voice Mail Plan, so that p(V|C) = 80

483
= 0.1656.

However, suppose none of the churners had the Voice Mail Plan. Then p(V|C)
would equal

0

483
= 0.0. The real problem with this is that, because the conditional

independence assumption means that we take the product of the marginal probabil-

ities, this zero value for p(V|C) will percolate through and dominate the result. As

the naïve Bayes classification contains
∏m

i=1
p(Xi = xi|𝜃), a single zero probability

in this product will render the entire product to be zero, which will also make∏m

i=1
p(Xi = xi|𝜃) ⋅ p(𝜃) equal to zero, thereby effectively eliminating this class

(churn = true) from consideration for any future probability involving the Voice Mail
Plan.

To avoid this problem, we posit an additional number of “virtual” samples,

which provides the following adjusted probability estimate for zero-frequency

cells:

ADJUSTED PROBABILITY ESTIMATE FOR ZERO-FREQUENCY
CELLS

nc + nequiv ⋅ p

n + nequiv

where n represents the total number of records for this target class, nc represents the number

of these n records that also have the attribute value of interest, p is the prior estimate of

the probability being estimated, and nequiv is a constant representing the equivalent sample
size.

The constant nequiv represents the additional number of virtual samples used to

find the adjusted probability, and controls how heavily the adjustment is weighted.

The prior probability estimate p may be assigned, in the absence of other information,

to be the non-informative uniform prior p = 1

k
, where k is the number of classes for

the target variable. Thus, nequiv additional samples, distributed according to p, are

contributed to the calculation of the probability.

In our example, we have n= 483, nc = 0, and p = 1

2
. We choose nequiv = 1 to

minimize the effect of the intervention. The adjusted probability estimate for the zero

probability cell for p(V|C) is therefore:
nc+nequiv⋅p

n+nequiv
= 0+1⋅(1∕2)

483+1
= 0.0010.
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14.8 NUMERIC PREDICTORS FOR NAÏVE BAYES
CLASSIFICATION

Bayesian classification can be extended from categorical to continuous predictor vari-

ables, provided we know the relevant probability distribution. Suppose that, in addi-

tion to International Plan and Voice Mail Plan, we also had access to Total Minutes,
the total number of minutes used by the cell-phone customer, along with evidence that

the distribution of Total Minutes is normal, for both churners and non-churners. The

mean Total Minutes for churners is 𝜇churn = 635 minutes, with a standard deviation of

𝜎churn = 111 minutes. The mean Total Minutes for non-churners is 𝜇non-churn = 585

with a standard deviation of 𝜎non-churn = 84 minutes. Thus, we assume that the dis-

tribution of Total Minutes for churners is Normal(635, 111) and for non-churners is

Normal(585, 84).
Let Tchurn represent the random variable Total Minutes for churners. Then,

p(Tchurn = t) ≅ fT|C
= 1√

2𝜋𝜎churn

exp

(
−1

2𝜎2
churn

(
t − 𝜇churn

)2
)

= 1√
2𝜋(111)

exp

(
−1

2(111)2
(t − 635)2

)
,

with an analogous form for non-churners. (Here, exp(y) represents ey.)

Also, fT|C(t) is substituted for p(T = t|C), because, for continuous random vari-

ables, p(T = t) = 0,∀t.
Next, suppose we are interested in classifying new customers who have 800

Total Minutes, and belong to both plans, using naïve Bayes classification. We have:

For churners:

p(I ∩ V ∩ T = 800|C) ⋅ P(C) = P(I|C) ⋅ P(V|C) ⋅ fT|C(800) ⋅ P(C)
= (0.2836) ⋅ (0.1656) ⋅ (0.001191) ⋅ (0.1449)
= 0.000008105

and for non-churners:

p(I ∩ V ∩ T = 800|C) ⋅ P(C) = P(I|C) ⋅ P(V|C) ⋅ fT|C(800) ⋅ P(C)

= (0.0653) ⋅ (0.2954) ⋅ (0.0001795) ⋅ (0.8551)
= 0.000002961

Hence, the naïve Bayes classification for new customers who have 800 Total Minutes
and belong to both plans is churn = true, by a posterior odds ratio of

0.000008105

0.000002961
= 2.74

In other words, the additional information that the new customer had 800 Total Min-
utes was enough to reverse the classification from churn = false (previously, without

Total Minutes) to churn = true. This is due to the somewhat heavier cell-phone usage

of the churners group, with a higher mean Total Minutes.
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Now, assumptions of normality should not be made without supporting evi-

dence. Consider Figure 14.2, a comparison dot plot of the two distributions. Immedi-

ately we can see that indeed there are many more non-churner records than churners.

We also note that the balancing point (the mean, indicated by the triangle) for churn-

ers is greater than for non-churners, supporting the above statistics. Finally, we notice

that the normality assumption for non-churners looks quite solid, while the normality

assumption for the churners looks a little shaky.

Churn
= true

300 400 500 600 700 800 900

Churn
= false

Figure 14.2 Comparison dot plot of Total Minutes for churners and non-churners.

Normal probability plots are then constructed for the two distributions just

described, and shown in Figure 14.3. In a normal probability plot, there should be

no systematic deviations from linearity; otherwise, the normality assumption is called
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Figure 14.3 Normal probability plots of Total Minutes for churners and non-churners.
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into question. In Figure 14.3, the bulk of the points for the non-churners line up nearly

perfectly on a straight line, indicating that the normality assumption is validated for

non-churners’ Total Minutes. However, there does appear to be systematic curva-

ture in the churners’ data points, in a slight backwards S-curve, indicating that the

normality assumption for churners’ Total Minutes is not validated. As the assump-

tion is not validated, then all subsequent inference applying this assumption must

be flagged as such for the end-user. For example, the naïve Bayes classification of

churn = true may or may not be valid, and the end-user should be informed of this

uncertainty.

Often, non-normal distribution can be transformed to normality, using,

for example, the Box–Cox transformation T(y) = (y𝜆−1)
𝜆

. However, Figure 14.2

shows that Total Minutes for churners actually looks like a mixture of two normal

distributions, which will prove resistant to monotonic transformations to normality.

The mixture idea is intriguing and deserves further investigation, which we do not

have space for here. Data transformations were investigated more fully in Chapters

8 and 9.

Alternatively, one may dispense with the normality assumption altogether, and

choose to work directly with the observed empirical distribution of Total Minutes for

churners and non-churners. We are interested in comparing the p(T = 800) for each

distribution; why not estimate this probability by directly estimating p(798 ≤ T ≤

802) for each distribution? It turns out that three of the churner customers had between

798 and 802 total minutes, compared to one for the non-churner customers. So, the

probability estimates would be p(T = 800|C) ≅ 3

483
= 0.006211 for the churners, and

p(T = 800|C) ≅ 1

2850
= 0.0003509 for the non-churners.

Thus, to find the naïve Bayes classification for churners,

p(I ∩ V ∩ T = 800|C) ⋅ P(C) = P(I|C) ⋅ P(V|C) ⋅ f̂T|C(800) ⋅ P(C)
= (0.2836) ⋅ (0.1656) ⋅ (0.006211) ⋅ (0.1449)
= 0.00004227,

and for non-churners,

p(I ∩ V ∩ T = 800|C) ⋅ P(C) = P(I|C) ⋅ P(V|C) ⋅ f̂T|C(800) ⋅ P(C)

= (0.0653) ⋅ (0.2954) ⋅ (0.0003509) ⋅ (0.8551)
= 0.000005788.

(Here, f̂T|C(800) represents our empirical estimate of fT|C(800).)
Thus, once again, the naïve Bayes classification for new customers who have

800 Total Minutes and belong to both plans is churn = true, this time by a posterior

odds ratio of 0.00004227

0.000005788
= 7.30. The evidence is even more solid in favor of a classi-

fication of churn = true for these customers, and we did not have to burden ourselves

with an assumption about normality.

The empirical probability estimation method shown here should be verified

over a range of margins of error. Above, we found the numbers of records within a

margin of error of 2 records (798 ≤ T ≤ 802). The reader may verify that that there are

8 churn records and 3 non-churn records within 5 minutes of the desired 800 minutes;
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and that there are 15 churn records and 5 non-churn records within 10 minutes of the

desired 800 minutes. So the approximate 3 : 1 ratio of churn records to non-churn

records in this area of the distribution seems fairly stable.

14.9 WEKA: HANDS-ON ANALYSIS USING NAÏVE
BAYES

In this exercise, Waikato Environment for Knowledge Analysis’s (WEKA’s) naïve

Bayes classifier is used to classify a small set of movie reviews as either positive

(pos) or negative (neg). First, the text from 20 actual reviews is preprocessed to cre-

ate a training file movies_train.arff containing three Boolean attributes and a target

variable. This file is used to train our naïve Bayes model and contains a set of 20

individual review instances, where 10 reviews have the class value “pos,” and the

remaining 10 reviews take on the class value “neg.” Similarly, a second file is created

to test our model. In this case, movies_test.arff only contains four review instances,

where two are positive and the remaining two are negative.

During the preprocessing stage, the unigrams (specifically adjectives) are

extracted from the reviews and a list of adjectives is derived. The three most

frequently occurring adjectives are chosen from the list and form the set of attributes

used by each review instance. Specifically, each instance is represented as a Boolean

document vector of length three, where each attribute’s value is either 1 or 0,

corresponding to whether the review contains or does not contain the particular

adjective, respectively. The Attribute-Relation File Format (ARFF)-based training

file movies_train.arff is shown in Table 14.6.

All attributes in the ARFF file are nominal and take on one of two values; inputs

are either “0” or “1,” and the target variable CLASS is either “pos” or “neg.” The data
section lists each instance, which corresponds to a specific movie review record. For

example, the third line in the data section corresponds to a review where more= 1,

much= 1, other= 0, and CLASS= neg.

Now, we load the training file and build the naïve Bayes classification model.

1. Click Explorer from the WEKA GUI Chooser dialog.

2. On the Preprocess tab, press Open file and specify the path to the training file,

movies_train.arff.

3. Select the Classify tab.

4. Under Classifier, press the Choose button

5. Select Classifiers→Bayes→Naïve Bayes from the navigation hierarchy.

6. In our modeling experiment, we have separate training and test sets; therefore,

under Test options, choose the Use training set option.

7. Click Start to build the model.

WEKA creates the naïve Bayes model and produces the results in the Classifier

output window as shown in Figure 14.4. In general, the results indicate that the clas-

sification accuracy of the model, as measured against the training set, is 65%
(

13

20

)
.
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TABLE 14.6 ARFF Movies Training Filemovies_train.arff.

@relation movies_train.arff 

@attribute more  {0, 1} 
@attribute much  {0, 1} 
@attribute other  {0, 1} 
@attribute CLASS  {neg, pos} 

@data
1, 0, 0, neg 
1, 1, 0, neg 

1, 1, 0, neg 

0, 1, 1, neg 

1, 1, 1, neg 

1, 1, 0, neg 

1, 0, 0, neg 

1, 0, 1, neg 

1, 1, 1, neg 

1, 1, 1, neg 

1, 1, 1, pos 

1, 0, 1, pos 

1, 1, 1, pos 

1, 1, 1, pos 

1, 0, 0, pos 

1, 1, 0, pos 

0, 1, 1, pos 

1, 0, 1, pos 

0, 0, 0, pos 

1, 1, 1, pos 

Next, our model is evaluated against the unseen data found in the test set,

movies_test.arff.

1. Under Test options, choose Supplied test set. Click Set.

2. Click Open file, specify the path to the test file, movies_test.arff. Close the Test

Instances dialog.

3. Check the Output text predictions on test set option. Click OK.
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Figure 14.4 WEKA Explorer: naïve Bayes training results.

Click the Start button to evaluate the model against the test set.

Surprisingly, the Explorer Panel shows that our naïve Bayes model has classi-

fied all four movie reviews in the test set correctly. Although these results are encour-

aging, from a real-world perspective, the training set lacks a sufficient number of

both attributes and examples to be considered practical in any real sense. We con-

tinue with the objective of becoming familiar with the naïve Bayes classifier. Let us

explore how naïve Bayes arrived at the decision to classify the fourth record in the

test set correctly. First, however, we examine the probabilities reported by the naïve

Bayes classifier.

The naïve Bayes model reports the actual probabilities it used to classify each

review instance from the test set as either “pos” or “neg.” For example, Table 14.7

shows that naïve Bayes has classified the fourth instance from the test set as “pos”

with a probability equal to 0.60.

In Table 14.8, the conditional probabilities are calculated that correspond to

the data found in movies_train.arff. For example, given that the review is negative,

the conditional probability of the word “more” occurring is p(more = 1|CLASS =
neg) = 9

10
. In addition, we also know the prior probabilities of p(CLASS = pos) =

p(CLASS = neg) = 10

20
= 0.5. These simply correspond with the fact that our training

set is balanced 50

50
.

Recall the method of adjusting the probability estimate to avoid zero-frequency

cells, as described earlier in the chapter. In this particular case, naïve Bayes produces

an internal adjustment, where nequiv = 2 and p = 0.5, to produce
(nc+1)

n+2
. Therefore,
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TABLE 14.7 Naive bayes test set predictions

=== Predictions on test split === 

inst#,    actual, predicted, error, probability distribution

     1      1:neg      1:neg         *0.533  0.467 

     2      1:neg      1:neg         *0.533  0.467 

     3      2:pos      2:pos          0.444 *0.556 

     4      2:pos      2:pos          0.4   *0.6

TABLE 14.8 Conditional probabilities derived from movies_training.arff

more much other

neg

1 0 1 0 1 0

9/10 1/10 7/10 3/10 5/10 5/10

pos
1 0 1 0 1 0
8/10 2/10 6/10 4/10 7/10 3/10

we now calculate the probably of the fourth review from the test as set being either

“pos” or “neg”:

3∏
i=1

p(Xi = xi|CLASS = pos)p(CLASS = pos)

=
(

8 + 1

10 + 2

)
⋅
(

4 + 1

10 + 2

)
⋅
(

7 + 1

10 + 2

)
⋅ (0.5)

=
(

9

12

)
⋅
(

5

12

)
⋅
(

8

12

)
⋅ (0.5) ≈ 0.1042

3∏
i=1

p(Xi = xi|CLASS)p(CLASS = neg)

=
(

9 + 1

10 + 2

)
⋅
(

3 + 1

10 + 2

)
⋅
(

5 + 1

10 + 2

)
⋅ (0.5)

=
(

10

12

)
⋅
(

4

12

)
⋅
(

6

12

)
⋅ (0.5) ≈ 0.0694

Finally, we normalize the probabilities and determine:

p(pos) = 0.1042

0.1042 + 0.0694
≈ 0.6002
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p(neg) = 0.0694

0.1042 + 0.0694
≈ 0.3998

Here, the review is classified as positive with a 0.60 probability. These results

agree with those reported by WEKA in Table 14.7, which also classified the review as

positive. In fact, our hand-calculated probabilities match those reported by WEKA.

Although the data set used for this example is rather small, it demonstrates the use of

the naïve Bayes classifier in WEKA when using separate training and test files. More

importantly, our general understanding of the algorithm has increased, as a result of

computing the probabilities that led to an actual classification by the model.

14.10 BAYESIAN BELIEF NETWORKS

Naïve Bayes classification assumes that the attributes are conditionally independent,

given the value of the target variable. This assumption may in fact be too strong

for environments where dependence exists among the predictor variables. Bayesian
belief networks (BBNs) are designed to allow joint conditional independencies to be

defined among subsets of variables. BBNs, also called Bayesian networks or Bayes
nets, take the form of a directed acyclic graph (DAG), where directed means that the

arcs are traversed in one direction only, and acyclic means that no child node cycles

backup to any progenitor.

An example of a Bayesian network in the form of a DAG is shown in

Figure 14.5. The nodes represent variables, and the arcs represent the (directed)

dependence among the variables. In general, Node A is a parent or immediate
predecessor of Node X, and Node X is a descendant of Node A, if there exists

a directed arc from A to X. The intrinsic relationship among the variables in a

Bayesian network is as follows:

Each variable in a Bayesian network is conditionally independent of its
non-descendants in the network, given its parents.

Thus, we have:

p(X1 = x1,X2 = x2, … ,Xm = xm) =
m∏

i=1

p(Xi = xi|parents(Xi)). (14.4)

Note that the child node probability depends only on its parents.

14.11 CLOTHING PURCHASE EXAMPLE

To introduce Bayesian networks, we shall use the clothing purchase example, illus-

trated by the Bayes net in Figure 14.5. Suppose a clothes retailer operates two outlets,

one in New York and one in Los Angeles, each producing sales throughout the four

seasons. The retailer is interested in probabilities concerning three articles of clothing,

in particular, warm coats, business shirts, and Bermuda shorts. Questions of interest

include the fabric weight of the article of clothing (light, medium, or heavy), and the

color of the article (bright, neutral, or dark).
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Figure 14.5 A Bayesian network for the clothing purchase example.

To build a Bayesian network, there are two main considerations:

1. What is the dependence relationship among the variables of interest?

2. What are the associated “local” probabilities?

The retailer has five variables: season, location, clothing purchase, fabric
weight, and color. What is the dependence relationship among these variables? For

example, does the season of the year depend on the color of the clothes purchased?

Certainly not, because a customer’s purchase of some bright clothing does not mean

that spring is here, for example, although the customer may wish it so. In fact, the

season of the year does not depend on any of the other variables, and so we place the

node for the variable season at the top of the Bayes network, which indicates that it

does not depend on the other variables. Similarly, location does not depend on the

other variables, and is therefore placed at the top of the network.
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As the fabric weight and the color of the clothing is not known until the article

is purchased, the node for the variable clothing purchase is inserted next into the

network, with arcs to each of the fabric weight and color nodes.

The second consideration for constructing a Bayesian network is to specify all

of the entries in the probability tables for each node. The probabilities in the sea-
son node table indicate that clothing sales for this retail establishment are uniform

throughout the four seasons. The probabilities in the location node probability table

show that 60% of sales are generated from their Los Angeles store, and 40% from

their New York store. Note that these two tables need not supply conditional proba-

bilities, because the nodes are at the top of the network.

Assigning probabilities for clothing purchase requires that the dependence on

the parent nodes be taken into account. Expert knowledge or relative frequencies (not

shown) should be consulted. Note that the probabilities in each row of the table sum to

one. For example, the fourth row of the clothing purchase table shows the conditional

probabilities of purchasing the articles of clothing from the Los Angeles store in the

summer. The probabilities of purchasing a warm coat, a business shirt, and Bermuda

shorts are 0.05, 0.35, and 0.60, respectively. The seventh row represents probabilities

of purchasing articles of clothing from the New York store in winter. The probabilities

of purchasing a warm coat, a business shirt, and Bermuda shorts are 0.60, 0.35, 0.05,

respectively.

Given a particular item of clothing, the probabilities then need to be speci-

fied for fabric weight and color. A warm coat will have probabilities for being of

light, medium, or heavy fabric or 0.10, 0.20, and 0.70, respectively. A business shirt

will have probabilities of having bright, neutral, or dark color of 0.70, 0.20, and

0.10, respectively. Note that the fabric weight or color depends only on the item of

clothing purchased, and not the location or season. In other words, color is condition-

ally independent of location, given the article of clothing purchased. This is one of

the relationships of conditional independence to be found in this Bayesian network.

Given below is some of the other relationships:

• Color is conditionally independent of season, given clothing purchased.

• Color is conditionally independent of fabric weight, given clothing

purchased.

• Fabric weight is conditionally independent of color, given clothing

purchased.

• Fabric weight is conditionally independent of location, given clothing pur-

chased.

• Fabric weight is conditionally independent of season, given clothing

purchased.

Note that we could say that season is conditionally independent of location,
given its parents. But as season has no parents in the Bayes net, this means that season
and location are (unconditionally) independent.

Be careful when inserting arcs into the Bayesian network, because these repre-

sent strong assertions of conditional independence.
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14.12 USING THE BAYESIAN NETWORK TO FIND
PROBABILITIES

Next, suppose we would like to find the probability that a given purchase involved

light-fabric, neutral-colored Bermuda shorts were purchased in New York in the win-

ter. Using equation (14.4), we may express what we seek as:

p(A = a4,B = b1,C = c1,D = d2,X = x3)
= p(A = a4) ⋅ p(B = b1) ⋅ p(X = x3|A = a4 ∩ B = b1)
⋅ p(C = c1|X = x3) ⋅ p(D = d2|X = x3)

= p(season = winter) ⋅ p(location = New York)
⋅ p(clothing = shorts|season = winter and location = New York)
⋅ p(fabric = light|clothing = shorts) ⋅ p(color = neutral|clothing = shorts)

= (0.25) ⋅ (0.4) ⋅ (0.05) ⋅ (0.50) ⋅ (0.40) = 0.001.

Evidently, there is not much demand for light-fabric, neutral-colored Bermuda shorts

in New York in the winter.

Similarly, probabilities may be found in this way for any combinations of sea-

son, location, article of clothing, fabric weight, and color. Using the Bayesian network

structure, we can also calculate prior probabilities for each node. For example, the

prior probability of a warm coat is found as follows:

p(coat) = p(X = x1)
= p(X = x1|A = a1 ∩ B = b1) ⋅ p(A = a1 ∩ B = b1)
+ p(X = x1|A = a1 ∩ B = b2) ⋅ p(A = a1 ∩ B = b2)
+ p(X = x1|A = a2 ∩ B = b1) ⋅ p(A = a2 ∩ B = b1)
+ p(X = x1|A = a2 ∩ B = b2) ⋅ p(A = a2 ∩ B = b2)
+ p(X = x1|A = a3 ∩ B = b1) ⋅ p(A = a3 ∩ B = b1)
+ p(X = x1|A = a3 ∩ B = b2) ⋅ p(A = a3 ∩ B = b2)
+ p(X = x1|A = a4 ∩ B = b1) ⋅ p(A = a4 ∩ B = b1)
+ p(X = x1|A = a4 ∩ B = b2) ⋅ p(A = a4 ∩ B = b2)

= (0.30) ⋅ (0.10) + (0.20) ⋅ (0.15) + (0.10) ⋅ (0.10) + (0.05) ⋅ (0.15)
+ (0.40) ⋅ (0.10) + (0.20) ⋅ (0.15) + (0.60) ⋅ (0.10) + (0.30) ⋅ (0.15)

= 0.2525.

So the prior probability of purchasing a warm coat is 0.2525. Note that we used the

information that season and location are independent, so that p(A ∩ B) = p(A) ⋅ p(B).
For example, the probability that a sale is made in the spring in New York is p(A =
a1 ∩ B = b1) = p(A = a1) ⋅ p(B = b1) = (0.25) ⋅ (0.4) = 0.10.

Posterior probabilities may also be found. For example,

p(winter|coat) =
p(winter ∩ coat)

p(coat)
.
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To find p(winter ∩ coat), we must first find p(winter ∩ New York ∩ coat) and

p(winter ∩ Los Angeles ∩ coat). Using the conditional probability structure of the

Bayesian network in Figure 14.5, we have

p(winter ∩ New York ∩ coat)
= p(winter) ⋅ p(New York) ⋅ p(coat|winter ∩ New York)
= (0.25) ⋅ (0.4) ⋅ (0.6) = 0.06,

p(winter ∩ Los Angeles ∩ coat)
= p(winter) ⋅ p(Los Angeles) ⋅ p(coat|winter ∩ Los Angeles)
= (0.25) ⋅ (0.6) ⋅ (0.3) = 0.045.

So, p(winter ∩ coat) = 0.06 + 0.045 = 0.105.

Thus, we have p(winter|coat) = p(winter ∩ coat)∕p(coat) = 0.105∕0.2525 =
0.4158. Then the Bayes net could provide a classification decision using the high-

est posterior probability, among p(winter|coat), p(spring|coat), p(summer|coat), and

p(fall|coat) (see Exercises).

A Bayesian network represents the joint probability distribution for a given set

of variables. What is a joint probability distribution? Let X1,X2, … ,Xm represent a

set of m random variables, with each random variable Xi defined on space SXi
. For

example, a normal random variable X is defined on space SX , where SX is the real num-

ber line. Then the joint space of X1,X2, … ,Xm is defined as the Cartesian product

SX1
× SX2

× · · · × SXm
. That is, each joint observation consists of the vector of length

m of observed field values ⟨x1, x2, … , xm⟩. The distribution of these observations

over the joint space is called the joint probability distribution.

The Bayesian network represents the joint probability distribution by providing

(i) a specified set of assumptions regarding the conditional independence of the vari-

ables, and (ii) the probability tables for each variable, given its direct predecessors.

For each variable, information regarding both (i) and (ii) are provided.

For a subset of variables, X1,X2, … ,Xm, the joint probability may be found

thus:

p(X1 = x1,X2 = x2, … ,Xm = xm) =
m∏

i=1

p(Xi = xi|parents(Xi)),

where we define parents(Xi) to be the set of immediate predecessors of Xi in the

network. The probabilities p(Xi = xi|parents(Xi)p(Xi = xi|parents(Xi)) are the prob-

abilities that have been specified in the probability table associated with the node

for Xi.

How does learning take place in a Bayesian network? When the structure of

the network is known, and the field values have all been observed, then learning in

Bayesian nets is straightforward. The local (node-specific) probability tables are fully

specified, and any desired joint, conditional, prior, or posterior probability may be

calculated.
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However, when some of the field values are hidden or unknown, then we need

to turn to other methods, with the goal of filling in all the entries in the local probabil-

ity distribution table. Russell et al.6 suggest a gradient descent method for learning

in Bayesian networks. In this paradigm, the unknown entries in the probability distri-

bution tables are considered to be unknown weights, and gradient descent methods,

analogous to the neural network learning case (Chapter 12 of this book, or Chapter 4

of Mitchell7), can be applied to find the optimal set of weights (probability values),

given the data.

Bayes nets were originally designed to aid subject matter experts to graphi-

cally specify the conditional independence structure among variables. However, ana-

lysts may also attempt to discern the unknown structure of Bayes nets by studying

the dependence and independence relationships among the observed variable values.

Sprites, Glymour, and Scheines8 and Ramoni and Sebastian9 provide further infor-

mation about learning both the content and structure of Bayesian networks.

14.12.1 WEKA: Hands-On Analysis Using Bayes Net

Let us revisit the movies data set; however, this time, classification of the data is

explored using WEKA’s Bayes net classifier. Similarly to our last experiment, the 20

instances in movies_train.arff are used to train our model, whereas it is tested using

the four reviews in movies_test.arff. Let us begin by loading the training file.

1. Click Explorer from the WEKA GUI Chooser dialog.

2. On the Preprocess tab, press Open file and specify the path to the training file,

movies_train.arff.

3. If successful, the Explorer Panel looks similar to Figure 14.6, and indicates the

relation movies_train.arff consists of 20 instances with four attributes. It also

shows, by default, that CLASS is specified as the class variable for the data set.

Next, select the Classify tab.

4. Under Classifier, press the Choose button.

5. Select Classifiers→Bayes→BayesNet from the navigation hierarchy.

6. Under Test options, specify Supplied training set.

7. Click Start.

The results are reported in the Classifier output window. The classification

accuracy for Bayes net is 65% (13/20), which is identical to the results reported

by naïve Bayes. Again, let us evaluate our classification model using the data from

6Russell, Binder, Koller, and Kanazawa, 1995. Local learning in probabilistic networks with hidden vari-

ables. In Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pages

1146–1152. San Francisco: Morgan Kaufmann, 1995.
7Tom Mitchell, 1997. Machine Learning, WCB-McGraw-Hill, Boston.
8Sprites, Glymour, and Scheines, Causation, Prediction, and Search. Springer Verlag, New York, 1993.
9Ramoni and Sebastian, Bayesian Methods, in Intelligent Data Analysis, Michael Berthold and David J.

Hand, editors, Springer, Berlin, 1999.
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Figure 14.6 WEKA explorer panel: preprocess tab.

movies_test.arff, with the goal of determining the probabilities by which Bayes net

classifies these instances.

1. Under Test options, choose Supplied test set. Click Set.

2. Click Open file, specify the path to the test file, movies_test.arff. Close the Test

Instances dialog.

3. Next, click the More options button.

4. Check the Output text predictions on test set option. Click OK.

5. Click the Start button to evaluate the model against the test set.

Now, the predictions for each instance, including their associated probability,

are reported in the Classifier output window. For example, Bayes net correctly clas-

sified instance three as “pos,” with probability 0.577, as shown in Table 14.9. Next,

let us evaluate how Bayes net made its classification decision for the third instance.

First, recall the data set used to build our model, as shown in Table 14.6.

From here the prior probabilities for the attributes more, much, and other can be

derived; for example, p(more = 1) = 17

20
and p(more = 0) = 3

20
. In addition, to avoid

zero-probability cells, Bayes net uses a simple estimation method that adds 0.5 to

each cell count. Using this information, the prior probability tables for the three

parent nodes used in the network are shown in Table 14.10.

Now, according to the model built from the training set data, we calculate

the probability of classifying the third record from the test set as “pos” using the

formula:
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TABLE 14.9 Bayes net test set predictions

=== Predictions on test split ===

inst#,    actual, predicted, error, probability distribution

     1      1:neg      1:neg         *0.521  0.479 

     2      1:neg      1:neg         *0.521  0.479 

     3      2:pos      2:pos          0.423 *0.577 

     4      2:pos      2:pos          0.389 *0.611 

TABLE 14.10 Prior probabilities derived from movies_training.arff.

more much other

1 0 1 0 1 0

17.5/20 3.5/20 13.5/20 7.5/20 12.5/20 8.5/20

p(more = 0,much = 0, after = 0,CLASS = pos)
= p(more = 0) ⋅ (much = 0) ⋅ (after = 0)
⋅ p(CLASS = pos|more = 0) ⋅ p(CLASS = pos|much = 0)
⋅ p(CLASS = pos|after = 0)

As described above, Bayes net also adds 0.5 to the conditional probability table cell

counts to prevent zero-based probabilities from occurring. For example, the condi-

tional probability p(CLASS = pos|more = 0) = 2

10
becomes

2.5

10
using this internal

adjustment. Therefore, the probability of a positive classification, given the values

for more, much, and other found in the third instance, is computed as follows:

p(more = 0,much = 0, after = 0,CLASS = pos)

=
(

3.5

20

)
⋅
(

7.5

20

)
⋅
(

8.5

20

)
⋅
(

2.5

10

)
⋅
(

4.5

10

)
⋅
(

3.5

10

)
= (0.175) ⋅ (0.375) ⋅ (0.425) ⋅ (0.25) ⋅ (0.45) ⋅ (0.35)
≈ 0.001098

Likewise, the probability of a negative classification is derived using a similar

approach:

p(more = 0,much = 0, after = 0,CLASS = neg)

=
(

3.5

20

)
⋅
(

7.5

20

)
⋅
(

8.5

20

)
⋅
(

1.5

10

)
⋅
(

3.5

10

)
⋅
(

5.5

10

)
= (0.175) ⋅ (0.375) ⋅ (0.425) ⋅ (0.15) ⋅ (0.35) ⋅ (0.55)
≈ 0.000805
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Our last step is to normalize the probabilities as follows:

p(pos) = 0.001098

0.001098 + 0.000805
≈ 0.57698

p(neg) = 0.000805

0.001098 + 0.000805
≈ 0.42302

Our calculations have determined that, according to the Bayes net model built

from the training set, instance three is classified as positive with probability 0.577.

Again, our hand-calculated probabilities agree with those produced by the WEKA

model, as shown in Table 14.9. Clearly, our results indicate that “hand-computing”

the probability values for a network of moderate size is a nontrivial task.

THE R ZONE

# Read in Churn data, calculate marginal probabilities

churn <− read.csv(file = "C:/… /churn.txt",

stringsAsFactors=TRUE)

n <− dim(churn)[1] # Total sample size

p.IntlPlan <− sum(churn$Int.l.Plan=="yes")/n

p.VMailPlan <− sum(churn$VMail.Plan=="yes")/n

p.Churn <− sum(churn$Churn=="True")/n

# Calculate conditional probabilities

n.ChurnT <− length(churn$Churn[which(churn$Churn=="True")])

# Number of Churn = True

n.ChurnF <− length(churn$Churn[which(churn$Churn=="False")])

p.Intl.g.ChurnF <−
sum(churn$Int.l.Plan[which(churn$Churn=="False")]=="yes")/n.ChurnF

p.VMP.g.ChurnF <−
sum(churn$VMail.Plan[which(churn$Churn=="False")]=="yes")/n.ChurnF

p.Intl.g.ChurnT <−
sum(churn$Int.l.Plan[which(churn$Churn=="True")]=="yes")/n.ChurnT

p.VMP.g.ChurnT <−
sum(churn$VMail.Plan[which(churn$Churn=="True")]=="yes")/n.ChurnT
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# Posterior Probabilities using previous calculations

p.Churn.g.Intl <− p.Intl.g.ChurnT*p.Churn/p.IntlPlan

p.Churn.g.VMP <− p.VMP.g.ChurnT*p.Churn/p.VMailPlan

# Posterior Probabilities calculated directly

# Sample size of Int’l Plan = "yes"

n.Intl <− length(churn$Int.l.Plan[which(churn$Int.l.Plan=="yes")])

# Sample size of Voicemail Plan = "yes"

n.VMP <− length(churn$Int.l.Plan[which(churn$VMail.Plan=="yes")])

p2.Churn.g.Intl <− sum(churn$Churn[which(churn$Int.l.Plan=="yes")]=="True")/n.Intl

p2.Churn.g.VMP<− sum(churn$Churn[which(churn$VMail.Plan=="yes")]=="True")/n.VMP

# Joint Conditional Probabilities

i.v <− i.vbar <− ibar.v <− ibar.vbar <− rep("no", n)

for(i in 1:n){

if(churn$Int.l.Plan[i]=="yes" &&

churn$VMail.Plan[i]=="yes") i.v[i] <− "yes"

if(churn$Int.l.Plan[i]=="yes" &&

churn$VMail.Plan[i]=="no") i.vbar[i] <−
"yes"

if(churn$Int.l.Plan[i]=="no" &&

churn$VMail.Plan[i]=="yes")

ibar.v[i] <− "yes"

if(churn$Int.l.Plan[i]=="no" &&

churn$VMail.Plan[i]=="no")

ibar.vbar[i] <− "yes"

}

tiv<− table(i.v, churn$Churn); tivbar<− table(i.vbar, churn$Churn)

tibarv<− table(ibar.v, churn$Churn); tibarvbar<− table(ibar.vbar, churn$Churn)

p.i.v.ChurnT <− tiv[4]/sum(tiv[4], tiv[3])

p.i.v.ChurnF <− tiv[2]/sum(tiv[2], tiv[1])

p.i.v.ChurnT*p.Churn

p.i.v.ChurnF*(1-p.Churn)

# And so on for the other tables
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# Posterior Odds Ratio

(p.i.v.ChurnT*p.Churn)/

(p.i.v.ChurnF*(1-p.Churn))

# Balance the data

b.churn<− churn[which(churn$Churn=="True"),]

notchurn<− churn[which(churn$Churn=="False"),]

choose <− runif(dim(notchurn)[1], 0,1)

halfnotchurn <− notchurn[which(choose<.5),]

b.churn <− rbind(b.churn, halfnotchurn)

# Updated probabilities

n <− dim(b.churn)[1]

p.Churn <− sum(b.churn$Churn=="True")/n

# Joint probability distribution

i.v <− rep("no", n)

for(i in 1:n){

if(b.churn$Int.l.Plan[i]=="yes" &&

b.churn$VMail.Plan[i]=="yes")

i.v[i] <− "yes"

}

tiv <− table(i.v, b.churn$Churn)

p.i.v.ChurnT <− tiv[4]/sum(tiv[4], tiv[3])

p.i.v.ChurnF <− tiv[2]/sum(tiv[2], tiv[1])

p.i.v.ChurnT*p.Churn

p.i.v.ChurnF*(1-p.Churn)
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# Naïve Bayes Classification, using original Churn data

N <− dim(churn)[1]

p.Churn <− sum(churn$Churn=="True")/n

n.ChurnTrue <− length(churn$Churn[which(churn$Churn=="True")])

n.ChurnFalse <− length(churn$Churn[which(churn$Churn=="False")])

p.Intl.given.ChurnF <−
sum(churn$Int.l.Plan[which(churn$Churn=="False")]=="yes")/n.ChurnFalse

p.VMP.given.ChurnF <−
sum(churn$VMail.Plan[which(churn$Churn=="False")]=="yes")/n.ChurnFalse

p.Intl.given.ChurnT <−
sum(churn$Int.l.Plan[which(churn$Churn=="True")]=="yes")/n.ChurnTrue

p.VMP.given.ChurnT <−
sum(churn$VMail.Plan[which(churn$Churn=="True")]=="yes")/n.ChurnTrue

p.Intl.given.ChurnT*p.VMP.given.ChurnT*p.Churn

p.Intl.given.ChurnF*p.VMP.given.ChurnF*(1-p.Churn)

# Log Posterior Odds Ratio

log((p.Intl.given.ChurnT)/

(p.Intl.given.ChurnF))

log((p.VMP.given.ChurnT)/

(p.VMP.given.ChurnF))

# Numeric Predictors for Naïve Bayes Classification

p.ChurnT.t800 <− dnorm(800, mean = 635,

sd = 111)

p.ChurnF.t800 <− dnorm(800, mean = 585,

sd = 84)

p.i.v.t800.givenChurnT <− p.Intl.given.ChurnT*

p.VMP.given.ChurnT*p.ChurnT.t800*p.Churn

p.i.v.t800.givenChurnF <− p.Intl.given.ChurnF*

p.VMP.given.ChurnF*p.ChurnF.t800*(1-p.Churn)

p.i.v.t800.givenChurnT/p.i.v.t800.givenChurnF
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EXERCISES

CLARIFYING THE CONCEPTS

1. Describe the differences between the frequentist and Bayesian approaches to probability.

2. Explain the difference between the prior and posterior distributions.

3. Why would we expect, in most data mining applications, the maximum a posteriori esti-

mate to be close to the maximum-likelihood estimate?

4. Explain in plain English what is meant by the maximum a posteriori classification.

5. Explain the interpretation of the posterior odds ratio. Also, why do we need it?

6. Describe what balancing is, and when and why it may be needed. Also, describe two

techniques for achieving a balanced data set, and explain why one method is preferred.

7. Explain why we cannot avoid altering, even slightly, the character of the data set, when

we apply balancing.

8. Explain why the MAP classification is impractical to apply directly for any interesting

real-world data mining application.

9. What is meant by conditional independence? Provide an example of events that are con-

ditionally independent. Now provide an example of events that are not conditionally inde-

pendent.

10. When is the naïve Bayes classification the same as the MAP classification? What does this

mean for the naïve Bayes classifier, in terms of optimality?

11. Explain why the log posterior odds ratio is useful. Provide an example.

12. Describe the process for using continuous predictors in Bayesian classification, using the

concept of distribution.

13. Extra credit: Investigate the mixture idea for the continuous predictor mentioned in

the text.

14. Explain what is meant by working with the empirical distribution. Describe how this can

be used to estimate the true probabilities.

15. Explain the difference in assumptions between naïve Bayes classification and Bayesian

networks.

16. Describe the intrinsic relationship among the variables in a Bayesian network.

17. What are the two main considerations when building a Bayesian network?

http://www.R-project.org
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WORKING WITH THE DATA

18. Compute the posterior odds ratio for each of the combinations of International Plan and

Voice Mail Plan membership, using the balanced data set.

19. Calculate the naïve Bayes classification for all four possible combinations of International
Plan and Voice Mail Plan membership, using the

25.31%
74.69%

balancing.

20. Verify the empirical distribution results referred to in the text, of the numbers of records

within the certain margins of error of 800 minutes, for each of churners and non-churners.

21. Find the naïve Bayes classifier for the following customers. Use the empirical distribution

where necessary.

a. Belongs to neither plan, with 400 day minutes.

b. Belongs to the International Plan only, with 400 minutes.

c. Belongs to both plans, with 400 minutes.

d. Belongs to both plans, with zero minutes. Comment.

22. Provide the MAP classification for season given that a warm coat was purchased, in the

clothing purchase example in the Bayesian network section.

23. Revisit the WEKA naïve Bayes example. Calculate the probability that the first instance

in movies_test.arff is “pos” and “neg.” Do your calculations agree with those reported by

WEKA leading to a negative classification?

24. Compute the probabilities by which the Bayes net model classifies the fourth instance

from the test file movies_test.arff. Do your calculations result in a positive classification

as reported by WEKA?

HANDS-ON ANALYSIS

For Exercises 25–35, use the breast cancer data set.10 This data set was collected by

Dr. William H. Wohlberg from the University of Wisconsin Hospitals, Madison. Ten numeric

predictors are used to predict the class of malignant breast cancer tumor (class= 1), as

opposed to a benign tumor (class= 0).

25. Consider using only two predictors, mitoses and clump thickness, to predict tumor class.

Categorize the values for mitoses as follows: Low= 1 and High= 2–10. Categorize the

values for clump thickness as follows: Low= 1–5 and High= 6–10. Discard the original

variables and use these categorized predictors.

26. Find the prior probabilities for each of the predictors and the target variable. Find the

complement probabilities of each.

27. Find the conditional probabilities for each of the predictors, given that the tumor is malig-

nant. Then find the conditional probabilities for each of the predictors, given that the tumor

is benign.

10Breast cancer data set. Dr. William H. Wohlberg, University of Wisconsin Hospitals, Madison, Wiscon-

sin. Cited in: Mangasarian and Wohlberg, Cancer diagnosis via linear programming, SIAM News, 23, 5,

September, 1990.
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28. Find the posterior probability that the tumor is malignant, given that mitoses is (i) high

and (ii) low.

29. Find the posterior probability that the tumor is malignant, given that clump thickness is

(i) high and (ii) low.

30. Construct the joint conditional probabilities, similarly to Table 14.4.

31. Using your results from the previous exercise, find the maximum a posteriori classification

of tumor class, for each of the following combinations:

a. Mitoses= low and Clump Thickness= low.

b. Mitoses= low and Clump Thickness= high.

c. Mitoses= high and Clump Thickness= low.

d. Mitoses= high and Clump Thickness= high.

32. For each of the combinations in the previous exercise, find the posterior odds ratio.

33. (Optional) Assess the validity of the conditional independence assumption, using calcu-

lations similarly to Table 14.5.

34. Find the naïve Bayes classifications for each of the combinations in Exercise 31.

35. For each of the predictors, find the log posterior odds ratio, and explain the contribution

of this predictor to the probability of a malignant tumor.



C H A P T E R 15
MODEL EVALUATION
TECHNIQUES

As you may recall from Chapter 1, the cross-industry standard process (CRISP) for

data mining consists of the following six phases to be applied in an iterative cycle:

1. Business understanding phase

2. Data understanding phase

3. Data preparation phase

4. Modeling phase

5. Evaluation phase

6. Deployment phase.

Nestled between the modeling and deployment phases comes the crucial eval-

uation phase, the techniques for which are discussed in this chapter. By the time we

arrive at the evaluation phase, the modeling phase has already generated one or more

candidate models. It is of critical importance that these models be evaluated for qual-

ity and effectiveness before they are deployed for use in the field. Deployment of data

mining models usually represents a capital expenditure and investment on the part

of the company. If the models in question are invalid, then the company’s time and

money are wasted. In this chapter, we examine model evaluation techniques for each

of the six main tasks of data mining: description, estimation, prediction, classification,

clustering, and association.

15.1 MODEL EVALUATION TECHNIQUES FOR THE
DESCRIPTION TASK

In Chapter 3, we learned how to apply exploratory data analysis (EDA) to learn about

the salient characteristics of a data set. EDA represents a popular and powerful tech-

nique for applying the descriptive task of data mining. However, because descriptive

techniques make no classifications, predictions, or estimates, an objective method for

evaluating the efficacy of these techniques can be elusive. The watchword is common

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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sense. Remember that the data mining models should be as transparent as possible.

That is, the results of the data mining model should describe clear patterns that are

amenable to intuitive interpretation and explanation. The effectiveness of your EDA is

best evaluated by the clarity of understanding elicited in your target audience, whether

a group of managers evaluating your new initiative or the evaluation board of the

US Food and Drug Administration is assessing the efficacy of a new pharmaceutical

submission.

If one insists on using a quantifiable measure to assess description, then one

may apply the minimum descriptive length principle. Other things being equal,

Occam’s razor (a principle named after the medieval philosopher William of Occam)

states that simple representations are preferable to complex ones. The minimum

descriptive length principle quantifies this, saying that the best representation (or

description) of a model or body of data is the one that minimizes the information

required (in bits) to encode (i) the model and (ii) the exceptions to the model.

15.2 MODEL EVALUATION TECHNIQUES FOR THE
ESTIMATION AND PREDICTION TASKS

For estimation and prediction models, we are provided with both the estimated (or

predicted) value ŷ of the numeric target variable and the actual value y. Therefore,

a natural measure to assess model adequacy is to examine the estimation error, or

residual, (y − ŷ). As the average residual is always equal to zero, we cannot use it for

model evaluation; some other measure is needed.

The usual measure used to evaluate estimation or prediction models is the mean
square error (MSE):

MSE =
∑

i(yi − ŷi)2

n − p − 1

where p represents the number of model variables. Models that minimize MSE are

preferred. The square root of MSE can be regarded as an estimate of the typical error

in estimation or prediction when using the particular model. In context, this is known
as the standard error of the estimate and denoted by s =

√
MSE.

For example, consider Figure 15.1 (excerpted from Chapter 8), which provides

the Minitab regression output for the estimated nutritional rating based on sugar con-

tent for the 76 breakfast cereals with nonmissing sugar values. Both MSE= 84.0 and

s= 9.16616 are circled on the output. The value of 9.16616 for s indicates that the

estimated prediction error from using this regression model to predict nutrition rating

based on sugar content alone is 9.16616 rating points.

Is this good enough to proceed to model deployment? That depends on the

objectives of the business or research problem. Certainly the model is simplicity itself,

with only one predictor and one response; however, perhaps the prediction error is too

large to consider for deployment. Compare this estimated prediction error with the

value of s obtained by the multiple regression in Table 9.1: s= 6.12733. The estimated

error in prediction for the multiple regression is smaller, but more information is

required to achieve this, in the form of a second predictor: fiber. As with so much else



15.2 MODEL EVALUATION TECHNIQUES FOR THE ESTIMATION AND PREDICTION TASKS 453

The regression equation is
Rating = 59.9 − 2.46 Sugars

76 cases used, 1 cases contain missing values

T PSE CoefCoefPredictor 

−10.18−2.4614Sugars

F PDF

R−sq = 58.4%

SS

R−sq(adj) = 57.8%

MSSource

Analysis of Variance

Regression 1
74

8711.9 8711.9
84.0

103.69
6217.4
14929.3Total

Residual Error
75

S = 9.16616

0.2417
0.000
0.000

0.000

29.961.99859.853Constant

Regression Analysis: Rating versus Sugars

Figure 15.1 Regression results, with MSE and s indicated.

in statistical analysis and data mining, there is a trade-off between model complexity

and prediction error. The domain experts for the business or research problem in

question need to determine where the point of diminishing returns lies.

In Chapter 12, we examined an evaluation measure that was related to MSE:

SSE =
∑

Records

∑
Output nodes

(actual output)2

which represents roughly the numerator of MSE above. Again, the goal is to minimize

the sum of squared errors over all output nodes. In Chapter 8, we learned another

measure of the goodness of a regression model that is the coefficient of determination:

R2 = SSR

SST

Where R2 represents the proportion of the variability in the response that is accounted

for by the linear relationship between the predictor (or predictors) and the response.

For example, in Figure 15.1, we see that R2 = 58.4%, which means that 58.4% of the

variability in cereal ratings is accounted for by the linear relationship between ratings

and sugar content. This is actually quite a chunk of the variability, as it leaves only

41.6% of the variability left for all other factors.
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One of the drawbacks of the above evaluation measures is that outliers may

have an undue influence on the value of the evaluation measure. This is because the

above measures are based on the squared error, which is much larger for outliers than

for the bulk of the data. Thus, the analyst may prefer to use the mean absolute error
(MAE). The MAE is defined as follows:

Mean absolute error = MAE =

∑|yi − ŷi|
n

where |x| represents the absolute value of x. The MAE will treat all errors equally,

whether outliers or not, and thereby avoid the problem of undue influence of outliers.

Unfortunately, not all statistical packages report this evaluation statistic. Thus, to find

the MAE, the analyst may perform the following steps:

CALCULATING THE MEAN ABSOLUTE ERROR (MAE)

1. Calculate the estimated target values, ŷi.

2. Find the absolute value between each estimated value, and its associated actual target

value, yi, giving you |yi − ŷi|.
3. Find the mean of the absolute values from step 2. This is MAE.

15.3 MODEL EVALUATION MEASURES FOR THE
CLASSIFICATION TASK

How do we assess how well our classification algorithm is functioning? Classification

assignments could conceivably be made based on coin flips, tea leaves, goat entrails,

or a crystal ball. Which evaluative methods should we use to assure ourselves that the

classifications made by our data mining algorithm are efficacious and accurate? Are

we outperforming the coin flips?

In the context of a C5.0 model for classifying income, we examine the following

evaluative concepts, methods, and tools in this chapter1:

• Model accuracy

• Overall error rate

• Sensitivity and specificity

• False-positive rate and false-negative rate

• Proportions of true positives and true negatives

• Proportions of false positives and false negatives

• Misclassification costs and overall model cost

1The models considered in this chapter relate to a binary target variable. For discussion of classification

of trinary or k-nary target variables, see Chapter 17. Also, further graphical evaluation measures, such as

profits charts, are discussed in Chapter 18.
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• Cost-benefit table

• Lift charts

• Gains charts.

Recall the adult data set from Chapter 11 that we applied a C5.0 model for

classifying whether a person’s income was low (≤$50,000) or high (>$50,000), based

on a set of predictor variables which included capital gain, capital loss, marital status,

and so on. Let us evaluate the performance of that decision tree classification model

(with all levels retained, not just three, as in Figure 11.9), using the notions of error

rate, false positives, and false negatives.

The general form of the matrix of the correct and incorrect classifications made

by a classification algorithm, termed the contingency table,2 is shown in Table 15.1.

Table 15.2 contains the statistics from the C5.0 model, with “≥ 50K” denoted as the

positive classification. The columns represent the predicted classifications, and the

rows represent the actual (true) classifications, for each of the 25,000 records. There

TABLE 15.1 General form of the contingency table of correct and incorrect classifications

Predicted Category

0 1 Total

Actual category

0

1

Truenegatives:
Predicted 0

Actually 0

Falsepositives:
Predicted 1

Actually 0

Totalactuallynegative

Falsenegatives:
Predicted 0

Actually 1

Truepositives:
Predicted1

Actually1

Totalactuallypositive

Total Total

Predictednegative

Total

Predictedpositive

Grandtotal

TABLE 15.2 Contingency table for the C5.0 model

Predicted Category

50 K > 50 K Total

Actual category
50 K 18,197 819 19,016

> 50 K 2561 3423 5984

Total 20,758 4242 25,000

are 19,016 records whose actual value for the target variable income is less than or

equal to 50,000, and there are 5984 records whose actual value income is greater

than 50,000. The C5.0 algorithm classified 20,758 of the records as having income
less than or equal to 50,000, and 4242 records as having income greater than 50,000.

2Also referred to as the confusion matrix or the error matrix.
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Of the 20,758 records whose income is predicted by the algorithm to be less

than or equal to 50,000, 18,197 of these records actually do have low income. How-

ever, the algorithm incorrectly classified 2561 of these 20,758 records as having

income ≤ 50, 000, when their income is actually greater than 50,000.

Now, suppose that this analysis is being carried out for a financial lending

firm, which is interested in determining whether or not a loan applicant’s income

is greater than 50,000. A classification of income greater than 50,000 is considered

to be positive, as the lending firm would then proceed to extend the loan to the per-

son in question. A classification of income less than or equal to 50,000 is considered

to be negative, as the firm would proceed to deny the loan application to the person,

based on low income (in this simplified scenario). Assume that in the absence of other

information, the default decision would be to deny the loan due to low income.

Thus, the 20,758 classifications (predictions) of income less than or equal to

50,000 are said to be negatives, and the 4242 classifications of income greater than

50,000 are said to be positives. The 2561 negative classifications that were made in

error are said to be false negatives. That is, a false negative represents a record that

is classified as negative but is actually positive. Of the 4242 positive classifications,

819 actually had low incomes so that there are 819 false positives. A false positive
represents a record that is classified as positive but is actually negative.

Let TN, FN, FP, and TP represent the numbers of true negatives, false negatives,

false positives, and true positives, respectively, in our contingency table. Also, let

TAN = Total actually negative = TN + FP

TAP = Total actually positive = FN + TP

TPN = Total predicted negative = TN + FN

TPN = Total predicted positive = FP + TP

Further, let N = TN + FN + FP + TP represent the grand total of the counts in the

four cells.

15.4 ACCURACY AND OVERALL ERROR RATE

Using this notation we begin our discussion of classification evaluation measures with

accuracy and overall error rate (or simply error rate):

Accuracy = TN + TP

TN + FN + FP + TP
= TN + TP

N

Overall error rate = 1 − Accuracy = FN + FP

TN + FN + FP + TP
= FN + FP

N

Accuracy represents an overall measure of the proportion of correct classifications

being made by the model, while overall error rate measures the proportion of incorrect

classifications, across all cells in the contingency table. For this example, we have:

Accuracy = TN + TP

N
= 18, 197 + 3423

25, 000
= 0.8648
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Overall error rate = 1 − Accuracy = FN + FP

N
= 2561 + 819

25, 000
= 0.1352

That is, 86.48% of the classifications made by this model are correct, while 13.52%

are wrong.

15.5 SENSITIVITY AND SPECIFICITY

Next, we turn to sensitivity and specificity, defined as follows:

Sensitivity =
Number of true positives

Total actually positive
= TP

TAP
= TP

TP + FN

Specificity =
Number of true negatives

Total actually negative
= TN

TAN
= TN

FP + TN

Sensitivity measures the ability of the model to classify a record positively, while

specificity measures the ability to classify a record negatively. For this example, we

have

Sensitivity =
Number of true positives

Total actually positive
= TP

TAP
= 3423

5984
= 0.5720

Specificity =
Number of true negatives

Total actually negative
= TN

TAN
= 18, 197

19, 016
= 0.9569

In some fields, such as information retrieval,3 sensitivity is referred to as recall.
A good classification model should be sensitive, meaning that it should identify a

high proportion of the customers who are positive (have high income). However, this

model seems to struggle to do this, correctly classifying only 57.20% of the actual

high-income records as having high income.

Of course, a perfect classification model would have sensitivity= 1.0= 100%.

However, a null model which simply classified all customers as positive would also

have sensitivity= 1.0. Clearly, it is not sufficient to identify the positive responses

alone. A classification model also needs to be specific, meaning that it should

identify a high proportion of the customers who are negative (have low income). In

this example, our classification model has correctly classified 95.69% of the actual

low-income customers as having low income.

Of course, a perfect classification model would have specificity= 1.0. But so

would a model which classifies all customers as low income. A good classification

model should have acceptable levels of both sensitivity and specificity, but what con-

stitutes acceptable varies greatly from domain to domain. Our model specificity of

0.9569 is higher than our model sensitivity of 0.5720, which is probably okay in this

instance. In the credit application domain, it may be more important to correctly iden-

tify the customers who will default rather than those who will not default, as we shall

discuss later in this chapter.

3Zdravko Markov and Daniel Larose, Data Mining the Web, Uncovering Patterns in Web Content, Struc-
ture, and Usage, John Wiley and Sons, New York, 2007.
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15.6 FALSE-POSITIVE RATE AND FALSE-NEGATIVE RATE

Our next evaluation measures are false-positive rate and false-negative rate. These

are additive inverses of sensitivity and specificity, as we see in their formulas:

False positive rate = 1 − specificity = FP

TAN
= FP

FP + TN

False negative rate = 1 − sensitivity = FN

TAP
= FN

TP + FN

For our example, we have

False positive rate = 1 − specificity = FP

TAN
= 819

19, 016
= 0.0431

False negative rate = 1 − sensitivity = FN

TAP
= 2561

5984
= 0.4280

Our low false-positive rate of 4.31% indicates that we incorrectly identify actual

low-income customers as high income only 4.31% of the time. The much higher

false-negative rate indicates that we incorrectly classify actual high-income

customers as low income 42.80% of the time.

15.7 PROPORTIONS OF TRUE POSITIVES, TRUE
NEGATIVES, FALSE POSITIVES, AND FALSE NEGATIVES

Our next evaluation measures are the proportion of true positives4 and the proportion
of true negatives,5 and are defined as follows:

Proportion of true positives = PTP = TP

TPP
= TP

FP + TP

Proportion of true negatives = PTN = TN

TPN
= TN

FN + TN

For our income example, we have

Proportion of true positives = PTP = TP

TPP
= 3423

4242
= 0.8069

Proportion of true negatives = PTN = TN

TPN
= 18, 197

20, 758
= 0.8766

That is, the probability is 80.69% that a customer actually has high income, given

that our model has classified it as high income, while the probability is 87.66% that

a customer actually has low income, given that we have classified it as low income.

4In the field of information retrieval, the proportion of true positives is called precision.
5The medical literature calls these measures the positive predictive value and the negative predictive value,

respectively. For this book, we prefer to avoid the term predictive value for an evaluation measure, since

we think the phrase predictive value should be reserved for the estimated value or predicted value from an

estimation or prediction model such as linear regression or CART.
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Unfortunately, the proportion of true positives in the medical world has been

demonstrated to be dependent on the prevalence of the disease.6 In fact, as disease

prevalence increases, PTP also increases. In the exercises, we provide a simple

example to show that this relationship holds. Outside of the medical world, we

would say that, for example, as the actual proportion of records classified as positive

increases, so does the proportion of true positives. Nevertheless, the data analyst

will still find these measures useful, as we usually use them to compare the efficacy

of competing models, and these models are usually based on the same actual class

proportions in the test data set.

Finally, we turn to the proportion of false positives and the proportion of false
negatives, which, unsurprisingly, are additive inverses of the proportion of true posi-

tives and the proportion of true negatives, respectively.

Proportion of false positives = 1 − PTP = FP

TPP
= FP

FP + TP

Proportion of false negatives = 1 − PTN = FN

TPN
= FN

FN + TN

Note the difference between the proportion of false-positives and the false-positive

rate. The denominator for the false-positive rate is the total number of actual negative

records, while the denominator for the proportion of false positives is the total number

of records predicted positive. For our example, we have

Proportion of false positives = 1 − PTP = FP

TPP
= 819

4242
= 0.1931

Proportion of false negatives = 1 − PTN = FN

TPN
= 2561

20, 758
= 0.1234

In other words, there is a 19.31% likelihood that a customer actually has low income,

given that our model has classified it as high income, and there is 12.34% likelihood

that a customer actually has high income, given that we have classified it as low

income.

Using these classification model evaluation measures, the analyst may compare

the accuracy of various models. For example, a C5.0 decision tree model may be

compared against a classification and regression tree (CART) decision tree model or

a neural network model. Model choice decisions can then be rendered based on the

relative model performance based on these evaluation measures.

As an aside, in the parlance of hypothesis testing, as the default decision is to

find that the applicant has low income, we would have the following hypotheses:

H0: income≤ 50,000

Ha: income> 50,000

where H0 represents the default, or null, hypothesis, and Ha represents the alternative

hypothesis, which requires evidence to support it. A false positive would be con-

sidered a type I error in this setting, incorrectly rejecting the null hypothesis, while

6For example, see Understanding and using sensitivity, specificity, and predictive values, by Parikh,

Mathai, Parikh, Sekhar, and Thomas, Indian Journal of Opthamology, Volume 56, 1, pages 45–50, 2008.
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a false negative would be considered a type II error, incorrectly accepting the null

hypothesis.

15.8 MISCLASSIFICATION COST ADJUSTMENT TO
REFLECT REAL-WORLD CONCERNS

Consider this situation from the standpoint of the lending institution. Which error,

a false negative or a false positive, would be considered more damaging from the

lender’s point of view? If the lender commits a false negative, an applicant who

had high income gets turned down for a loan: an unfortunate but not very expensive

mistake.

However, if the lender commits a false positive, an applicant who had low

income would be awarded the loan. This error greatly increases the chances that the

applicant will default on the loan, which is very expensive for the lender. Therefore,

the lender would consider the false positive to be the more damaging type of error and

would prefer to minimize the proportion of false positives. The analyst would there-

fore adjust the C5.0 algorithm’s misclassification cost matrix to reflect the lender’s

concerns. Suppose, for example, that the analyst increased the false positive cost from

1 to 2, while the false negative cost remains at 1. Thus, a false positive would be con-

sidered twice as damaging as a false negative. The analyst may wish to experiment

with various cost values for the two types of errors, to find the combination best suited

to the task and business problem at hand.

How would you expect the misclassification cost adjustment to affect the per-

formance of the algorithm? Which evaluation measures would you expect to increase

or decrease? We might expect the following:

EXPECTED CONSEQUENCES OF INCREASING THE FALSE POSITIVE
COST

• Proportion of false positives should decrease, since the cost of making such an error

has been doubled.

• Proportion of false negatives should increase, because fewer false positives usually

means more false negatives.

• Sensitivity should decrease. The denominator in the formula TP/TAP stays the same,

but there will be fewer true positives, because the model will shy away from making

positive predictions in general, due to the higher cost of the false positive.

• Specificity should increase, because the total actually negative stays the same, while

there should be more true negatives due to the model being more inclined toward a

negative classification.

The C5.0 algorithm was rerun, this time including the misclassification cost

adjustment. The resulting contingency table is shown in Table 15.3. The classification

model evaluation measures are presented in Table 15.4, with each cell containing

its additive inverse. As expected, the proportion of false positives has increased,
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TABLE 15.3 Contingency table after misclassification cost adjustment

Predicted Category

≤ 50 K > 50 K Total

Actual category
≤ 50 K 18,711 305 19,016

> 50 K 3307 2677 5984

Total 22,018 2982 25,000

TABLE 15.4 Comparison of evaluation measures for CART models with and without
misclassification costs (better performance in bold)

Evaluation Measure CART Model

Model 1: Without

Misclassification Costs

Model 2: With

Misclassification Costs

Accuracy 0.8648 0.8552

Overall error rate 0.1352 0.1448

Sensitivity 0.5720 0.4474

False-positive rate 0.4280 0.5526

Specificity 0.9569 0.9840
False-negative rate 0.0431 0.0160
Proportion of true positives 0.8069 0.8977
Proportion of false positives 0.1931 0.1023
Proportion of true negatives 0.8766 0.8498

Proportion of false negatives 0.1234 0.1502

while the proportion of false negatives has decreased. Whereas previously, false pos-

itives were more likely to occur, this time the proportion of false positives is lower

than the proportion of false negatives. As desired, the proportion of false positives

has decreased. However, this has come at a cost. The algorithm, hesitant to classify

records as positive due to the higher cost, instead made many more negative classi-

fications, and therefore more false negatives. As expected, sensitivity has decreased

while specificity has increased, for the reasons mentioned above.

Unfortunately, the overall error rate has climbed as well:

Overall error rate = 3307 + 305

25, 000
= 0.14448, up from 0.1352 previously.

Nevertheless, a higher overall error rate and a higher proportion of false neg-

atives are considered a “good trade” by this lender, who is eager to reduce the loan

default rate, which is very costly to the firm. The decrease in the proportion of false

positives from 19.31% to 10.23% will surely result in significant savings to the finan-

cial lending firm, as fewer applicants who cannot afford to repay the loan will be

awarded the loan. Data analysts should note an important lesson here: that we should

not be wed to the overall error rate as the best indicator of a good model.
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15.9 DECISION COST/BENEFIT ANALYSIS

Company managers may require that model comparisons be made in terms of

cost/benefit analysis. For example, in comparing the original C5.0 model before the

misclassification cost adjustment (call this model 1) against the C5.0 model using the

misclassification cost adjustment (call this model 2), managers may prefer to have

the respective error rates, false negatives and false positives, translated into dollars

and cents.

Analysts can provide model comparison in terms of anticipated profit or loss by

associating a cost or benefit with each of the four possible combinations of correct and

incorrect classifications. For example, suppose that the analyst makes the cost/benefit

value assignments shown in Table 15.5. The “−$300” cost is actually the anticipated

average interest revenue to be collected from applicants whose income is actually

greater than 50,000. The $500 reflects the average cost of loan defaults, averaged

over all loans to applicants whose income level is low. Of course, the specific numbers

assigned here are subject to discussion and are meant for illustration only.

Using the costs from Table 15.5, we can then compare models 1 and 2:

Cost of model 1 (false positive cost not doubled):

18, 197($0) + 3423(−$300) + 2561($0) + 819($500) = −$275, 100

Cost of model 2 (false positive cost doubled):

18, 711($0) + 2677(−$300) + 3307($0) + 305($500) = −$382, 900

Negative costs represent profits. Thus, the estimated cost savings from deploy-

ing model 2, which doubles the cost of a false positive error, is

−$275, 100 − (−$382, 900) = $107, 800

In other words, the simple data mining step of doubling the false positive cost has

resulted in the deployment of a model greatly increasing the company’s profit. Is it not

amazing what a simple misclassification cost adjustment can mean to the company’s

bottom line? Thus, even though model 2 suffered from a higher overall error rate and

a higher proportion of false negatives, it outperformed model 1 “where it counted,”

with a lower proportion of false positives, which led directly to a six-figure increase

TABLE 15.5 Cost/benefit table for each combination of correct/incorrect decision

Outcome Classification Actual Value Cost Rationale

True negative ≤50,000 ≤50,000 $0 No money gained or lost

True positive >50,000 >50,000 −$300 Anticipated average interest

revenue from loans

False negative ≤50,000 >50,000 $0 No money gained or lost

False positive >50,000 ≤50,000 $500 Cost of loan default averaged

over all loans to ≤50,000

group
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in the company’s estimated profit. When misclassification costs are involved, the best

model evaluation measure is the overall cost of the model.

15.10 LIFT CHARTS AND GAINS CHARTS

For classification models, lift is a concept, originally from the marketing field, which

seeks to compare the response rates with and without using the classification model.

Lift charts and gains charts are graphical evaluative methods for assessing and com-

paring the usefulness of classification models. We shall explore these concepts by

continuing our examination of the C5.0 models for classifying income.

Suppose that the financial lending firm is interested in identifying high-income

persons to put together a targeted marketing campaign for a new platinum credit card.

In the past, marketers may have simply canvassed an entire list of contacts without

regard to clues about the contact’s income. Such blanket initiatives are expensive and

tend to have low response rates. It is much better to apply demographic information

that the company may have about the list of contacts, build a model to predict which

contacts will have high income, and restrict the canvassing to these contacts classified

as high income. The cost of the marketing program will then be much reduced and

the response rate may be higher.

A good classification model should identify in its positive classifications (the

>50,000 column in Tables 15.2 and 15.3), a group that has a higher proportion of

positive “hits” than the database as a whole. The concept of lift quantifies this. We

define lift as the proportion of true positives, divided by the proportion of positive

hits in the data set overall:

Lift =
Proportion of true positives

Proportion of positive hits
=

TP∕TPP

TAP∕N

Now, earlier we saw that, for model 1,

Proportion of true positives = PTP = TP

TPP
= 3423

4242
= 0.8069

And we have

Proportion of positive hits = TAP

N
= 5984

25, 000
= 0.23936

Thus, the lift, measured at the 4242 positively predicted records, is

Lift = 0.8069

0.23936
= 3.37

Lift is a function of sample size, which is why we had to specify that the lift

of 3.37 for model 1 was measured at n= 4242 records. When calculating lift, the

software will first sort the records by the probability of being classified positive. The

lift is then calculated for every sample size from n= 1 to n= the size of the data set.

A chart is then produced that graphs lift against the percentile of the data set.

Consider Figure 15.2, which represents the lift chart for model 1. Note that lift

is highest at the lowest percentiles, which makes sense as the data are sorted according

to the most likely positive hits. The lowest percentiles have the highest proportion of
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positive hits. As the plot moves from left to right, the positive hits tend to get “used

up,” so that the proportion steadily decreases until the lift finally equals exactly 1,

when the entire data set is considered the sample. Therefore, for any lift chart, the

highest lift is always obtained with the smallest sample sizes.
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Figure 15.2 Lift chart for model 1: strong lift early, then falls away rapidly.

Now, 4242 records represents about the 17th percentile of the 25,000 total

records. Note in Figure 15.2 that the lift at about the 17th percentile would be near

3.37, as we calculated above. If our market research project required merely the

most likely 5% of records, the lift would have been higher, about 4.1, as shown in

Figure 15.2. However, if the project required 60% of all records, the lift would have

fallen off to about 1.6. As the data are sorted by positive propensity, the further we

reach into the data set, the lower our overall proportion of positive hits becomes.

Another balancing act is required: between reaching lots of contacts and having a

high expectation of success per contact.

Lift charts are often presented in their cumulative form, where they are denoted

as cumulative lift charts, or gains charts. The gains chart associated with the lift

chart in Figure 15.2 is presented in Figure 15.3. The diagonal on the gains chart is

analogous to the horizontal axis at lift= 1 on the lift chart. Analysts would like to see

gains charts where the upper curve rises steeply as one moves from left to right and

then gradually flattens out. In other words, one prefers a deeper “bowl” to a shallower

bowl. How do you read a gains chart? Suppose that we canvassed the top 20% of our

contact list (percentile= 20). By doing so, we could expect to reach about 62% of

the total number of high-income persons on the list. Would doubling our effort also

double our results? No. Canvassing the top 40% on the list would enable us to reach

approximately 85% of the high-income persons on the list. Past this point, the law of

diminishing returns is strongly in effect.
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Figure 15.3 Gains chart for model 1.

Lift charts and gains charts can also be used to compare model performance.

Figure 15.4 shows the combined lift chart for models 1 and 2. The figure shows that

when it comes to model selection, a particular model may not be uniformly preferable.

For example, up to about the 6th percentile, there appears to be no apparent difference

in model lift. Then, up to approximately the 17th percentile, model 2 is preferable,

providing slightly higher lift. Thereafter, model 1 is preferable.

Hence, if the goal were to canvass up to the top 17% or so of the people on

the contact list with high incomes, model 2 would probably be selected. However, if
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Figure 15.4 Combined lift chart for models 1 and 2.
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the goal were to extend the reach of the marketing initiative to 20% or more of the

likely contacts with high income, model 1 would probably be selected. This question

of multiple models and model choice is an important one, which we spend much time

discussing in Reference [1].

It is to be stressed that model evaluation techniques should be performed on

the test data set, rather than on the training set, or on the data set as a whole. (The

entire adult data set was used here so that the readers could replicate the results if

they choose so.)

15.11 INTERWEAVING MODEL EVALUATION WITH
MODEL BUILDING

In Chapter 1, the graphic representing the CRISP-DM standard process for data

mining contained a feedback loop between the model building and evaluation

phases. In Chapter 7, we presented a methodology for building and evaluating a data
model. Where do the methods for model evaluation from Chapter 15 fit into these

processes?

We would recommend that model evaluation become a nearly “automatic”

process, performed to a certain degree whenever a new model is generated. There-

fore, at any point in the process, we may have an accurate measure of the quality

of the current or working model. Therefore, it is suggested that model evaluation

be interwoven seamlessly into the methodology for building and evaluating a data
model presented in Chapter 7, being performed on the models generated from each

of the training set and the test set. For example, when we adjust the provisional

model to minimize the error rate on the test set, we may have at our fingertips the

evaluation measures such as sensitivity and specificity, along with the lift charts

and the gains charts. These evaluative measures and graphs can then point the

analyst in the proper direction for best ameliorating any drawbacks of the working

model.

15.12 CONFLUENCE OF RESULTS: APPLYING A SUITE
OF MODELS

In Olympic figure skating, the best-performing skater is not selected by a single

judge alone. Instead, a suite of several judges is called upon to select the best skater

from among all the candidate skaters. Similarly in model selection, whenever pos-

sible, the analyst should not depend solely on a single data mining method. Instead,

he or she should seek a confluence of results from a suite of different data mining

models.

For example, for the adult database, our analysis from Chapters 11 and 12

shows that the variables listed in Table 15.6 are the most influential (ranked roughly

in order of importance) for classifying income, as identified by CART, C5.0, and

the neural network algorithm, respectively. Although there is not a perfect match in



15.12 CONFLUENCE OF RESULTS: APPLYING A SUITE OF MODELS 467

the ordering of the important variables, there is still much that these three separate

classification algorithms have uncovered, including the following:

• All three algorithms identify Marital_Status, education-num, capital-gain,

capital-loss, and hours-per-week as the most important variables, except for

the neural network, where age snuck in past capital-loss.

• None of the algorithms identified either work-class or sex as important vari-

ables, and only the neural network identified age as important.

• The algorithms agree on various ordering trends, such as education-num is

more important than hours-per-week.

TABLE 15.6 Most important variables for classifying income, as identified by CART, C5.0,
and the neural network algorithm

CART C5.0 Neural Network

Marital_Status Capital-gain Capital-gain

Education-num Capital-loss Education-num

Capital-gain Marital_Status Hours-per-week

Capital-loss Education-num Marital_Status

Hours-per-week Hours-per-week Age

Capital-loss

When we recall the strongly differing mathematical bases on which these three

data mining methods are built, it may be considered remarkable that such convincing

concurrence prevails among them with respect to classifying income. Remember that

CART bases its decisions on the “goodness of split” criterion Φ(s|t), that C5.0 applies

an information-theoretic approach, and that neural networks base their learning on

back propagation. Yet these three different algorithms represent streams that broadly

speaking, have come together, forming a confluence of results. In this way, the models

act as validation for each other.

THE R ZONE

# The confusion matrix

# After using the C5.0 package, the confusion matrix is included in the output of sum-

mary()

# See Chapter 11 for data preparation and code to implement the C5.0 package
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# Add costs to the model

library("C50")

#After data preparation from Chapter 11

x <− adult[,c(2,6, 9, 10, 16, 17, 18, 19, 20)]

y <− adult$income

# Without weights:

c50fit <− C5.0(x,

y,

control = C5.0Control(CF=.1))

summary(c50fit)

# With weights:

costm <− matrix(c(1, 2, 1, 1),

byrow = FALSE,

2, 2)

c50cost <− C5.0(x,

y,

costs = costm,

control = C5.0Control(CF=.1))

summary(c50cost)

R REFERENCES

Kuhn, M, Weston, S, Coulter, N. 2013. C code for C5.0 by R. Quinlan. C50: C5.0 decision trees

and rule-based models. R package version 0.1.0-15. http://CRAN.R-project.org/package=
C50.

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Aus-

tria: R Foundation for Statistical Computing; 2012. ISBN: 3-900051-07-0, http://www.

R-project.org/.

EXERCISES

CLARIFYING THE CONCEPTS

1. Why do we need to evaluate our models before model deployment?

2. What is the minimum descriptive length principle, and how does it represent the principle

of Occam’s razor?

3. Why do we not use the average deviation as a model evaluation measure?

4. How is the square root of the MSE interpreted?

5. Describe the trade-off between model complexity and prediction error.

6. What might be a drawback of evaluation measures based on squared error? How might

we avoid this?

http://CRAN.R-project.org/package=
http://www
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7. Describe the general form of a contingency table.

8. What is a false positive? A false negative?

9. What is the difference between the total predicted negative and the total actually negative?

10. What is the relationship between accuracy and overall error rate?

11. True or false: If model A has better accuracy than model B, then model A has fewer false

negatives than model B. If false, give a counterexample.

12. Suppose our model has perfect sensitivity. Why is that insufficient for us to conclude that

we have a good model?

13. Suppose our model has perfect sensitivity and perfect specificity. What then is our accu-

racy and overall error rate?

14. What is the relationship between false positive rate and sensitivity?

15. What is the term used for the proportion of true positives in the medical literature? Why

do we prefer to avoid this term in this book?

16. Describe the difference between the proportion of false-positives and the false-positive

rate.

17. If we use a hypothesis testing framework, explain what represents a type I error and a type

II error.

18. The text describes a situation where a false positive is worse than a false negative. Describe

a situation from the medical field, say from screen testing for a virus, where a false negative

would be worse than a false positive. Explain why it would be worse.

19. In your situation from the previous exercise, describe the expected consequences of

increasing the false negative cost. Why would these be beneficial?

20. Are accuracy and overall error rate always the best indicators of a good model?

21. When misclassification costs are involved, what is the best model evaluation measure?

22. Explain in your own words what is meant by lift.

23. Describe the trade-off between reaching out to a large number of customers and having a

high expectation of success per contact.

24. What should one look for when evaluating a gains chart?

25. For model selection, should model evaluation be performed on the training data set or the

test data set, and why?

26. What is meant by a confluence of results?

HANDS-ON ANALYSIS

Use the churn data set at the book series website for the following exercises. Make sure that

the correlated variables have been accounted for.

27. Apply a CART model for predicting churn. Use default misclassification costs. Construct

a table containing the following measures:

a. Accuracy and overall error rate

b. Sensitivity and false-positive rate
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c. Specificity and false-negative rate

d. Proportion of true positives and proportion of false positives

e. Proportion of true negatives and proportion of false negatives

f. Overall model cost.

28. In a typical churn model, in which interceding with a potential churner is relatively cheap

but losing a customer is expensive, which error is more costly, a false negative or a false

positive (where positive= customer predicted to churn)? Explain.

29. Based on your answer to the previous exercise, adjust the misclassification costs for your

CART model to reduce the prevalence of the more costly type of error. Rerun the CART

algorithm. Compare the false positive, false negative, sensitivity, specificity, and overall

error rate with the previous model. Discuss the trade-off between the various rates in terms

of cost for the company.

30. Perform a cost/benefit analysis for the default CART model from Exercise 1 as follows.

Assign a cost or benefit in dollar terms for each combination of false and true positives

and negatives, similarly to Table 15.5. Then, using the contingency table, find the overall

anticipated cost.

31. Perform a cost/benefit analysis for the CART model with the adjusted misclassification

costs. Use the same cost/benefits assignments as for the default model. Find the overall

anticipated cost. Compare with the default model, and formulate a recommendation as to

which model is preferable.

32. Construct a lift chart for the default CART model. What is the estimated lift at 20%? 33%?

40%? 50%?

33. Construct a gains chart for the default CART model. Explain the relationship between this

chart and the lift chart.

34. Construct a lift chart for the CART model with the adjusted misclassification costs. What

is the estimated lift at 20%? 33%? 40%? 50%?

35. Construct a single lift chart for both of the CART models. Which model is preferable over

which regions?

36. Now turn to a C4.5 decision tree model, and redo Exercises 17–35. Compare the results.

Which model is preferable?

37. Next, apply a neural network model to predict churn. Construct a table containing the

same measures as in Exercise 27.

38. Construct a lift chart for the neural network model. What is the estimated lift at 20%?

33%? 40%? 50%?

39. Construct a single lift chart which includes the better of the two CART models, the better

of the two C4.5 models, and the neural network model. Which model is preferable over

which regions?

40. In view of the results obtained above, discuss the overall quality and adequacy of our

churn classification models.



C H A P T E R 16
COST-BENEFIT ANALYSIS USING
DATA-DRIVEN COSTS

In Chapter 15, we were introduced to cost-benefit analysis and misclassification

costs. Our goal in this chapter is to derive a methodology whereby the data itself

teaches us what the misclassification costs should be; that is, cost-benefit analysis
using data-driven misclassification costs. Before we can perform that, however, we

must turn to a more systematic treatment of misclassification costs and cost-benefit

tables, deriving the following three important results regarding misclassification

costs and cost-benefit tables1:

• Decision invariance under row adjustment

• Positive classification criterion

• Decision invariance under scaling.

16.1 DECISION INVARIANCE UNDER ROW
ADJUSTMENT

For a binary classifier, define P(i|x) to be the confidence (to be defined later) of the

model for classifying a data record as i= 0 or i= 1. For example, P(1|x) represents the

confidence that a given classification algorithm has in classifying a record as positive

(1), given the data. P(i|x) is also called the posterior probability of a given classi-

fication. By way of contrast, P(i) would represent the prior probability of a given

classification; that is, the proportion of 1’s or 0’s in the training data set. Also, let

CostTN,CostFP,CostFN, and CostTP represent the cost of a true negative, a false pos-

itive, a false negative, and a true positive, respectively, for the cost matrix shown in

Table 16.1.

1Following Charles X. Ling and Victor S. Sheng, Cost-Sensitive Learning and the Class Imbalance Prob-

lem, Encyclopedia of Machine Learning, C. Sammut (Ed.), Springer, 2008.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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TABLE 16.1 Cost matrix for binary classifier

Predicted Category

0 1

Cost
Actual category

TN CostFP

1 CostFN CostTP

0

Then, the expected cost of a positive or negative classification may be written

as follows:

Expected cost of positive classification = P(0|x) ⋅ CostFP + P(1|x) ⋅ CostTP

Expected cost of negative classification = P(0|x) ⋅ CostTN + P(1|x) ⋅ CostFN

For a positive classification, this represents the weighted average of the costs in the

positive predicted column, weighted by the confidence for classifying the records

as negative and positive, respectively. It is similar for a negative classification. The

minimum expected cost principle is then applied, as described here.

MINIMUM EXPECTED COST PRINCIPLE

Given a cost matrix, a data record should be classified into the class that has the minimum

expected cost.

Thus, a data record will be classified as positive if and only if the expected

cost of the positive classification is no greater than the expected cost of the negative

classification. That is, we will make a positive classification if and only if:

P(0|x) ⋅ CostFP + P(1|x) ⋅ CostTP ≤ P(0|x) ⋅ CostTN + P(1|x) ⋅ CostFN

That is, if and only if:

P(0|x) ⋅ (CostFP − CostTN) ≤ P(1|x) ⋅ (CostFN − CostTP) (16.1)

Now, suppose we subtract a constant a from each cell in the top row of the cost

matrix (Table 16.1), and we subtract a constant b from each cell in the bottom row.

Then equation (16.1) becomes

P(0|x) ⋅ [(CostFP − a) − (CostTN − a)] ≤ P(1|x) ⋅ [(CostFN − b) − (CostTP − b)]

which simplifies to equation (16.1). Thus, we have Result 1.

RESULT 1: DECISION INVARIANCE UNDER ROW ADJUSTMENT

A classification decision is not changed by the addition or subtraction of a constant from

the cells in the same row of a cost matrix.
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16.2 POSITIVE CLASSIFICATION CRITERION

We use Result 1 to develop a criterion for making positive classification decisions, as

follows. First, subtract a = CostTN from each cell in the top row of the cost matrix,

and subtract b = CostTP from each cell in the bottom row of the cost matrix. This

gives us the adjusted cost matrix shown in Table 16.2.

Result 1 means that we can always adjust the costs in our cost matrix so that

the two cells representing correct decisions have zero cost. Thus, the adjusted costs

are

CostFP,Adjusted = CostFP,Adj = CostFP − CostTN

CostFN,Adjusted = CostFN,Adj = CostFN − CostTP

CostTP,Adjusted = CostTP,Adj = 0

CostTN,Adjusted = CostTN,Adj = 0

Rewriting equation (16.1), we will then make a positive classification if and only if:

P(0|x) ⋅ CostFP,Adj ≤ P(1|x) ⋅ CostFN,Adj (16.2)

As P(0|x) = 1 − P(1|x), we can re-express equation (16.2) as

[1 − P(1|x)] ⋅ CostFP,Adj ≤ P(1|x) ⋅ CostFN,Adj

which, after some algebraic modifications, becomes:

CostFP,Adj ≤ P(1|x) ⋅ [CostFN,Adj + CostFP,Adj]

This leads us to Result 2.

RESULT 2: POSITIVE CLASSIFICATION CRITERION

Let P(1|x) = PC represent a model’s positive confidence; that is, the model’s confidence in

making a positive classification. And let the positive confidence threshold (PCT) be defined

as

PCT = Positive Confidence Threshold =
CostFP,Adj

CostFN,Adj + CostFP,Adj

Then, a positive classification is made if and only if

PC ≥ PCT.

TABLE 16.2 Adjusted cost matrix

Predicted Category

0 1

Actual category
0 CostFP − CostTN

1 CostFN − CostTP 0

0
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16.3 DEMONSTRATION OF THE POSITIVE
CLASSIFICATION CRITERION

For C5.0 models, the model’s confidence in making a positive or negative classifica-

tion is given as

Confidence = Number correct in leaf + 1

Total number in leaf + 2

The model’s positive confidence PC is then calculated as

If classification is positive, then PC = confidence,

Else, PC = 1 − confidence.

We demonstrate the positive classification criterion using the Adult2_training data

set and the Adult2_test data set, as follows. First, three C5.0 classification models are

trained on the training data set:

• Model A, with no misclassification costs. Here, CostFP = CostFN = 1 and

CostTP = CostTN = 0, so that CostFP,Adj = CostFP − CostTN = 1,CostFN,Adj =
CostFN − CostTP = 1 and the positive confidence threshold is PCT =

CostFP,Adj

CostFP,Adj+CostFP,Adj
= 1

2
= 0.5. Thus, Model A should make positive classifica-

tions when PC ≥ 0.5.

• Model B, with CostFP = 2,CostFN = 1, and CostTP = CostTN = 0. Here,

CostFP,Adj = 2,CostFN,Adj = 1 and the positive confidence threshold is

PCT = 2

3
= 0.67. Thus, Model B should make positive classifications when

PC ≥ 0.67.

• Model C, with CostFP = 4,CostFN = 1, and CostTP = CostTN = 0. Here,

CostFP,Adj = 4,CostFN,Adj = 1 and the positive confidence threshold is

PCT = 4

5
= 0.8. Thus, Model C should make positive classifications when

PC ≥ 0.8.

Each model is evaluated on the test data set. For each record for each model,

the model’s positive confidence PC is calculated. Then, for each model, a histogram

of the values of PC is constructed, with an overlay of the target classification. These

histograms are shown in Figures 16.1a–c for Models A, B, and C, respectively. Note

that, as expected:

• For Model A, the model makes positive classifications, whenever PC ≥ 0.5.

• For Model B, the model makes positive classifications, whenever PC ≥ 0.67.

• For Model C, the model makes positive classifications, whenever PC ≥ 0.8.

16.4 CONSTRUCTING THE COST MATRIX

Suppose that our client is a retailer seeking to maximize revenue from a direct market-

ing mailing of coupons to likely customers for an upcoming sale. A positive response
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Figure 16.1 (a) Model A: Positive classification when PC ≥ 0.5. (b) Model B: Positive clas-

sification when PC ≥ 0.67. (c) Model C: Positive classification when PC ≥ 0.8.

represents a customer who will shop the sale and spend money. A negative response

represents a customer who will not shop the sale and spend money. Suppose that

mailing a coupon to a customer costs $2, and that previous experience suggests that

those who shopped similar sales spent an average of $25.
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We calculate the costs for this example as follows:

• True Negative. This represents a customer who would not have responded to

the mailing being correctly classified as not responding to the mailing. The

actual cost incurred for this customer is zero, because no mailing was made.

Therefore, the direct cost for this decision is $0.

• True Positive. This represents a customer who would respond to the mail-

ing being correctly classified as responding to the mailing. The mailing cost

is $2, while the revenue is $25, so that the direct cost for this customer is

$2− $25=−$23.

• False Negative. This represents a customer who would respond positively to

the mailing, but was not given the chance because he or she was incorrectly

classified as not responding to the mailing, and so was not sent a coupon. The

direct cost is $0.

• False Positive. This represents a customer who would not shop the sale being

incorrectly classified as responding positively to the mailing. For this customer,

the direct cost is the mailing expense, $2.

These costs are summarized in Table 16.3.

TABLE 16.3 Cost matrix for the retailer example

Predicted Category

0 1

Actual category TN = $0 CostFP = $2

1 CostFN = $0 CostTP = $23

Cost0

Then, by Result 1 (decision invariance under row adjustment), we derive the

adjusted cost matrix in Table 16.4 by subtracting CostTP from each cell in the bot-

tom row. Note that the costs representing the two correct classifications equal zero.

Software packages such as IBM/SPSS Modeler require the cost matrix to be in a form

where there are zero costs for the correct decisions, such as in Table 16.4.

TABLE 16.4 Adjusted cost matrix for the retailer example

Predicted Category

0 1

Actual category
0 CostFP,Adj = $2

1 CostFN,Adj = $23 0

0

16.5 DECISION INVARIANCE UNDER SCALING

Now, Result 2 states that we will make a positive classification when a model’s PC is

not less than the following:
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CostFP,Adj

CostFN,Adj + CostFP,Adj

= 2

2 + 23
= 2

25
= 1

12.5
= 0.08

1
= 0.08 (16.3)

Examining equation (16.3), we can see that the new adjusted cost matrices in

Tables 16.5 and 16.6 are equivalent to the adjusted cost matrix in Table 16.4 for the

purposes of rendering a classification decision. If it is important, say for interpreta-

tion purposes, for one of the adjusted costs to be expressed as a unit (e.g., $1), then

this can be done – for either adjusted cost – by dividing through by the appropriate

adjusted cost. For example, we can tell our client that, for every dollar that a false

positive costs us, a false negative costs us $11.50 (Table 16.5); or conversely, for

every dollar that a false negative costs us, a false positive costs us only eight cents

(Table 16.6).

What we are doing here is scaling (dividing) by one of the adjusted costs; hence,

we have Result 3.

RESULT 3: DECISION INVARIANCE UNDER SCALING

A classification decision is not changed by scaling by a constant in all cells of the cost

matrix.

For example, the pairs of adjusted costs in Table 16.7 are equivalent for the

purposes of rendering a classification decision:

Important note: When calculating the total cost of a classification model, or

when comparing the total cost of a set of models, the analyst should use the origi-

nal unadjusted cost matrix as shown in Table 16.3, and without applying any matrix

TABLE 16.5 Adjusted cost matrix, where the false positive adjusted cost equals 1

Predicted Category

10

Actual category
0 CostFP,Adj 3 = $1

1 CostFN,Adj 3 = $11.5 0

0

TABLE 16.6 Adjusted cost matrix, where the false negative adjusted cost equals 1

Predicted Category

10

Actual category
0 CostFP,Adj 4 = $0.08

1 CostFN,Adj 4 = $1 0

0
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TABLE 16.7 Pairs of equivalent adjusted costs

Adjusted

Cost Matrix

Adjusted False

Positive Cost

Adjusted False

Negative Cost

Original CostFP,Adj CostFN,Adj

Scaled by CostFP,Adj

CostFP,Adj

CostFP,Adj

= 1
CostFN,Adj

CostFP,Adj

Scaled by CostFN,Adj

CostFP,Adj

CostFN,Adj

CostFN,Adj

CostFN,Adj

= 1

row adjustment or scaling. The row adjustment and scaling leads to equivalent classi-

fication decisions, but it changes the reported costs of the final model. Therefore,

use the unadjusted cost matrix when calculating the total cost of a classification

model.

16.6 DIRECT COSTS AND OPPORTUNITY COSTS

Direct cost represents the actual expense of the class chosen by the classification

model, while direct gain is the actual revenue obtained by choosing that class. Our

cost matrix above was built using direct costs only. However, opportunity cost rep-

resents the lost benefit of the class that was not chosen by the classification model.

Opportunity gain represents the unincurred cost of the class that was not chosen by the

classification model. We illustrate how to combine direct costs and opportunity costs

into total costs, which can then be used in a cost-benefit analysis, using the following

example. For example, for the false negative situation, the opportunity gain is $2, in

that the client saved the cost of the coupon, but the opportunity cost is $25, in that

the client did not receive the benefit of the $25 in revenue this customer would have

spent. So, the opportunity cost is $25− $2= $23. Why then, do not we use opportu-

nity costs when constructing the cost matrix? Because doing so would double count

the costs. For example, a switch of a single customer from a false negative to a true

positive would result in an decrease in model cost of $46 if we counted both the false

negative opportunity cost and the true positive direct cost, which is twice as much as

a single customer spends, on average.2

16.7 CASE STUDY: COST-BENEFIT ANALYSIS USING
DATA-DRIVEN MISCLASSIFICATION COSTS

Many of the concepts presented in this chapter are now brought together in the follow-

ing case study application of cost-benefit analysis using data-driven misclassification

2Thanks to Frank Bensics, PhD, FSA, and to Iain Pardoe, PhD, for valuable discussions regarding these

issues.



16.7 CASE STUDY: COST-BENEFIT ANALYSIS USING DATA-DRIVEN MISCLASSIFICATION COSTS 479

costs. In this era of big data, businesses should leverage the information in their exist-

ing databases in order to help uncover the optimal predictive models. In other words,

as an alternative to assigning misclassification costs because “these cost values seem

right to our consultant” or “that is how we have always modeled them,” we would

instead be well advised to listen to the data, and learn from the data itself what the

misclassification costs should be. The following case study illustrates this process.

The Loans data set represents a set of bank loan applications for a 3-year term.

Predictors include debt-to-income ratio, request amount, and FICO score. The target

variable is approval; that is, whether or not the loan application is approved, based on

the predictor information. The interest represents a flat rate of 15% times the request

amount, times 3 years, and should not be used to build prediction models. The bank

would like to maximize its revenue by funding the loan applications that are likely

to be repaid, and not funding those loans that will default. (We make the simplifying

assumption that all who are approved for the loan actually take the loan.)

Our strategy for deriving and applying data-driven misclassification costs is as

follows.

STRATEGY FOR APPLYING DATA-DRIVEN MISCLASSIFICATION
COSTS

1. Calculate the mean request amount per applicant. (Assume approved loans are fully

funded.) This represents what the bank stands to lose if the applicant defaults on the

loan.

2. Find the mean amount of loan interest per applicant. This represents the bank’s rev-

enue.

3. Use the information in Steps (1) and (2) to construct data-driven misclassification

costs. Construct the cost matrix.

4. Adjust the cost matrix from Step (3) into a form conducive to the software, in this

case, IBM/SPSS Modeler.

5. Using the Loans_training data set, develop a classification and regression trees

(CART) model that does not use misclassification costs for predicting approval,
based on debt-to-income ratio, request amount, and FICO score. Assume that this

naïve model has been in use by the bank until now.

6. Using the Loans_training data set, develop a CART model that uses the adjusted

cost matrix from (4), for predicting approval, based on debt-to-income ratio, request
amount, and FICO score.

7. Using the Loans_test data set, evaluate each model from (5) and (6) using the model

comparison cost matrix (similarly to Table 16.9). For each model, report the usual

model evaluation measures, such as overall error rate. Most importantly, however,

report total model revenue (i.e., negative model cost) and the revenue per applicant.
Report the absolute difference in total model revenue and the percentage difference

in revenue per applicant harvested by the model using misclassification costs and

compare the naïve model the bank used previously.
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Note that our misclassification costs are data-driven, meaning that the data set

itself is providing all of the information needed to assign the values of the misclas-

sification costs. Using the Loans_training data set, we find that the mean amount

requested is $13,427, and the mean amount of loan interest is $6042. A positive deci-

sion represents loan approval. We make a set of simplifying assumptions, to allow us

to concentrate on the process at hand, as follows.

SIMPLIFYING ASSUMPTIONS

• The only costs and gains that we model are principal and interest. Other types of

costs such as clerical costs are ignored.

• If a customer defaults on a loan, the default is assumed to occur essentially immedi-

ately, so that no interest is accrued to the bank from such loans.

We proceed to develop the cost matrix, as follows.

• True Negative. This represents an applicant who would not have been able to

repay the loan (i.e., defaulted) being correctly classified for non-approval. The

cost incurred for this applicant is $0, because no loan was proffered, no interest

was accrued, and no principal was lost.

• True Positive. This represents an applicant who would reliably repay the loan

being correctly classified for loan approval. The bank stands to make $6042

(the mean amount of loan interest) from customers such as this. So the cost for

this applicant is −$6042.

• False Negative. This represents an applicant who would have reliably paid off

the loan, but was not given the chance because he or she was incorrectly clas-

sified for non-approval. The cost incurred for this applicant is $0, because no

loan was proffered, no interest was accrued, and no principal was lost.

• False Positive. This represents an applicant who will default being incorrectly

classified for loan approval. This is a very costly error for the bank, directly

costing the bank the mean loan amount requested, $13,427.

We summarize the costs in Table 16.8.

Table 16.8 will be used to calculate the total cost of any classification models

built using these misclassification costs.

TABLE 16.8 Matrix of direct costs for the bank loan case study

Predicted Category

0 1

Actual category TN = $0 CostFP = $13, 427

1 CostFN = $0 CostTP = −$6042

Cost0
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We adjust the cost matrix in Table 16.8 to make it conducive to the software,

by subtracting CostTP = −$6042 from the bottom row, giving us the adjusted cost

matrix in Table 16.9.

TABLE 16.9 Adjusted cost matrix for the bank loan case study

Predicted Category

0 1

Actual category
0 CostFP,Adj = $13, 427

1 CostFN,Adj = $6042 0

0

For simplicity, we apply Result 3, scaling each of the non-zero costs by

CostFN,Adj = $6042, to arrive at the cost matrix shown in Table 16.10.

TABLE 16.10 Simplified cost matrix for the bank loan case study

Predicted Category

0 1

Actual category FP,Adj = 2.222277

1 CostFN,Adj = 1 0

00 Cost

Using the Loans_training data set, two CART models are constructed:

• Model 1: The naïve CART model with no misclassification costs, used by the

bank until now.

• Model 2: The CART model with misclassification costs specified in

Table 16.10.

These models are then evaluated using the Loans_test data set. The resulting

contingency tables for Model 1 and Model 2 are shown in Tables 16.11 and 16.12,

respectively. These counts were evaluated using the matrix of total costs in Table 16.8.

TABLE 16.11 Contingency table for Model 1 with no misclassification costs

Predicted Category

0 1

Actual category
, 314 6620

1 1171 23, 593

0 18

Table 16.13 contains the evaluation measures for Models 1 and 2, with the

better performing model’s results in bold. Note that Model 1 performs better with

the following measures: accuracy, overall error rate, sensitivity, false positive rate,

proportion of true negatives, and proportion of false negatives. Model 2 performs
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TABLE 16.12 Contingency table for Model 2, with data-driven misclassification costs

Predicted Category

0 1

Actual category
, 595 3339

1 6004 18, 760

0 21

TABLE 16.13 Evaluation measures. Model 2, with data-driven
misclassification costs, has increased revenue by nearly $15 million
(better performance in bold)

CART Model

Evaluation Measure

Model 1: Without

Misclassification Costs

Model 2: With

Misclassification Costs

Accuracy 0.8432 0.8120

Overall error rate 0.1568 0.1880

Sensitivity 0.9527 0.7576

False positive rate 0.0473 0.2424

Specificity 0.7345 0.8661
False negative rate 0.2655 0.1339
Proportion of true positives 0.7809 0.8489
Proportion of false positives 0.2191 0.1511
Proportion of true negatives 0.9399 0.7825

Proportion of false negatives 0.0601 0.2175

Overall model cost −$53, 662, 166 −$𝟔𝟖, 𝟓𝟏𝟓, 𝟏𝟔𝟕
Revenue per applicant $1080 $𝟏𝟑𝟕𝟗

better with respect to specificity, false negative rate, proportion of true positives, and

proportion of false positives. Recall that, for the bank, the false positive error is the

more costly mistake. Thus, Model 2, with its heavier penalty for making the false

positive error, delivers a lower proportion of false positives (0.1511 vs 0.2191). But

most importantly, Model 2 delivers where it counts: in the bottom line. The overall

model cost is −$53, 662, 166 for Model 1 and −$68, 515, 167 for Model 2, meaning

that the increase in revenue for the model using misclassification costs compared to

the model not using misclassification costs is

Increase in Revenue = $68, 515, 167 − $53, 662, 166 = $14, 853, 001

That is, the simple step of applying data-driven misclassification costs has led to

an increase in revenue of nearly $15 million. This represents a per-applicant increase

in revenues of $1379− $1080= $299.
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16.8 REBALANCING AS A SURROGATE
FOR MISCLASSIFICATION COSTS

Not all algorithms have an explicit method for applying misclassification costs. For

example, the IBM/SPSS Modeler implementation of neural network modeling does

not allow for misclassification costs. Fortunately, data analysts may use rebalanc-

ing as a surrogate for misclassification costs. Rebalancing refers to the practice of

oversampling either the positive or negative responses, in order to mirror the effects of

misclassification costs. The formula for the rebalancing, due to Elkan,3 is as follows.

REBALANCING AS A SURROGATE FOR MISCLASSIFICATION COSTS

• If CostFP,Adj > CostFN,Adj, then multiply the number of records with negative

responses in the training data by a, before applying the classification algorithm,

where a is the resampling ratio, a = CostFP,Adj∕CostFN,Adj.

• If CostFN,Adj > CostFP,Adj, then multiply the number of records with positive

responses in the training data by b, before applying the classification algorithm,

where b is the resampling ratio, b = CostFN,Adj∕CostFP,Adj.

For the bank loan case study, we have CostFP,Adj = $13, 427 > CostFN,Adj =
$6042, so that our resampling ratio is a = 13, 427∕6042 = 2.22. We therefore multi-

ply the number of records with negative responses (Approval=F) in the training data

set by 2.22. This is accomplished by resampling the records with negative responses

with replacement.

We then provide the following four network models:

• Model 3: The naïve neural network model, constructed on a training set with

no rebalancing.

• Model 4: A neural network model constructed on a training set with a= 2.0

times as many negative records as positive records.

• Model 5: The neural network model constructed on a training set with a= 2.22

times as many negative records as positive records.

• Model 6: A neural network model constructed on a training set with a= 2.5

times as many negative records as positive records.

Table 16.14 contains the counts of positive and negative responses in the train-

ing data set, along with the achieved resampling ratio for each of Models 3–6. Note

that the higher counts for the negative responses were accomplished through resam-

pling with replacement.

The four models were then evaluated using the test data set. Table 16.15 con-

tains the evaluation measures for these models.

3Charles Elkan, The Foundations of Cost-Sensitive Learning, in Proceedings of the Seventeenth Interna-
tional Joint Conference of Artificial Intelligence, 973–978, Seattle, WA, Morgan Kaufmann, 2001.
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TABLE 16.14 Counts of negative and positive responses, and achieved resampling ratios

Negative

Responses

Positive

Responses

Desired

Resampling Ratio

Achieved

Resampling Ratio

Model 3 75,066 75,236 N/A N/A

Model 4 150,132 75,236 2.0 150, 132∕75, 236 = 1.996

Model 5 166,932 75,236 2.22 166, 932∕75, 236 = 2.219

Model 6 187,789 75,236 2.5 187, 789∕75, 236 = 2.496

TABLE 16.15 Evaluation measures for resampled models. The resampled neural network
model with the data-driven resampling ratio, is the highest performing model of all (best
performing model highlighted)

CART Model

Evaluation Measure

Model 3:

None

Model 4:

a= 2.0

Model 5:

a= 2.22

Model 6:

a= 2.5

Accuracy 0.8512 0.8361 0.8356 0.8348

Overall error rate 0.1488 0.1639 0.1644 0.1652

Sensitivity 0.9408 0.8432 0.8335 0.8476

False positive rate 0.0592 0.1568 0.1665 0.1526

Specificity 0.7622 0.8291 0.8376 0.8221

False negative rate 0.2378 0.1709 0.1624 0.1779

Proportion of true positives 0.7971 0.8305 0.8360 0.8256

Proportion of false positives 0.2029 0.1695 0.1640 0.1744

Proportion of true negatives 0.9284 0.8418 0.8351 0.8446

Proportion of false negatives 0.0716 0.1582 0.1649 0.1554

Overall model cost −$61, 163, 875 −$68, 944, 513 −$𝟕𝟎 , 𝟑𝟒𝟔 , 𝟗𝟗𝟗 −$67, 278, 877

Revenue per applicant $1231 $1387 $𝟏𝟒𝟏𝟓 $1354

Note that Model 5, whose resampling ratio of 2.22 is data-driven, being entirely

specified by the data-driven adjusted misclassification costs, is the highest perform-

ing model of all, with model cost of −$70, 346, 999, and a per-applicant revenue of

$1415. In fact, the neural network model with 2.22 rebalancing outperformed our

previous best model, the CART model with misclassification costs, by

Increase in Revenue = $70, 346, 999 − $68, 515, 167 = $1, 831, 832

This $1.83 million may have been lost had the bank’s data analyst not had recourse

to the technique of using rebalancing as a surrogate for misclassification costs.

Why does rebalancing work? Take the case where CostFP,Adj > CostFN,Adj.

Here, the false positive is the more expensive error. The only way a false positive

error can arise is if the response should be negative. Rebalancing provides the

algorithm with a greater number of records with a negative response, so that the

algorithm can have a richer set of examples from which to learn about records with

negative responses. This preponderance of information about records with negative

responses is taken into account by the algorithm, just as if the weight of these records
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was greater. This diminishes the propensity of the algorithm to classify a record as

positive, and therefore decreases the proportion of false positives.

For example, suppose we have a decision tree algorithm that defined confidence

and PC as follows:

Confidence = Number correct in leaf + 1

Total number in leaf + 2

If classification is positive, then positive confidence = confidence,

Else, positive confidence = 1 − confidence.

And suppose (for illustration) that this decision tree algorithm did not have a way to

define the misclassification costs, CostFP,Adj > CostFN,Adj. Consider Result 2, which

states that a model will make a positive classification if and only if its positive confi-

dence is greater than the positive confidence threshold; that is, if and only if

PC ≥ PCT

where

PCT = Positive Confidence Threshold =
CostFP,Adj

CostFN,Adj + CostFP,Adj

The algorithm does not have recourse to the misclassification costs on the right-hand

side of the inequality PC ≥ PCT. However, equivalent behavior may be obtained

by manipulating the PC on the left-hand side. Because CostFP,Adj > CostFN,Adj, we

add extra negative-response records, which has the effect of increasing the typical

number of records in each leaf across the tree, which, because the new records are

negative, typically reduces the PC. Thus, on average, it becomes more difficult for

the algorithm to make positive predictions, and therefore fewer false positive errors

will be made.

The R Zone

# Load and prepare the data, and load the required package

adult <− read.csv(file = "C:/… /adult.txt",

stringsAsFactors=TRUE)

library("C50")

# After collapsing categories and standardize variables in Chapter 11:

x <− adult[,c(2,6, 9, 10, 16, 17, 18, 19, 20)]

y <− adult$income

xydat <− cbind(x, y)

# Create Training and Testing Adult datasets

choose <− runif(dim(xydat)[1], 0, 1)

a.train <− xydat[which(choose <= 0.75),]

a.test<− xydat[which(choose > 0.75),]
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# Run the models
# Model A: Cost FP = 1, FN = 1, TP = 0, TN = 0

costA <− matrix(c(0, 1, 1, 0), 2, 2)

rownames(costA) <− colnames(costA) <− levels(y)

c50fitA <− C5.0(x=a.train[,1:9], a.train$y, costs = costA)

# Model B: Cost FP = 2, FN = 1, TP = 0, TN = 0

costB <− matrix(c(0, 2, 1, 0), 2, 2)

rownames(costB) <− colnames(costB) <− levels(y)

c50fitB <− C5.0(x=a.train[,1:9], a.train$y, costs = costB)

# Model C: Cost FP = 4, FN = 1, TP = 0, TN = 0

costC <− matrix(c(0, 4, 1, 0), 2, 2)

rownames(costC) <− colnames(costC) <− levels(y)

c50fitC <− C5.0(x=a.train[,1:9], a.train$y, costs = costC)

# Evaluate each model on the test data set
pA.prob <− predict(c50fitA, newdata=a.test[,1:9], type = "prob")

pA.class <− predict(c50fitA, newdata=a.test[,1:9], type = "class" )

# Model A

modelA.class <− ifelse(pA.class==">50K.", 2, 1)

dotchart(pA.prob[,2], color = modelA.class, pch = 16, bg = "white",

lcolor = "white",ylab = "", labels="", xlab = "Positive Confidence",

main = "Plot of Positive Confidence for Model A")

# NOTE: As of May 2014, the C5.0 package does not supply confidence values for

# models built using costs. Therefore, Model B and Model C

cannot have their PC plots made.

# For more detail, type: ?C5.0

# Read in and prepare Loans data sets, and display mean request
amount
loan.train <− read.csv(file="C:/… /Loans_Training.csv",

header = TRUE)

choose <− sample(dim(loan.train)[1], size = 1000)

train <− loan.train[choose,-5]

test <− read.csv(file="C:/… /Loans_Test.csv",

header = TRUE)

train$DtIR.z <− (train$Debt.to.Income.Ratio-

mean(train$Debt.to.Income.Ratio))/sd(train$Debt.to.Income.Ratio)

train$FICOs.z <− (train$FICO.Score - mean(train$FICO.Score))/sd(train$FICO.Score)

train$ReqAmt.z <− (train$Request.Amount-

mean(train$Request.Amount))/sd(train$Request.Amount)

mean(train$Request.Amount) # Mean request amount

mean(train$Request.Amount*0.15)*3 # Mean interest

train <− train[,-c(2:4)]

test$DtIR.z <− (test$Debt.to.Income.Ratio-

mean(test$Debt.to.Income.Ratio))/sd(test$Debt.to.Income.Ratio)

test$FICOs.z <− (test$FICO.Score - mean(test$FICO.Score))/sd(test$FICO.Score)

test$ReqAmt.z <− (test$Request.Amount-

mean(test$Request.Amount))/sd(test$Request.Amount)

test <− test[,-c(2:4)]
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# Run the models and evaluate on Test data
# Declare cost matrix

costs <− matrix(c(0, 2.22, 1, 0), ncol=2, byrow=FALSE)

rownames(costs) <− colnames(costs) <− levels(as.factor(train[,1]))

# Run the models

m.nocost <− C5.0(x=train[,-1], as.factor(train[,1]))

m.cost <− C5.0(x=train[,-1], as.factor(train[,1]), costs = costs)

# Predict Test data

m.nocost.pred <− predict(object=m.nocost, newdata=test)

m.cost.pred <− predict(object=m.cost, newdata=test)

# Evaluate results
test[,1] # Actual categories

m.nocost.pred # Predicted categories

sum(test[,1]==m.nocost.pred)/dim(test)[1] # Accuracy

1 - sum(test[,1]==m.nocost.pred)/dim(test)[1] # Overall Error Rate

# And so on

R REFERENCES

1. Kuhn M, Weston S, Coulter N. 2013. C code for C5.0 by R. Quinlan. C50: C5.0 decision trees and

rule-based models. R package version 0.1.0-15. http://CRAN.R-project.org/package=C50.

2. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Founda-

tion for Statistical Computing; 2012. ISBN: 3-900051-07-0, http://www.R-project.org/.

EXERCISES

For Exercises 1–8, state what you would expect to happen to the indicated classification eval-

uation measure, if we increase the false negative misclassification cost, while not increasing

the false positive cost. Explain your reasoning.

1. Sensitivity.

2. False positive rate.

3. Specificity.

4. False negative rate.

5. Proportion of true positives.

6. Proportion of false positives.

7. Proportion of true negatives

8. Proportion of false negatives.

9. True or false: The overall error rate is always the best indicator of a good model.

http://CRAN.R-project.org/package=C50
http://www.R-project.org
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10. Describe what is meant by the minimum expected cost principle.

11. Explain decision invariance under row adjustment.

12. True or false: We can always adjust the costs in our cost matrix so that the two cells

representing correct decisions have zero cost.

13. What is the difference between confidence and positive confidence?

14. What is the adjusted false positive cost? The adjusted false negative cost?

15. What is the positive confidence threshold?

16. Explain the positive classification criterion.

17. Clearly explain how Figure 16.1 demonstrates the positive classification criterion for a

C5.0 binary classifier.

18. Explain what is meant by decision invariance under scaling.

19. How might Result 3 be of use to an analyst making a presentation to a client?

20. What are direct costs? Opportunity costs? Why should we not include both when con-

structing our cost matrix?

21. What do we mean when we say that the misclassification costs in the case study are

data-driven?

22. In the case study, explain why Model 1 has better sensitivity, lower proportion of false

negatives, and lower overall error rate. Then explain why Model 2 is better.

23. Why might we need rebalancing as a surrogate for misclassification costs?

24. Explain how we do such rebalancing when the adjusted false positive cost is greater than

the adjusted false negative cost.

25. What does it mean to say that the resampling ratio is data-driven?

26. Why does rebalancing work as a surrogate for misclassification costs?

Use the following information for Exercises 27–44.

Suppose that our client is a retailer seeking to maximize revenue from a direct marketing mail-

ing of coupons to likely customers for an upcoming sale. A positive response represents a

customer who will shop the sale and spend money. A negative response represents a customer

who will not shop the sale and spend money. Suppose that mailing a coupon to a customer

costs $5, and that previous experience suggests that those who shopped similar sales spent an

average of $100.

27. Explain why (i) misclassification costs are needed in this scenario, and (ii) the overall

error rate is not the best measure of a good model.

28. Construct the cost matrix. Provide rationales for each cost.

29. Use Result 1 to construct the adjusted cost matrix. Interpret the adjusted costs.

30. Calculate the positive confidence threshold. Use Result 2 to state when the model will

make a positive classification.

31. Use Result 3 to readjust the adjusted misclassification costs, so that the readjusted

false positive cost is $1. Interpret the readjusted false positive and false negative

costs.
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32. Use Result 3 to readjust the adjusted misclassification costs, so that the readjusted

false negative cost is $1. Interpret the readjusted false positive and false negative

costs.

For Exercises 33–42, consider two classification models: Model 1 is a naïve model with no

misclassification costs, and Model 2 uses the cost matrix you constructed earlier. Which model

do you expect to perform better according to the following measures, and why?

33. Sensitivity.

34. False positive rate.

35. Specificity.

36. False negative rate.

37. Proportion of true positives.

38. Proportion of false positives.

39. Proportion of true negatives.

40. Proportion of false negatives.

41. Model cost.

42. Revenue per customer.

43. Suppose the classification algorithm of choice had no method of applying misclassifica-

tion costs.

a. What would be the resampling ratio for using rebalancing as a surrogate for misclas-

sification costs?

b. How should the training set be rebalanced?

44. Why don’t we rebalance the test data set?

HANDS-ON EXERCISES

Use the Churn data set for Exercises 45–52. A positive response represents a churner (customer

who will leave the company’s service). A negative response represents a non-churner. Suppose

that intervening with a customer in danger of churning costs $100, and that a customer who

churns represents $2000 in lost revenue. Now, suppose the company’s intervention strategy is

useless, and that everyone the company intervenes with to stop churning will churn anyway.

45. Construct the cost matrix. Provide rationales for each cost.

46. Partition the Churn data set into a training data set and a test data set.

47. Using the training set, develop a CART model for predicting Churn. Do not use misclas-

sification costs. Call this Model 1.

48. Using the training set, and the cost matrix, develop a CART model for predicting Churn.
Call this Model 2.

49. Construct a table of evaluation measures for the two models, similarly to Table 16.13.

50. Report the increase or decrease in revenue, and the percentage increase or decrease in

revenue per customer, obtained from using Model 2.
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51. Next, assume the company’s intervention strategy is perfect, and that everyone the com-

pany intervenes with to stop churning will not churn. Redo Exercises 45–50 under this

assumption.

52. Finally, assume that 50% of those customers who are in danger of churning, and with

whom the company intervenes, will stay with the company, and 50% will churn anyway.

Redo Exercises 45–50 under this assumption.



C H A P T E R 17
COST-BENEFIT ANALYSIS
FOR TRINARY AND k-NARY
CLASSIFICATION MODELS

Not all classification problems involve binary targets. For example, color researchers
may be interested in user classification of colors such as red, blue, yellow, green,
and so on. In earlier chapters, we dealt with cost-benefit analysis for classification
models having a binary target variable only. In this chapter, we extend our analytic
framework to encompass classification evaluation measures and data-driven misclas-
sification costs, first for trinary targets, and then for k-nary targets in general.

17.1 CLASSIFICATION EVALUATION MEASURES FOR
A GENERIC TRINARY TARGET

For the classification problem with a generic trinary target variable taking values A, B,
and C, there are nine possible combinations of predicted/actual categories, as shown
in Table 17.1. The contingency table for this generic trinary problem is as shown in
Table 17.2.

DecisionA|A may be considered a true A, analogous to a true positive or true
negative decision in the binary case. Similarly, DecisionB|B and DecisionC|C may
be viewed as a true B and a true C, respectively. Note, however, that the true posi-
tive/false positive/true negative/false negative usage is no longer applicable here for
this trinary target variable. Thus, we need to define new classification evaluation
measures.

We denote the marginal totals as follows. Let the total number of records pre-
dicted to belong to category A be denoted as

CountA|Σ = CountA|A + CountA|B + CountA|C

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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TABLE 17.1 Definition and notation for the nine possible decision combinations, generic
trinary variable

Decision Predicted Actual

A|A DecisionA|A A A

B|B DecisionB|B B B

C|C DecisionC|C C C

A|B DecisionA|B A B

A|C DecisionA|C A C

B|A DecisionB|A B A

B|C DecisionB|C B C

C|A DecisionC|A C A

C |B DecisionC|B C B

TABLE 17.2 Contingency table for generic trinary problem

Predicted Category

A B C Actual Totals

Actual category A CountA A CountB A CountC A CountΣ A

B CountA B CountB B CountC B CountΣ B

C CountA C CountB C CountC C CountΣ C

Predicted totals CountA Σ CountB Σ CountC Σ CountΣ Σ

Similarly, the number of records predicted to belong to category B is given as

CountB|Σ = CountB |A + CountB |B + CountB|C
and the number of records predicted to belong to category C is given as

CountC|Σ = CountC|A + CountC|B + CountC|C
Also, let the total number of records actually belonging to category A be denoted as

CountΣ|A = CountA|A + CountB|A + CountC|A
Similarly, the number of actual category B records is given as

CountΣ|B = CountA|B + CountB|B + CountC|B
and the number of actual category C records is given as

CountΣ|C = CountA|C + CountB|C + CountC|C
The grand total N = CountΣ|Σ represents the sum of all the cells in the contingency
table.

Next, we define classification evaluation measures for the trinary case, extend-
ing and amending the similar well-known binary classification evaluation measures.



17.1 CLASSIFICATION EVALUATION MEASURES FOR A GENERIC TRINARY TARGET 493

For the binary case, sensitivity and specificity are defined as follows:

Sensitivity = TP
TP + FN

Specificity = TN
FP + TN

In the binary case, sensitivity is defined as the ratio of the number of true positives to
the number of actual positives in the data set. Specificity is defined as the ratio of the
number of true negatives to the number of actual negatives. For the trinary case, we
analogously define the following measures:

A-sensitivity =
CountA|A
CountΣ|A

B-sensitivity =
CountB|B
CountΣ|B

C-sensitivity =
CountC|C
CountΣ|C

For example, A-sensitivity is the ratio of correctly predicted A-records to the total
number of A-records. It is interpreted as the probability that a record is correctly
classified as A, given that the record is actually belongs to the A class; similarly for
B-sensitivity and C-sensitivity. No specificity measure is needed, because specificity
in the binary case is essentially a type of sensitivity measure for the negative category.

Next, in the binary case, we have the following measures:

False-positive rate = 1 − specificity = FP
FP + TN

False-negative rate = 1 − sensitivity = FN
TP + FN

We extend these measures for the trinary case as follows:

False A rate = 1 − A-sensitivity =
CountB|A + CountC|A

CountΣ|A
False B rate = 1 − B-sensitivity =

CountA|B + CountC|B
CountΣ|B

False C rate = 1 − C-sensitivity =
CountA|C + CountB|C

CountΣ|C
For example, the false A rate is interpreted as the ratio of incorrectly classified
A-records to the total number of A-records. For the binary case, the proportion of
true positives and the proportion of true negatives are given as follows:

Proportion of true positives = PTP = TP
TP + FP

Proportion of true negatives = PTN = TN
TN + FN
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In the binary case, PTP is interpreted as the likelihood that the record is actually
positive, given that it is classified as positive. Similarly, PTN is interpreted as the
likelihood that the record is actually negative, given that it is classified as negative.
For the trinary case, we have the following evaluation measures, analogously defined
from the binary case:

Proportion of true As =
CountA|A
CountA|Σ

Proportion of true Bs =
CountB|B
CountB|Σ

Proportion of true Cs =
CountC|C
CountC|Σ

For example, the interpretation of the proportion of true As is the likelihood that a
particular record actually belongs to class A, given that it is classified as A. Next we
turn to the proportions of false positives and negatives, defined in the binary case as

Proportion of false positives = FP
FP + TP

Proportion of false negatives = FN
FN + TN

We extend these measures for the trinary case as follows:

Proportion of false As = 1 − proportion of true As =
CountA|B + CountA|C

CountA|Σ
Proportion of false Bs = 1 − proportion of true Bs =

CountB|A + CountB|C
CountB|Σ

Proportion of false Cs = 1 − proportion of true Cs =
CountC|A + CountC|B

CountC|Σ
Finally, we have accuracy and the overall error rate, defined as follows:

Accuracy =
∑

i=jCounti| j

N
=

CountA|A + CountB|B + CountC|C
N

Overall error rate = 1 − accuracy =
∑

j

∑
i≠jCounti| j

N

=
(CountA|B + CountA|C + CountB|A + CountB|C + CountC|A + CountC|B)

N

17.2 APPLICATION OF EVALUATION MEASURES FOR
TRINARY CLASSIFICATION TO THE LOAN APPROVAL
PROBLEM

For the trinary target variable approval, there are nine combinations of pre-
dicted/actual categories as shown in Table 17.3.
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TABLE 17.3 Definition and notation for the nine possible loan decision combinations

Decision Predicted Actual

D|D DecisionD|D Denied Denied

AH|AH DecisionAH|AH Approved half Approved half

AW|AW DecisionAW|AW Approved whole Approved whole

D|AH DecisionD|AH Denied Approved half

D|AW DecisionD|AW Denied Approved whole

AH|D DecisionAH|D Approved half Denied

AH|AW DecisionAH|AW Approved half Approved whole

AW|D DecisionAW|D Approved whole Denied

AW|AH DecisionAW|AH Approved whole Approved half

Table 17.4 presents the contingency table for a classification and regression
trees (CART) model without misclassification costs applied to the Loans3_training
data set and evaluated on the Loans3_test data set. Note that the Loans3 data sets are
similar to the Loans data sets except for record distribution between the two data sets,
and the change from a binary target to a trinary target. We denote the marginal totals
as follows. Let the total number of records predicted to be denied as

TABLE 17.4 Contingency table of CART model without misclassification costs (“model
1”), evaluated on Loans3_test data set

Predicted Category

Approved Approved

Denied Half Whole Actual Totals

Actual
category

Denied CountD D

14,739
CountAH D

919
CountAW D 29 CountΣ D

15,687

Approved
half

CountD AH

1,098
CountAH AH

11,519
CountAW AH

1,518
CountΣ AH

14,135

Approved
whole

CountD AW 5 CountAH AW

1,169
CountAW AW

18,702
CountΣ AW

19,876

Predicted
totals

CountD Σ
15,842

CountAH Σ
13,607

CountAW Σ
20,249

CountΣ Σ
49,698

CountD|Σ = CountD|D + CountD|AH + CountD|AW

= 14, 701 + 1098 + 5 = 15, 842

Similarly, let the number of customers predicted to be approved for funding at half
the requested loan amount as

CountAH|Σ = CountAH|D + CountAH|AH + CountAH|AW

= 919 + 11, 519 + 1169 = 13, 607
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and let the number of customers predicted to be approved for funding at the whole
requested loan amount as

CountAW|Σ = CountAW|D + CountAW|AH + CountAW|AW

= 29 + 1518 + 18, 702 = 20, 249

Also, let the total number of customers who are actually financially insecure and
should have been denied a loan as

CountΣ|D = CountD|D + CountAH|D + CountAW|D
= 14, 739 + 919 + 29 = 15, 687

Similarly, the number of customers who are actually somewhat financially secure and
should have been approved for a loan at half the requested amount as

CountΣ|AH = CountD|AH + CountAH|AH + CountAW|AH

= 1098 + 11, 519 + 1518 = 14, 135

and let the number of customers who are actually quite financially secure and should
have been approved for a loan at the whole requested amount as

CountΣ|AW = CountD|AW + CountAH|AW + CountAW|AW

= 5 + 1169 + 18, 702 = 19, 876

Let the grand total N = CountΣ|Σ = 49, 698 represent the sum of all the cells in the
contingency table.

We are interested in evaluating our contingency tables using the trinary classi-
fication evaluation measures developed earlier. These are adapted to the trinary loan
classification problem as follows:

D-sensitivity =
CountD|D
Count Σ|D = 14, 739

15, 687
= 0.94

AH-sensitivity =
CountAH|AH

CountΣ|AH
= 11, 519

14, 135
= 0.81

AW-sensitivity =
CountAW|AW

CountΣ|AW
= 18, 702

19, 876
= 0.94

For example, D-sensitivity is the ratio of the number of applicants correctly denied
a loan to the total number of applicants who were denied a loan. This is interpreted
as the probability that an applicant is correctly classified as Denied, given that the
applicant actually belongs to the denied class. The CART model is less sensitive
to the presence of approved half applicants than the other classes. For example,
AH-sensitivity= 0.81 indicates that the ratio of the number of applicants correctly
denied a loan to the total number of applicants who were denied a loan. In other
words, the probability is 0.81 that an applicant is correctly classified as approved
half, given that the applicant actually belongs to the approved half class.



17.2 APPLICATION OF EVALUATION MEASURES FOR TRINARY CLASSIFICATION 497

Next, we have the following:

False D rate = 1 − D-sensitivity

=
CountAH|D + CountAW|D

Count Σ|D = 919 + 29
15, 687

= 0.06

False AH rate = 1 − AH-sensitivity

=
CountD|AH + CountAW|AH

Count Σ|AH
= 1098 + 1518

14, 135
= 0.19

False AW rate = 1 − AW-sensitivity

=
CountD|AW + CountAH|AW

Count Σ|AW
= 5 + 1169

19, 876
= 0.06

For example, as the complement of D-sensitivity, the false D rate is interpreted as
the probability that an applicant is not classified as denied, even though the applicant
actually belongs to the denied class. In this case, this probability is 0.06. Note that
the false AH rate is three times that of the other rates, indicating that we can be less
confident in the classifications our model makes of the approved half category.

For the three classes, the proportions of true classifications are specified as
follows:

Proportion of true Ds =
Count D|D
Count D|Σ = 14, 739

15, 842
= 0.93

Proportion of true AHs =
Count AH|AH

Count AH|Σ = 11, 519
13, 607

= 0.85

Proportion of true AWs =
Count AW|AW

Count AW|Σ = 18, 702
20, 249

= 0.92

For example, if a particular applicant is classified as denied, then the probability that
this customer actually belongs to the denied class is 0.93. This is higher than the
analogous measures for the other classes, especially AH.

Next, we find the additive inverses of these measures as follows:

Proportion of false Ds = 1 − proportion of true Ds

=
CountD|AH + CountD|AW

Count D|Σ = 1098 + 5
15, 842

= 0.07

Proportion of false AHs = 1 − proportion of true AHs

=
CountAH|D + CountAH|AW

Count AH|Σ = 919 + 1169
13, 607

= 0.15

Proportion of false AWs = 1 − proportion of true AWs

=
CountAW|D + CountAW|AH

Count AW|Σ = 29 + 1518
20, 249

= 0.08
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For instance, if an applicant is classified as approved half, there is a 15% chance that
the applicant actually belongs to a different class.

Finally, the accuracy is given as follows:

Accuracy =
∑

i=jCounti|j
N

=
CountD|D + CountAH|AH + CountAW|AW

N

= 14, 739 + 11, 519 + 18, 702
49, 698

= 0.90

and the overall error rate is as follows:

Overall error rate

= 1 − accuracy =
∑

i≠jCounti|j
N

=

CountD|AH + CountD|AW + CountAH|D + CountAH|AW
+CountAW|D + CountAW|AH

N

= 1098 + 5 + 919 + 1169 + 29 + 1518
49, 698

= 0.10

That is, across all classes, our model classifies 90% of the applicants correctly, and
misclassifies only 10% of all applicants.

17.3 DATA-DRIVEN COST-BENEFIT ANALYSIS FOR
TRINARY LOAN CLASSIFICATION PROBLEM

To conduct a data-driven cost-benefit analysis, we look to the data to tell us what the
costs and benefits of the various decisions will be.

• Principal. Using the Loans3_training data set, we find that the mean amount
requested is $13,427.

∘ Thus, for loans approved for the entire amount, the loan principal will be
modeled as $13,427.

∘ For loans approved for only half the amount, the loan principal will be set as
half of $13,427, which is $6713.50.

• Interest. From the Loans3_training data set, the mean amount of loan interest
is $6042.

∘ Thus, for loans approved for the whole amount, the loan interest is set to
$6042.

∘ For loans approved for only half the amount, the loan interest is modeled as
half of $6042; that is, $3021.

• Simplifying Assumptions. For simplicity, we make the following assump-
tions:

∘ The only costs and gains that we model are principal and interest. Other types
of costs such as clerical costs are ignored.
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∘ If a customer defaults on a loan, the default is assumed to occur essentially
immediately, so that no interest is accrued to the bank from such loans.

On the basis of these data-driven specifications and simplifying assumptions,
we proceed to calculate the costs as follows.

• DecisionD|D: Correctly predict that an applicant should be denied. This rep-
resents an applicant who would not have been able to repay the loan (i.e.,
defaulted) being correctly classified for non-approval. The direct cost incurred
for this applicant is zero. As no loan was proffered, there could be neither inter-
est incurred nor any default made. Thus, the cost is $0.

• DecisionAH|D: Predict loan approval at half the requested amount, when
the applicant should have been denied the loan. The customer will default
immediately, so that the bank receives no interest. Plus the bank will lose the
entire amount loaned, which equals on average $6713.50, or half the average
requested amount in the data set. Thus, the cost for this error is $6713.50.

• DecisionAW|D: Predict loan approval at the whole requested amount, when the
applicant should have been denied the loan. This is the most expensive error
the bank can make. On average, the bank will lose $13,427, or the average loan
request amount, for each of these errors, so the cost is $13,427.

• DecisionD|AH: Predict loan denial when the applicant should have been
approved for half the requested loan amount. As no loan was proffered, there
could be neither interest incurred nor any default made. Thus, the cost is $0.

• DecisionAH|AH: Correctly predict than an applicant should be approved for
funding half of the requested loan amount. This represents an applicant who
would reliably repay the loan at half the requested amount being correctly clas-
sified for loan approval at this level. The bank stands to make $3021 (half the
mean amount of loan interest) from customers such as this. So the cost for this
applicant −$3021.

• DecisionAW|AH: Predict loan approval at the whole requested amount, when
the applicant should have been approved at only half the requested amount.
The assumption is that the applicant will pay off half the loan, the bank will
receive the interest for half of the loan (cost=−$3021), and then the applicant
will immediately default for the remainder of the loan (cost= $6713.50). Thus,
the cost of this error is $3692.50 ($6713.50− $3021).

• DecisionD|AW: Predict loan denial when the applicant should have been
approved for the whole loan amount. Again, no loan was proffered, so the cost
is $0.

• DecisionAH|AW: Predict loan approval at half the requested amount, when the
applicant should have been approved for the entire requested loan amount. This
financially secure customer will presumably be able to pay off this smaller loan,
so that the bank will earn $3021 (half the mean amount of loan interest from
the data set). Thus, the cost is −$3021.

• DecisionAW|AW: Correctly predict than an applicant should be approved for
funding the whole requested loan amount. This represents an applicant who
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would reliably repay the entire loan being correctly classified for loan approval
at this level. The bank stands to make $6042 (the mean amount of loan interest)
from customers such as this. So the cost for this applicant −$6042.

We assemble these costs into the cost matrix shown in Table 17.5.

TABLE 17.5 Cost matrix for the trinary loan classification problem. Use this matrix form
for calculating the total cost of the model

Predicted Category

Denied Approved Half Approved Whole

Actual
category

Denied CostD D = $0 CostAH D = $6713.50 CostAW D = $13, 427

Approved
half

CostD AH = $0 CostAH AH = −$3021 CostAW AH = $3692.50

Approved
whole

CostD AW = $0 CostAH AW = −$3021 CostAW AW = −$6042

17.4 COMPARING CART MODELS WITH AND
WITHOUT DATA-DRIVEN MISCLASSIFICATION COSTS

Let us see what the effects are of using the data-driven misclassification costs for
our CART model. We would like the diagonal elements of the total cost matrix to
contain zeroes, because software such as IBM SPSS Modeler requires such a structure
when setting the misclassification costs. By decision invariance under cost matrix row
adjustment (Chapter 16), a classification decision is not changed by the addition or
subtraction of a constant from the cells in the same row of a cost matrix. Thus, we
can obtain our desired cost matrix with zeroes on the diagonal by

1. not altering the first row;

2. adding $3021 to each cell in the second row;

3. adding $6042 to each cell in the third row.

We then obtain the direct cost matrix with zeroes on the diagonal as shown in
Table 17.6. For simplicity and perspective, the costs in Table 17.6 were scaled by the
minimum nonzero entry $3021, giving us the scaled cost matrix in Table 17.7. The
scaled costs in Table 17.7 were then used as the software misclassification costs to
construct a CART model for predicting loan approval, based on the Loans3_training
data set. The resulting contingency table obtained by evaluating this model with the
Loans3_test data set is provided in Table 17.8.

Table 17.9 contains a comparison of the classification evaluation measures we
have examined in this chapter for the two models. (Calculations for the model with
misclassification costs are not shown, to save space.) Denote the model without mis-
classification costs as model 1 and the model with misclassification costs as model
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TABLE 17.6 Cost matrix with zeroes on the diagonal

Predicted Category

Denied Approved Half Approved Whole

Actual
category

Denied CostD D = $0 CostAH D = $6713.50 CostAW D = $13, 427

Approved
half

CostD AH = $3021 CostAH AH = $0 CostAW AH = $6713.50

Approved
whole

CostD AW = $6042 CostAH AW = $3021 CostAW AW = $0

TABLE 17.7 Scaled cost matrix

Predicted Category

Denied Approved Half Approved Whole

Actual category Denied 0 2.222277 4.444555

Approved half 1 0 2.222277

Approved whole 2 1 0

TABLE 17.8 Contingency table of CART model with misclassification costs (“model 2”)

Predicted Category

Approved Approved

Denied Half Whole Actual Totals

Actual
category

Denied CountD D

14,739
CountAH D

948
CountAW D 0 CountΣ D

15,687

Approved
half

CountD AH

1,098
CountAH AH

12,616
CountAW AH

421
CountΣ AH

14,135

Approved
whole

CountD AW 5 CountAH AW

2,965
CountAW AW

16,906
CountΣ AW

19,876

Predicted
totals

CountD Σ
15,842

CountAH Σ
16,529

CountAW Σ
17,327

CountΣ Σ
49,698

2. Note that the measures within a cell sum to 1, indicating that the measures are
additive inverses. For each metric, the better performing model is indicated in bold.

We may observe the following points of interest from the comparison provided
in Table 17.9.

• Interestingly, the counts in the leftmost column of the contingency table for
both models are the same, indicating that there is no difference in the models
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TABLE 17.9 Comparison of evaluation measures for CART models with and without
misclassification costs (better performance highlighted)

Evaluation Measure CART Model

Model 1: Without Model 2: With

Misclassification Costs Misclassification Costs

D-sensitivity 0.94 0.94

False D rate 0.06 0.06

AH-sensitivity 0.81 0.89
False AH rate 0.19 0.11
AW-sensitivity 0.94 0.85

False AW rate 0.06 0.15

Proportion of true Ds 0.93 0.93

Proportion of false Ds 0.07 0.07

Proportion of true AHs 0.85 0.77

Proportion of false AHs 0.15 0.23

Proportion of true AWs 0.92 0.98
Proportion of false AWs 0.08 0.02
Accuracy 0.90 0.89

Overall error rate 0.10 0.11

with respect to predicting the denied category. This is supported by the exact
same values for proportion of true Ds and proportion of false Ds. (The values
for D-sensitivity and false D rate are similar, but not exactly the same, apart
from rounding.)

• The AH-sensitivity of model 2 is superior, because it makes fewer errors of the
form DecisionAW|AH. This is presumably because of the misclassification cost
associated with this decision.

• The AW-sensitivity of model 1 is superior, because it makes fewer errors of the
form DecisionAH|AW. One may speculate that this is because the generally high
misclassification costs associated with classifying an applicant as approved
whole have tended to make our model shy about making such a classification,
thereby pushing some AW|AW decisions into the AH|AW cell.

• The proportion of true AHs of model 1 is superior, again because it makes
fewer errors of the form DecisionAH|AW, and perhaps for the same reason as
mentioned above.

• The proportion of true AWs of model 2 is superior, because model 2 makes
fewer errors of the form DecisionAW|AH and of the form DecisionAW|D.

• The accuracy and overall error rate of model 1 is slightly better. Does this mean
that model 1 is superior overall?

When the business or research problem calls for misclassification costs, then
the best metric for comparing the performance of two or models is overall cost of
the model. Using the cost matrix from Table 17.5, we find the overall cost of model
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1 (from Table 17.4) to be −$139, 163, 628, for a per-applicant profit of $2800.19.
The overall cost for model 1 (from Table 17.8) is −$141, 138, 534, with a profit of
$2839.92 per applicant.

Thus, the estimated revenue increase from using model 2 rather than model 1
is given as follows:

Revenue increase = $141, 138, 534 − $139, 163, 628 = $1, 974, 906

Thus, model 2 is superior, in the way that counts the most, on the bottom line. In fact,
simply by applying data-driven misclassification costs to our CART model, we have
enhanced our estimated revenue by nearly $2 million. Now, that should be enough to
earn the hardworking data analyst a nice holiday bonus.

17.5 CLASSIFICATION EVALUATION MEASURES FOR A
GENERIC k-NARY TARGET

For the classification problem with a generic k-nary target variable taking values
A1,A2, … ,Ak, there are k2 possible combinations of predicted/actual categories, as
shown in Table 17.10.

The contingency table for this generic k-nary problem is shown in Table 17.11.
The marginal totals are defined analogously to the trinary case, and again we

let the grand total N = CountΣ|Σ represent the sum of all the cells in the contingency
table.

Next, we define classification evaluation measures for the k-nary case, extend-
ing the trinary case. For the ith class, we define sensitivity as follows:

Ai-sensitivity =
CountAi|Ai

CountΣ|Ai

, i = 1, 2, … , k

TABLE 17.10 The k2 possible decision combinations, generic k-nary
variable

Decision Predicted Actual

A1|A1 DecisionA1|A1
A1 A1

A1|A2 DecisionA1|A2
A1 A2

⋮ ⋮ ⋮ ⋮
A1|Ak DecisionA1|Ak

A1 Ak

A2|A1 DecisionA2|A1
A2 A1

⋮ ⋮ ⋮ ⋮
A2|Ak DecisionA2|Ak

A2 Ak

⋮ ⋮ ⋮ ⋮
Ak|A1 DecisionAk |A1

Ak A1

⋮ ⋮ ⋮ ⋮
Ak|Ak DecisionAk |Ak

Ak Ak
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TABLE 17.11 Contingency table for generic k-nary problem

Predicted Category

A1 A2 · · · Ak Actual totals

Actual category A1 CountA1 A1
CountA2 A1

· · · CountAk A1
CountΣ A1

A2 CountA1 A2
CountA2 A2

· · · CountAk A2
CountΣ A2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
Ak CountA1 Ak

CountA2 Ak
· · · CountAk Ak

CountΣ Ak

Predicted totals CountA1 Σ CountA2 Σ · · · CountAk Σ CountΣ Σ

Here Ai-sensitivity is the ratio of correctly predicted Ai-records to the total number
of Ai-records. It is interpreted as the probability that a record is correctly classified
Ai, given that the record actually belongs to the Ai class. Next, the false Ai rate is
given by the following equation:

False Ai rate = 1 − Ai-sensitivity =

∑
i≠jCountAj|Ai

Count Σ|Ai

The false Ai rate is interpreted as the ratio of incorrectly classified Ai-records to the
total number of Ai-records. Next, we have

Proportion of true Ais =
Count Ai|Ai

Count Ai|Σ
and

Proportion of false A′
is = 1 − proportion of true A′

is =

∑
j≠iCountAi|Aj

Count Ai|Σ
Finally, the accuracy and the overall error rate are defined as

Accuracy =
∑

i=jCounti|j
N

Overall error rate =
∑

i≠jCounti|j
N

17.6 EXAMPLE OF EVALUATION MEASURES AND
DATA-DRIVEN MISCLASSIFICATION COSTS FOR k-NARY
CLASSIFICATION

The Loans4_training and Loans4_test data sets are used to illustrate classification
evaluation measures for a target with four classes. Note that the Loans4 data sets
are similar to the Loans data sets except for record distribution between the two
data sets, and the change from a binary target to a quaternary (k-nary with k= 4)
target. In this case, the target classes are denied, approved 1/3, approved 2/3, and
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approved whole. Approved 1/3 (denoted as A1 below) indicates that the applicant was
approved for only one-third of the loan request amount, and Approved 2/3 (denoted
A2) indicates approval of two-thirds of the request amount. A CART model was
trained on the Loans4_training data set without misclassification costs, and fit to the
data in the Loans4_test data set, with the resulting contingency table provided in
Table 17.12.

TABLE 17.12 Contingency table of CART model without misclassification costs, for the
Loans4 target with four classes

Predicted Category

Approved Approved Approved

Denied 1/3 2/3 Whole Actual Totals

Actual
category

Denied CountD D

12,095
CountA1 D

1,018
CountA2 D 6 CountAW D 0 CountΣ D

13,119

Approved
1/3

CountD A1

763
CountA1 A1

7,697
CountA2 A1

1,152
CountAW A1

13
CountΣ A1

9,625

Approved
2/3

CountD A2 3 CountA1 A2

1,708
CountA2 A2

8,242
CountAW A2

1,675
CountΣ A2

11,628

Approved
whole

CountD AW 0 CountA1 AW

158
CountA2 AW

1,072
CountAW AW

14,096
CountΣ AW

15,326

Predicted
totals

CountD Σ
12,861

CountA1 Σ
10,581

CountA2 Σ
10,472

CountAW Σ
15,784

CountΣ Σ
49,698

Again, to conduct a data-driven cost-benefit analysis, we look to the data to tell
us what the costs and benefits of the various decisions will be. The mean amount of the
principal for the training set is still $13,427, so that loans approved for only one-third
or two-thirds of the full amount will have principal set as $13, 427∕3 = $4475.67
and 2 ⋅ $13, 427∕3 = $8951.33, respectively. The mean amount of interest for
the training set is still $6042, so that loans approved for only one-third or
two-thirds of the whole amount will have interest set as $6042∕3 = $2014 and
2 ⋅ $6042∕3 = $4028, respectively. The assumptions are the same as for the trinary
case.

The cost matrix for this quaternary classification framework is given in
Table 17.13. The reader is asked to justify these costs in the exercises. Here is a
sample justification for the direct costs for DecisionAW|A2.

• DecisionAW|A𝟐: Predict loan approval at the whole requested amount, when the
applicant should have been approved at only two-thirds the requested amount.
The assumption is that the applicant will pay off two-thirds of the loan, the
bank will receive the interest for two-thirds of the loan (Cost=−$4028),
and then the applicant will immediately default for the remainder of the loan
(Cost= $4475.67). Thus, the cost of this error is $447.67 ($4475.67− $4028).

In the exercises, the reader is asked to adjust the cost matrix into a form
amenable to software analysis.
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TABLE 17.13 Cost matrix for quaternary classification framework

Predicted Category

Approved

Denied Approved 1/3 Approved 2/3 Whole

Actual
category

Denied CostD D $0 CostA1 D

$4475.67
CostA2 D

$8951.33
CostAW D

$13, 427

Approved 1/3 CostD A1 $0 CostA1 A1

−$2014
CostA2 A1

$2461.67
CostAW A1

$6937.33

Approved 2/3 CostD A2 $0 CostA1 A2

−$2014
CostA2 A2

−$4028
CostAW A2

$447.67

Approved
whole

CostD AW $0 CostA1 AW

−$2014
CostA2 AW

−$4028
CostAW AW

−$6042

Misclassification costs supplied by the adjusted cost matrix from Table 17.13
(and constructed in the exercises) were applied to a CART model, with the resulting
contingency table shown in Table 17.14.

TABLE 17.14 Contingency table of CART model with misclassification costs, for the
Loans4 target with four classes

Predicted Category

Approved Approved Approved

Denied 1/3 2/3 Whole Actual Totals

Actual
category

Denied CountD D

12,044
CountA1 D

1,073
CountA2 D 2 CountAW D 0 CountΣ D

13,119

Approved
1/3

CountD A1

729
CountA1 A1

7,737
CountA2 A1

1,158
CountAW A1

1
CountΣ A1

9,625

Approved
2/3

CountD A2 3 CountA1 A2

1,372
CountA2 A2

9,664
CountAW A2

589
CountΣ A2

11,628

Approved
whole

CountD AW 1 CountA1 AW

110
CountA2 AW

1,922
CountAW AW

13,293
CountΣ AW

15,326

Predicted
totals

CountD Σ
12,777

CountA1 Σ
10,292

CountA2 Σ
12,746

CountAW Σ
13,883

CountΣ Σ
49,698

Table 17.15 contains a comparison of the classification evaluation measures
for the models with and without misclassification costs. Denote the model without
misclassification costs as model 3 and the model with misclassification costs as model
4. For each metric, the better performing model is indicated in bold. The evaluation
metrics are mixed, with some metrics favoring each model. However, for the most
important metric, that of total model cost, model 4 is superior.

The overall cost of model 3 is −$133, 658, 890, with a per-applicant cost of
−$2689, while the overall cost of model 4 is −$137, 610, 255, with a per-applicant
cost of −$2769. The increase in revenue per applicant from using misclassification
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TABLE 17.15 Comparison of evaluation measures for quaternary CART models with and
without misclassification costs (better performance highlighted)

Evaluation Measure CART Model

Model 3: Without Model 4: With

Misclassification Misclassification

Costs Costs

D-sensitivity 0.92 0.91

False D rate 0.08 0.09

A1-sensitivity 0.80 0.84
False A1 rate 0.20 0.16
A2-sensitivity 0.83 0.77

False AW rate 0.17 0.23

AW-sensitivity 0.87 0.92
False AW rate 0.13 0.08
Proportion of true Ds 0.94 0.96
Proportion of false Ds 0.06 0.04
Proportion of true A1s 0.75 0.74

Proportion of false A1s 0.25 0.26

Proportion of true A2s 0.76 0.81
Proportion of false A2s 0.24 0.19
Proportion of true AW’s 0.96 0.92

Proportion of false AWs 0.04 0.08

Accuracy 0.86 0.87
Overall error rate 0.14 0.13

costs is $80, with a total revenue increase of

Revenue increase = $137, 610, 255 − $133, 658, 890 = $3, 951, 365

Thus, the model constructed using data-driven misclassification costs increases the
bank’s revenue by nearly $4 million. However, the trinary models (models 1 and 2)
outperformed the quaternary models (models 3 and 4) in terms of overall cost.

THE R ZONE
# Load the required package and the data

library(rpart)
train3 <− read.csv(file="C:/… /Loans3_training.txt",

header = TRUE)
test3 <− read.csv(file="C:/… /Loans3_test.txt",

header = TRUE)
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# Run the model

cart3 <− rpart(Approval3 ̃ Debt.to.Income.Ratio_z+ FICO.Score_z+Request.Amount_z,
data = train3,
method = "class")

# Evaluate the model

pred3.class <− predict(object=cart3, newdata=test3[,3:5], type="class")
pred3.prob <− predict(object=cart3, newdata=test3[,3:5], type="prob")
c.table <− t(table(pred3.class, test3[,7]))
c.table[1,1]/sum(c.table[1,]) # D-sensitivity
# And so on

R REFERENCES

Therneau T, Atkinson B, Ripley B. 2013. rpart: Recursive partitioning. R package version
4.1-3. http://CRAN.R-project.org/package=rpart.

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Aus-
tria: R Foundation for Statistical Computing; 2012. ISBN: 3-900051-07-0, http://www.
R-project.org/.

EXERCISES

CLARIFYING THE CONCEPTS

1. Explain why the true positive/false positive/true negative/false negative usage is not appli-
cable to classification models with trinary targets.

2. Explain the Σ notation used in the notation in this chapter, for the marginal totals and the
grand total of the contingency tables.

3. Explain why we do not use a specificity measure for a trinary classification problem.

4. What is the relationship between false A rate and A-sensitivity?

5. How are A-sensitivity and false A rate interpreted?

6. Why do we avoid the term positive predictive value in this book?

7. What is the relationship between the proportion of true As and the proportion of false As?

8. Interpret the proportion of true As and the proportion of false As.

9. Use the term “diagonal elements of the contingency table” to define (i) accuracy and (ii)
overall error rate.

http://CRAN.R-project.org/package=rpart
http://www
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10. Express in your own words how we interpret the following measures:

a. D-sensitivity, where D represents the denied class in the Loans problem

b. False D rate

c. Proportion of true Ds

d. Proportion of false Ds.

11. Explain how we determine the principal and interest amounts for the Loans problem.

12. Why do we adjust our cost matrix so that there are zeroes on the diagonal?

13. Which cost matrix should we use when comparing models?

14. When misclassification costs are involved, what is the best metric for comparing model
performance?

WORKING WITH THE DATA

15. Provide justifications for each of the direct costs given in Table 17.5.

16. Adjust Table 17.13 so that there are zeroes on the diagonal and the matrix is scaled, sim-
ilarly to Table 17.7.

17. Using the results in Tables 17.12 and 17.14, confirm the values for the evaluation measures
in Table 17.15.

HANDS-ON ANALYSIS

18. On your own, recapitulate the trinary classification analysis undertaken in this chapter
using the Loans3 data sets. (Note that the results may differ slightly due to different set-
tings in the CART models.) Report all salient results, including a summary table, similarly
to Table 17.9.

19. On your own, recapitulate the trinary classification analysis undertaken in this chapter
using the Loans4 data sets. (Note that the results may differ slightly due to different set-
tings in the CART models.) Report all salient results, including a summary table, similarly
to Table 17.15.



C H A P T E R 18
GRAPHICAL EVALUATION OF
CLASSIFICATION MODELS

18.1 REVIEW OF LIFT CHARTS AND GAINS CHARTS

In Chapter 15, we learned about lift charts and gains charts. Recall that lift is defined

as the proportion of positive hits in the set of the model’s positive classifications,

divided by the proportion of positive hits in the data set overall:

Lift =
Proportion of positive hits in set of positive classifications

Proportion of positive hits in data set as a whole

where a hit is defined as a positive response that was predicted to be positive. To con-

struct a lift chart, the software sorts the records by propensity to respond positively,

and then calculates the lift at each percentile. For example, a lift value of 2.0 at the

20th percentile means that the 20% of records that contain the most likely responders

have twice as many responders as a similarly sized random sample of records. Gains

charts represent the cumulative form of lift charts. For more on lift charts and gains

charts, see Chapter 15.

18.2 LIFT CHARTS AND GAINS CHARTS USING
MISCLASSIFICATION COSTS

Lift charts and gains charts may be used in the presence of misclassification costs.

This works because the software ranks the records by propensity to respond, and the

misclassification costs directly affect the propensity to respond for a given classi-

fication model. Recall the Loans data set, where a bank would like to predict loan

approval for a training data set of about 150,000 loan applicants, based on the predic-

tors debt-to-income ratio, FICO score, and request amount. In Chapter 16, we found

the data-driven misclassification costs to be as shown in the cost matrix in Table 18.1.

For illustration, classification and regression tree (CART) models were devel-

oped with and without these misclassification costs, and the resulting comparison lift

chart is shown in Figure 18.1. The lift for the model with misclassification costs is

shown to be superior to that of the model without misclassification costs, until about

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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TABLE 18.1 Cost matrix for the bank loan example

Predicted Category

10

Actual category
0 CostTN = −$13, 427 CostFP = $13, 427

1 CostFN = $6042 CostTP = −$6042

0

1.0

1.2

1.4

1.6

L
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Approval = "T"

No misclass costs
Misclass costs

Figure 18.1 Model accounting for misclassification costs has greater lift than model without

misclassification costs.

the 60th percentile. This reflects the superiority of the model with misclassification

costs. This superiority is also reflected when accounting for cumulative lift, that is,

in the gains chart shown in Figure 18.2.

18.3 RESPONSE CHARTS

Response charts are almost identical to lift charts, with the only difference being the

vertical axis. Instead of measuring lift, the vertical axis indicates the proportion of

positive hits in the given quantile (Figure 18.3). For example, at the 40th percentile,

84.8% of the most likely responder records for the model with misclassification costs

are positive hits, compared to 78.1% of the most likely responder records for the

model without misclassification costs. The analyst may choose when to use a lift

chart or a response chart, based on the needs or quantitative sophistication of the

client.
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Figure 18.2 Model accounting for misclassification costs shows greater gains than model

without misclassification costs, up to the 60th percentile.
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Figure 18.3 Response chart is same as lift chart, except for the vertical axis.

18.4 PROFITS CHARTS

Thus far, the model evaluation charts have dealt with positive hits, as measured by

lift, gains, and response proportion. However, clients may be interested in a graphical

display of the profitability of the candidate models, in order to better communicate
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within the corporation in terms that manager best understands: money. In such a case,

the analyst may turn to profits charts or return-on-investment (ROI) charts.
Let profits be defined as follows:

Profits = Revenue − Costs

To construct a profits chart in modeler, the analyst must specify the cost or revenue

for each cell in the cost matrix. Figures 18.4 and 18.5 show how this may be done for

the Loans data set, using derive nodes, and in Figure 18.6, using the evaluation node.

Figure 18.4 Specifying the cost of a false positive ($13,427) and a false negative ($6042) for

the profits chart.

A profits chart expresses the cumulative profits that a company can expect, as

we scan from the most likely hits to the less likely hits. A good profits chart increases

to a peak near the center, and thereafter decreases. This peak is an important point,

for it represents the point of maximum profitability.

For example, consider Figure 18.7, the profits chart for the Loans data set. For

the model with misclassification costs, profits rise fairly steeply as the model makes

its way through the most likely hits, and maxes out at the 44th percentile, with an

estimated profit of $66,550,919. For the model without misclassification costs, prof-

its rise less steeply, and do not max out until the 61st percentile, with an estimated

profit of $53,583,427 (not shown). Thus, not only does the model with misclassi-

fication costs produce an extra $13 million, this increased profit is realized from

processing only the top 44% of applicants, thereby saving the bank’s further time and

expense.
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Figure 18.5 Specifying the revenue of a true positive ($6042) and a true negative ($13,427)

for the profits chart.

18.5 RETURN ON INVESTMENT (ROI) CHARTS

Like profits charts, ROI plots involve revenues and costs. For each quantile, ROI is

defined as follows:

ROI = Return on investment = Profits

Costs
× 100% = Revenue − Costs

Costs
× 100%

That is, ROI is the ratio of profits to costs, expressed as a percentage.

The ROI chart for the bank loans data set is shown in Figure 18.8. The model

without misclassification costs shows ROI of about 60% through the 60th percentile,

which indicates what would normally be a fairly respectable ROI. However, the model

with misclassification costs provides a very strong 150% ROI through the 60th per-

centile, two-and-a-half times greater than the model without misclassification costs.

Note that all of these graphical evaluations, like all model evaluation tech-

niques, need to be carried out on the test data set, not the training data set. Finally,

although our examples in this chapter have dealt with the misclassification costs/no

misclassification costs dichotomy, combined evaluation charts can also be used to

compare classification models from different algorithms. For example, the profits

from a CART model could be graphically evaluated against those from a C5.0 model,

a neural network model, and a logistic regression model.

To summarize, in this chapter we have explored some charts that the analyst

may consider useful for graphically evaluating his or her classification models.
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Figure 18.6 Constructing a profits chart in IBM Modeler, specifying the variable cost and

revenue.
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Figure 18.7 Profits chart for the Loans data set. Profits are maximized from processing only

44% of the applicants.
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Figure 18.8 Return on investment (ROI) chart shows that the model with misclassification

costs provides a very strong 150% ROI through the 60th percentile.

THE R ZONE

# Load and prepare the data, and load the required packages

loan.train <− read.csv(file="C:/… /Loans_Training.csv",

header = TRUE)

choose <− sample(dim(loan.train)[1], size = 1000)

train <− loan.train[choose,-5]

library(rpart); library(caret)

train$DtIR.z <− (train$Debt.to.Income.Ratio-

mean(train$Debt.to.Income.Ratio))/sd(train$Debt.to.Income.Ratio)

train$FICOs.z <− (train$FICO.Score - mean(train$FICO.Score))/sd(train$FICO.Score)

train$ReqAmt.z <− (train$Request.Amount-

mean(train$Request.Amount))/sd(train$Request.Amount)

train <− train[,-c(2:4)]

# Run the models, obtain confidence values

costs <− list(loss = matrix(c(−13427, 13427, 6042, −6042), ncol=2, byrow=TRUE))

costs$loss[1,] <− costs$loss[1,]+13427

costs$loss[2,] <− costs$loss[2,]+6042

cart.woCost <− rpart(Approval ̃ DtIR.z+FICOs.z+ReqAmt.z,data = train,

method = "class")

cart.withCost <− rpart(Approval ̃ DtIR.z+FICOs.z+ReqAmt.z,data = train,

method = "class", parms = costs)

conf <− predict(cart.woCost, newdata = train, type = "prob")

conf.cost <− predict(cart.withCost, newdata = train, type = "prob")
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# Make the Lift chart

m <− data.frame(NoCost = conf[,2],

Cost = conf.cost[,2])

our.lift <− lift(as.factor(train[,1]) ̃
NoCost + Cost, data = m)

xyplot(our.lift, plot = "lift",

auto.key = list(columns = 2),

main = "Lift for Models With

and Without Cost")
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# Make the Gains chart

xyplot(our.lift, plot = "gain",

auto.key = list(columns = 2),

main = "Gain for Models With

and Without Cost")
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EXERCISES

1. What would it mean for a model to have a lift of 2.5 at the 15th percentile?

2. If lift and gains measure the proportion of hits, regardless of the cost matrix, why can we

use lift charts and gains charts in the presence of misclassification costs?

3. What is the relationship between a lift chart and a gains chart?

4. What is a response chart? Which other chart is it similar to?

5. Which charts can the analyst use to graphically evaluate the classification models in terms

of costs and revenues?

6. Describe what a good profits chart might look like.

7. What is ROI?

8. Should these charts be carried out on the training data set or the test data set? Why?

HANDS-ON EXERCISES

For Exercises 9–14, provide graphical evaluations of a set of classification models for the

Loans data set. Do not include interest as a predictor. Make sure to develop the charts using

the test data set.

9. Using the Loans_training data set, construct a CART model and a C5.0 model for pre-

dicting loan approval.

10. Construct a single lift chart for evaluating the two models. Interpret the chart. Which

model does better? Is one model uniformly better?

11. Construct and interpret a gains chart comparing the two models.

12. Prepare and interpret a response chart comparing the two models. Compare the response

chart to the lift chart.

13. Construct and interpret separate profits charts for the CART model and the C5.0 model.

(Extra credit: Find a way to construct a single profits chart comparing the two models.)

Where is the peak profitability for each model? At what percentile does peak profitability

occur? Which model is preferred, and why?

14. Construct and interpret separate ROI charts for the two models. (Extra credit: Find a way

to construct a single ROI chart comparing the two models.) Which model is preferred,

and why?

For Exercises 15–18 we use rebalancing as a surrogate for misclassification costs, in

order to add neural networks and logistic regression to our candidate models.

15. Neural networks and logistic regression in modeler do not admit explicit misclassification

costs. Therefore undertake rebalancing of the data set as a surrogate for the misclassifica-

tion costs used in this chapter.

16. Using the Loans_training data set, construct a neural networks model and a logistic regres-

sion model for predicting loan approval, using the rebalanced data.
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17. Construct a single lift chart for evaluating the four models: CART, C5.0, neural networks,

and logistic regression. Interpret the chart. Which model does better? Is one model uni-

formly better?

18. Construct and interpret a gains chart comparing the four models.

19. Prepare and interpret a response chart comparing four two models.

20. Construct and interpret separate profits charts for each of the four models. (Extra credit:
Find a way to construct a single profits chart comparing the four models.) Where is the

peak profitability for each model? At what percentile does peak profitability occur? Which

model is preferred, and why?

21. Construct and interpret separate ROI charts for the four models. (Extra credit: Find a way

to construct a single ROI chart comparing the four models.) Which model is preferred,

and why?
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CLUSTERING





C H A P T E R 19
HIERARCHICAL AND k-MEANS
CLUSTERING

19.1 THE CLUSTERING TASK

Clustering refers to the grouping of records, observations, or cases into classes of

similar objects. A cluster is a collection of records that are similar to one another

and dissimilar to records in other clusters. Clustering differs from classification in

that there is no target variable for clustering. The clustering task does not try to clas-

sify, estimate, or predict the value of a target variable. Instead, clustering algorithms

seek to segment the entire data set into relatively homogeneous subgroups or clusters,

where the similarity of the records within the cluster is maximized, and the similarity

to records outside this cluster is minimized.

For example, the Nielsen PRIZM segments, developed by Claritas Inc., repre-

sent demographic profiles of each geographic area in the United States, in terms of

distinct lifestyle types, as defined by zip code. For example, the clusters identified for

zip code 90210, Beverly Hills, California, are as follows:

• Cluster # 01: Upper Crust Estates

• Cluster # 03: Movers and Shakers

• Cluster # 04: Young Digerati

• Cluster # 07: Money and Brains

• Cluster # 16: Bohemian Mix.

The description for Cluster # 01: Upper Crust is “The nation’s most exclusive

address, Upper Crust is the wealthiest lifestyle in America, a haven for empty-nesting

couples between the ages of 45 and 64. No segment has a higher concentration of

residents earning over $100,000 a year and possessing a postgraduate degree. And

none has a more opulent standard of living.”

Examples of clustering tasks in business and research include the following:

• Target marketing of a niche product for a small-capitalization business that does

not have a large marketing budget.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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• For accounting auditing purposes, to segment financial behavior into benign

and suspicious categories.

• As a dimension-reduction tool when a data set has hundreds of attributes.

• For gene expression clustering, where very large quantities of genes may

exhibit similar behavior.

Clustering is often performed as a preliminary step in a data mining process,

with the resulting clusters being used as further inputs into a different technique

downstream, such as neural networks. Owing to the enormous size of many

present-day databases, it is often helpful to apply clustering analysis first, to reduce

the search space for the downstream algorithms. In this chapter, after a brief look at

hierarchical clustering methods, we discuss in detail k-means clustering; in Chapter

20, we examine clustering using Kohonen networks, a structure related to neural

networks.

Cluster analysis encounters many of the same issues that we dealt with in the

chapters on classification. For example, we shall need to determine

• how to measure similarity;

• how to recode categorical variables;

• how to standardize or normalize numerical variables;

• how many clusters we expect to uncover.

For simplicity, in this book, we concentrate on Euclidean distance between

records:

dEuclidean(x, y) =
√∑

i

(xi − yi)2

where x= x1, x2, … , xm, and y= y1, y2, … , ym represent the m attribute values of

two records. Of course, many other metrics exist, such as city-block distance:

dcity-block(x, y) =
∑

i

|xi − yi|
or Minkowski distance, which represents the general case of the foregoing two met-

rics for a general exponent q:

dMinkowski(x, y) =

(∑
i

||xi − yi
||q
)1∕q

For categorical variables, we may again define the “different from” function for com-

paring the ith attribute values of a pair of records:

different(xi, yi) =

{
0 if xi = yi

1 otherwise

where xi and yi are categorical values. We may then substitute different (xi, yi) for the

ith term in the Euclidean distance metric above.

For optimal performance, clustering algorithms, just like algorithms for classi-

fication, require the data to be normalized so that no particular variable or subset of
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variables dominates the analysis. Analysts may use either the min–max normalization
or Z-score standardization, discussed in earlier chapters:

Min − max normalization: X∗ = X − min(X)
Range(X)

Z-score standardization: X∗ = X − mean(X)
SD(X)

All clustering methods have as their goal the identification of groups of records

such that similarity within a group is very high while the similarity to records in other

groups is very low. In other words, as shown in Figure 19.1, clustering algorithms

seek to construct clusters of records such that the between-cluster variation is large

compared to the within-cluster variation. This is somewhat analogous to the concept

behind analysis of variance.

Between-cluster variation:

Within-cluster variation:

Figure 19.1 Clusters should have small within-cluster variation compared to the between–

cluster variation.

19.2 HIERARCHICAL CLUSTERING METHODS

Clustering algorithms are either hierarchical or nonhierarchical. In hierarchical
clustering, a treelike cluster structure (dendrogram) is created through recursive

partitioning (divisive methods) or combining (agglomerative) of existing clusters.

Agglomerative clustering methods initialize each observation to be a tiny cluster of

its own. Then, in succeeding steps, the two closest clusters are aggregated into a

new combined cluster. In this way, the number of clusters in the data set is reduced

by one at each step. Eventually, all records are combined into a single huge cluster.

Divisive clustering methods begin with all the records in one big cluster, with the

most dissimilar records being split off recursively, into a separate cluster, until

each record represents its own cluster. Because most computer programs that apply

hierarchical clustering use agglomerative methods, we focus on those.
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Distance between records is rather straightforward once appropriate recoding

and normalization has taken place. But how do we determine distance between clus-
ters of records? Should we consider two clusters to be close if their nearest neighbors

are close or if their farthest neighbors are close? How about criteria that average out

these extremes?

We examine several criteria for determining distance between arbitrary clusters

A and B:

• Single linkage, sometimes termed the nearest-neighbor approach, is based on

the minimum distance between any record in cluster A and any record in cluster

B. In other words, cluster similarity is based on the similarity of the most similar

members from each cluster. Single linkage tends to form long, slender clusters,

which may sometimes lead to heterogeneous records being clustered together.

• Complete linkage, sometimes termed the farthest-neighbor approach, is based

on the maximum distance between any record in cluster A and any record in

cluster B. In other words, cluster similarity is based on the similarity of the

most dissimilar members from each cluster. Complete linkage tends to form

more compact, spherelike clusters.

• Average linkage is designed to reduce the dependence of the cluster-linkage

criterion on extreme values, such as the most similar or dissimilar records. In

average linkage, the criterion is the average distance of all the records in cluster

A from all the records in cluster B. The resulting clusters tend to have approx-

imately equal within-cluster variability.

Let us examine how these linkage methods work, using the following small,
one-dimensional data set:

2 5 9 15 16 18 25 33 33 45

19.3 SINGLE-LINKAGE CLUSTERING

Suppose that we are interested in using single-linkage agglomerative clustering on

this data set. Agglomerative methods start by assigning each record to its own cluster.

Then, single linkage seeks the minimum distance between any records in two clusters.

Figure 19.2 illustrates how this is accomplished for this data set. The minimum cluster

distance is clearly between the single-record clusters where each contains the value

33, for which the distance must be 0 for any valid metric. Thus, these two clusters are

combined into a new cluster of two records, both of value 33, as shown in Figure 19.2.

Note that, after step 1, only nine (n− 1) clusters remain. Next, in step 2, the clusters

containing values 15 and 16 are combined into a new cluster, because their distance

of 1 is the minimum between any two clusters remaining.
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2

2, 5

2, 5, 9 15, 16, 18

15, 16 33, 33

2, 5, 9, 15, 16, 18

2, 5, 9, 15, 16, 18, 25

2, 5, 9, 15, 16, 18, 25, 33, 33

2, 5, 9, 15, 16, 18, 25, 33, 33, 45

5 9 15 16 18 25 33 33 45

Figure 19.2 Single-linkage agglomerative clustering on the sample data set.

Here are the remaining steps:

• Step 3: The cluster containing values 15 and 16 (cluster {15,16}) is combined

with cluster {18}, because the distance between 16 and 18 (the closest records

in each cluster) is 2, the minimum among remaining clusters.

• Step 4: Clusters {2} and {5} are combined.

• Step 5: Cluster {2,5} is combined with cluster {9}, because the distance

between 5 and 9 (the closest records in each cluster) is 4, the minimum among

remaining clusters.

• Step 6: Cluster {2,5,9} is combined with cluster {15,16,18}, because the dis-

tance between 9 and 15 is 6, the minimum among remaining clusters.

• Step 7: Cluster {2,5,9,15,16,18} is combined with cluster {25}, because the

distance between 18 and 25 is 7, the minimum among remaining clusters.

• Step 8: Cluster {2,5,9,15,16,18,25} is combined with cluster {33,33}, because

the distance between 25 and 33 is 8, the minimum among remaining clusters.

• Step 9: Cluster {2,5,9,15,16,18,25,33,33} is combined with cluster {45}. This

last cluster now contains all the records in the data set.

19.4 COMPLETE-LINKAGE CLUSTERING

Next, let us examine whether using the complete-linkage criterion would result in

a different clustering of this sample data set. Complete linkage seeks to minimize

the distance among the records in two clusters that are farthest from each other.

Figure 19.3 illustrates complete-linkage clustering for this data set.
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2

2, 5

2, 5, 9 15, 16, 18 25, 33, 33

25, 33, 33, 45

15, 16 33, 33

2, 5, 9, 15, 16, 18

2, 5, 9, 15, 16, 18, 25, 33, 33, 45

5 9 15 16 18 25 33 33 45

Figure 19.3 Complete-linkage agglomerative clustering on the sample data set.

• Step 1: As each cluster contains a single record only, there is no difference

between single linkage and complete linkage at step 1. The two clusters each

containing 33 are again combined.

• Step 2: Just as for single linkage, the clusters containing values 15 and 16 are

combined into a new cluster. Again, this is because there is no difference in the

two criteria for single-record clusters.

• Step 3: At this point, complete linkage begins to diverge from its predecessor.

In single linkage, cluster {15,16} was at this point combined with cluster {18}.

But complete linkage looks at the farthest neighbors, not the nearest neighbors.

The farthest neighbors for these two clusters are 15 and 18, for a distance of 3.

This is the same distance separating clusters {2} and {5}. The complete-linkage

criterion is silent regarding ties, so we arbitrarily select the first such combina-

tion found, therefore combining the clusters {2} and {5} into a new cluster.

• Step 4: Now cluster {15,16} is combined with cluster {18}.

• Step 5: Cluster {2,5} is combined with cluster {9}, because the complete-

linkage distance is 7, the smallest among remaining clusters.

• Step 6: Cluster {25} is combined with cluster {33,33}, with a complete-linkage

distance of 8.

• Step 7: Cluster {2,5,9} is combined with cluster {15,16,18}, with a

complete-linkage distance of 16.

• Step 8: Cluster {25,33,33} is combined with cluster {45}, with a

complete-linkage distance of 20.

• Step 9: Cluster {2,5,9,15,16,18} is combined with cluster {25,33,33,45}. All

records are now contained in this last large cluster.

Finally, with average linkage, the criterion is the average distance of all the

records in cluster A from all the records in cluster B. As the average of a single

record is the record’s value itself, this method does not differ from the earlier meth-

ods in the early stages, where single-record clusters are being combined. At step 3,

average linkage would be faced with the choice of combining clusters {2} and {5},

or combining the {15,16} cluster with the single-record {18} cluster. The average
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distance between the {15,16} cluster and the {18} cluster is the average of |18− 15|

and |18− 16|, which is 2.5, while the average distance between clusters {2} and {5} is

of course 3. Therefore, average linkage would combine the {15,16} cluster with clus-

ter {18} at this step, followed by combining cluster {2} with cluster {5}. The reader

may verify that the average-linkage criterion leads to the same hierarchical structure

for this example as the complete-linkage criterion. In general, average linkage leads

to clusters more similar in shape to complete linkage than does single linkage.

19.5 k-MEANS CLUSTERING

The k-means clustering algorithm1 is a straightforward and effective algorithm for

finding clusters in data. The algorithm proceeds as follows:

• Step 1: Ask the user how many clusters k the data set should be partitioned into.

• Step 2: Randomly assign k records to be the initial cluster center locations.

• Step 3: For each record, find the nearest cluster center. Thus, in a sense, each

cluster center “owns” a subset of the records, thereby representing a partition

of the data set. We therefore have k clusters, C1, C2, … , Ck.

• Step 4: For each of the k clusters, find the cluster centroid, and update the loca-

tion of each cluster center to the new value of the centroid.

• Step 5: Repeat steps 3–5 until convergence or termination.

The “nearest” criterion in step 3 is usually Euclidean distance, although other

criteria may be applied as well. The cluster centroid in step 4 is found as follows.

Suppose that we have n data points (a1, b1, c1), (a2, b2, c2), … , (an, bn, cn), the

centroid of these points is the center of gravity of these points and is located at point(∑
ai∕n,

∑
bi∕n,

∑
ci∕n,

)
. For example, the points (1,1,1), (1,2,1), (1,3,1), and

(2,1,1) would have centroid(
1 + 1 + 1 + 2

4
,

1 + 2 + 3 + 1

4
,

1 + 1 + 1 + 1

4

)
= (1.25, 1.75, 1.00)

The algorithm terminates when the centroids no longer change. In other words,

the algorithm terminates when for all clusters C1, C2, … , Ck, all the records “owned”

by each cluster center remain in that cluster. Alternatively, the algorithm may termi-

nate when some convergence criterion is met, such as no significant shrinkage in the

mean squared error (MSE):

MSE = SSE

N − k
=

∑k
i=1

∑
p∈Ci

d(p,mi)2

N − k
where SSE represents the sum of squares error, p∈Ci represents each data point in

cluster i, mi represents the centroid (cluster center) of cluster i, N is the total sample

1J. MacQueen, Some methods for classification and analysis of multivariate observations, Proceedings of
the 5th Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, pp. 281–297, University

of California Press, Berkeley, CA, 1967.
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size, and k is the number of clusters. Recall that clustering algorithms seek to con-

struct clusters of records such that the between-cluster variation is large compared

to the within-cluster variation. Because this concept is analogous to the analysis of

variance, we may define a pseudo-F statistic as follows:

Fk−1,N−k =
MSB

MSE
=

SSB∕k − 1

SSE∕N − k

where SSE is defined as above, MSB is the mean square between, and SSB is the sum
of squares between clusters, defined as

SSB =
k∑

i=1

ni ⋅ d(mi,M)2

where ni is the number of records in cluster i, mi is the centroid (cluster center) for

cluster i, and M is the grand mean of all the data.

MSB represents the between-cluster variation and MSE represents the

within-cluster variation. Thus, a “good” cluster would have a large value of the

pseudo-F statistic, representing a situation where the between-cluster variation is

large compared to the within-cluster variation. Hence, as the k-means algorithm

proceeds, and the quality of the clusters increases, we would expect MSB to increase,

MSE to decrease, and F to increase.

19.6 EXAMPLE OF k-MEANS CLUSTERING AT WORK

Let us examine an example of how the k-means algorithm works. Suppose that we

have the eight data points in two-dimensional space shown in Table 19.1 and plotted

in Figure 19.4 and are interested in uncovering k= 2 clusters.

Let us apply the k-means algorithm step by step.

• Step 1: Ask the user how many clusters k the data set should be partitioned into.

We have already indicated that we are interested in k= 2 clusters.

• Step 2: Randomly assign k records to be the initial cluster center locations. For

this example, we assign the cluster centers to be m1 = (1,1) and m2 = (2,1).

• Step 3 (first pass): For each record, find the nearest cluster center. Table 19.2

contains the (rounded) Euclidean distances between each point and each clus-

ter center m1 = (1,1) and m2 = (2,1), along with an indication of which cluster

center the point is nearest to. Therefore, cluster 1 contains points {a,e,g}, and

cluster 2 contains points {b,c,d,f,h}.

• Step 4 (first pass): For each of the k clusters find the cluster centroid and update

the location of each cluster center to the new value of the centroid. The centroid

TABLE 19.1 Data points for k-means example

a b c d e f g h

(1,3) (3,3) (4,3) (5,3) (1,2) (4,2) (1,1) (2,1)



19.6 EXAMPLE OF k-MEANS CLUSTERING AT WORK 531

0
0

1

1

2

2

3

3

4

4

5

5

6

Figure 19.4 How will k-means partition this data into k= 2 clusters?

TABLE 19.2 Finding the nearest cluster center for each record (first pass)

Point Distance from m1 Distance from m2 Cluster Membership

a 2.00 2.24 C1

b 2.83 2.24 C2

c 3.61 2.83 C2

d 4.47 3.61 C2

e 1.00 1.41 C1

f 3.16 2.24 C2

g 0.00 1.00 C1

h 1.00 0.00 C2

for cluster 1 is [(1+ 1+ 1)/3, (3+ 2+ 1)/3]= (1,2). The centroid for cluster 2 is

[(3+ 4+ 5+ 4+ 2)/5, (3+ 3+ 3+ 2+ 1)/5]= (3.6, 2.4). The clusters and cen-

troids (triangles) at the end of the first pass are shown in Figure 19.5. Note

that m1 has moved up to the center of the three points in cluster 1, while m2

has moved up and to the right a considerable distance, to the center of the five

points in cluster 2.

0 1 2 3 4 5 6
0

1

2

3

4

5

Figure 19.5 Clusters and centroids Δ after first pass through k-means algorithm.
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• Step 5: Repeat steps 3 and 4 until convergence or termination. The centroids

have moved, so we go back to step 3 for our second pass through the algorithm.

• Step 3 (second pass): For each record, find the nearest cluster center.

Table 19.3 shows the distances between each point and each updated cluster

center m1 = (1,2) and m2 = (3.6, 2.4), together with the resulting cluster

membership. There has been a shift of a single record (h) from cluster 2 to

cluster 1. The relatively large change in m2 has left record h now closer to m1

than to m2, so that record h now belongs to cluster 1. All other records remain

in the same clusters as previously. Therefore, cluster 1 is {a,e,g,h}, and cluster

2 is {b,c,d,f}.

TABLE 19.3 Finding the nearest cluster center for each record (second pass)

Point Distance from m1 Distance from m2 Cluster Membership

a 1.00 2.67 C1

b 2.24 0.85 C2

c 3.16 0.72 C2

d 4.12 1.52 C2

e 0.00 2.63 C1

f 3.00 0.57 C2

g 1.00 2.95 C1

h 1.41 2.13 C1

• Step 4 (second pass): For each of the k clusters, find the cluster centroid and

update the location of each cluster center to the new value of the centroid.

The new centroid for cluster 1 is [(1+ 1+ 1+ 2)/4, (3+ 2+ 1+ 1)/4]= (1.25,

1.75). The new centroid for cluster 2 is [(3+ 4+ 5+ 4)/4, (3+ 3+ 3+ 2)/4]=
(4, 2.75). The clusters and centroids at the end of the second pass are shown in

Figure 19.6. Centroids m1 and m2 have both moved slightly.

• Step 5: Repeat steps 3 and 4 until convergence or termination. As the centroids

have moved, we once again return to step 3 for our third (and as it turns out,

final) pass through the algorithm.

• Step 3 (third pass): For each record, find the nearest cluster center. Table 19.4

shows the distances between each point and each newly updated cluster center

m1 = (1.25, 1.75) and m2 = (4, 2.75), together with the resulting cluster mem-

bership. Note that no records have shifted cluster membership from the preced-

ing pass.

• Step 4 (third pass): For each of the k clusters, find the cluster centroid and

update the location of each cluster center to the new value of the centroid. As

no records have shifted cluster membership, the cluster centroids therefore also

remain unchanged.

• Step 5: Repeat steps 3 and 4 until convergence or termination. As the centroids

remain unchanged, the algorithm terminates.
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Figure 19.6 Clusters and centroids Δ after second pass through k-means algorithm.

TABLE 19.4 Finding the nearest cluster center for each record (third pass)

Point Distance from m1 Distance from m2 Cluster Membership

a 1.27 3.01 C1

b 2.15 1.03 C2

c 3.02 0.25 C2

d 3.95 1.03 C2

e 0.35 3.09 C1

f 2.76 0.75 C2

g 0.79 3.47 C1

h 1.06 2.66 C1

19.7 BEHAVIOR OF MSB, MSE, AND PSEUDO-F AS THE
k-MEANS ALGORITHM PROCEEDS

Let us observe the behavior of these statistics after step 4 of each pass.

First pass:

• SSB =
k∑

i=1

ni ⋅ d(mi,M)2 =

3 ⋅ d( (1, 2), (2.625, 2.25))2 + 5 ⋅ d( (3.6, 2.4), (2.625, 2.25))2 = 12.975

• MSB = SSB

k − 1
= 12.975

2 − 1
= 12.975

• SSE =
k∑

i=1

∑
p𝜀Ci

d(p,mi)2

= 22 + 2.242 + 2.832 + 3.612 + 12 + 2.242 + 02 + 02 = 36
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• MSE = SSE

N − k
= 36

6
= 6

• F = MSB

MSE
= 12.975

6
= 2.1625

In general, we would expect MSB to increase, MSE to decrease, and F to

increase, and such is the case. The calculations are left as an exercise.

Second pass ∶ MSB = 17.125, MSE = 1.313333, F = 13.03934.

Third pass ∶ MSB = 17.125, MSE = 1.041667, F = 16.44.

These statistics indicate that we have achieved the maximum between-cluster vari-

ation (as measured by MSB), compared to the within-cluster variation (as measured

by MSE).

Note that the k-means algorithm cannot guarantee finding the global maximum

pseudo-F statistic, instead often settling at a local maximum. To improve the prob-

ability of achieving a global minimum, the analyst may consider using a variety of

initial cluster centers. Moore2 suggests (i) placing the first cluster center on a random

data point, and (ii) placing the subsequent cluster centers on points as far away from

previous centers as possible.

One potential problem for applying the k-means algorithm is: Who decides

how many clusters to search for? That is, who decides k? Unless the analyst has a

priori knowledge of the number of underlying clusters; therefore, an “outer loop”

should be added to the algorithm, which cycles through various promising values of

k. Clustering solutions for each value of k can therefore be compared, with the value

of k resulting in the largest F statistic being selected. Alternatively, some clustering

algorithms, such as the BIRCH clustering algorithm, can select the optimal number

of clusters.3

What if some attributes are more relevant than others to the problem for-

mulation? As cluster membership is determined by distance, we may apply the

same axis-stretching methods for quantifying attribute relevance that we dis-

cussed in Chapter 10. In Chapter 20, we examine another common clustering

method, Kohonen networks, which are related to artificial neural networks in

structure.

19.8 APPLICATION OF k-MEANS CLUSTERING USING
SAS ENTERPRISE MINER

Next, we turn to the powerful SAS Enterpriser Miner4 software for an application of

the k-means algorithm on the churn data set (available at the book series web site; also

2Andrew Moore, k-Means and Hierarchical Clustering, Course Notes, http://www.autonlab.org/tutorials/

kmeans11.pdf.
3For more on BIRCH clustering, see Chapter 21.
4The SAS Institute, Cary, NC, www.sas.com.

http://www.autonlab.org/tutorials
http://www.sas.com
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available from http://www.sgi.com/tech/mlc/db/). Recall that the data set contains 20

variables’ worth of information about 3333 customers, along with an indication of

whether or not that customer churned (left the company).

The following variables were passed to the Enterprise Miner clustering node:

• Flag (0/1) variables

∘ International Plan and VoiceMail Plan

• Numerical variables

∘ Account length, voice mail messages, day minutes, evening minutes, night
minutes, international minutes, and customer service calls

∘ After applying min–max normalization to all numerical variables.

The Enterprise Miner clustering node uses SAS’s FASTCLUS procedure, a

version of the k-means algorithm. The number of clusters was set to k= 3. The three

clusters uncovered by the algorithm varied greatly in size, with tiny cluster 1 contain-

ing 92 records, large cluster 2 containing 2411 records, and medium-sized cluster 3

containing 830 records.

Some basic cluster profiling will help us to learn about the types of records

falling into each cluster. Figure 19.7 provides a look at the clustering results window

of Enterprise Miner, containing a pie chart profile of the International Plan member-

ship across the three clusters. All members of cluster 1, a fraction of the members of

cluster 2, and no members of cluster 3 have adopted the International Plan. Note that

the leftmost pie chart represents all records, and is similar to cluster 2.

Next, Figure 19.8 illustrates the proportion of VoiceMail Plan adopters in each

cluster. (Note the confusing color reversal for yes/no responses.) Remarkably, clusters

1 and 3 contain only VoiceMail Plan adopters, while cluster 2 contains only non-

adopters of the plan. In other words, this field was used by the k-means algorithm to

create a “perfect” discrimination, dividing the data set perfectly among adopters and

nonadopters of the International Plan.

It is clear from these results that the algorithm is relying heavily on the cat-

egorical variables to form clusters. The comparison of the means of the numerical

variables across the clusters in Table 19.5 shows relatively little variation, indicating

that the clusters are similar across these dimensions. Figure 19.9, for example, illus-

trates that the distribution of customer service calls (normalized) is relatively similar

Intl Plan

no yes

_ALL_ 1 2

Cluster ID

3

Figure 19.7 Enterprise Miner profile of International Plan adopters across clusters.

http://www.sgi.com/tech/mlc/db
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VMail Plan

yes no

_ALL_ 1 2

Cluster ID

3

Figure 19.8 VoiceMail Plan adopters and nonadopters are mutually exclusive.

TABLE 19.5 Comparison of variable means across clusters shows little variation

Cluster Frequency AcctLength_m VMailMessage DayMins_mm

1 92 0.4340639598 0.5826939471 0.5360015616

2 2411 0.4131940041 0 0.5126334451

3 830 0.4120730857 0.5731159934 0.5093940185

Cluster EveMins_mm NightMins_mm IntMins_mm CustServCalls

1 0.5669029659 0.4764366069 0.5467934783 0.1630434783

2 0.5507417372 0.4773586813 0.5119784322 0.1752615328

3 0.5564095259 0.4795138596 0.5076626506 0.1701472557

_ALL_
0

200

400

600

800

Frequency

1 2
Cluster ID

3 1

0.875

0.75

0.625

0.5

0.375

0.25

0.125

0
CustServCalls

Figure 19.9 Distribution of customer service calls is similar across clusters.

in each cluster. If the analyst is not comfortable with this domination of the clustering

by the categorical variables, he or she can choose to stretch or shrink the appropri-

ate axes, as mentioned earlier, which will help to adjust the clustering algorithm to a

more suitable solution.
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The clusters may therefore be summarized, using only the categorical variables,

as follows:

• Cluster 1: Sophisticated Users. A small group of customers who have adopted

both the International Plan and the VoiceMail Plan.

• Cluster 2: The Average Majority. The largest segment of the customer base,

some of whom have adopted the VoiceMail Plan but none of whom have

adopted the International Plan.

• Cluster 3: Voice Mail Users. A medium-sized group of customers who have

all adopted the VoiceMail Plan but not the International Plan.

19.9 USING CLUSTER MEMBERSHIP TO PREDICT
CHURN

Suppose, however, that we would like to apply these clusters to assist us in the churn
classification task. We may compare the proportions of churners directly among the

various clusters, using graphs such as Figure 19.10. Here we see that overall (the

leftmost column of pie charts), the proportion of churners is much higher among

those who have adopted the International Plan than among those who have not. This

Churn?

False. True.

_ALL_

No

Yes

Intl Plan

1 2

Cluster ID

3

Figure 19.10 Churn behavior across clusters for International Plan adopters and nonadopters.
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finding was uncovered in Chapter 3. Note that the churn proportion is higher in

cluster 1, which contains International Plan adopters, than in cluster 2, which con-

tains a mixture of adopters and nonadopters, and higher still than cluster 3, which

contains no such adopters of the International Plan. Clearly, the company should

look at the plan to see why the customers who have it are leaving the company at a

higher rate.

Now, as we know from Chapter 3 that the proportion of churners is lower

among adopters of the VoiceMail Plan, we would expect that the churn rate for clus-

ter 3 would be lower than for the other clusters. This expectation is confirmed in

Figure 19.11.

In Chapter 20, we explore using cluster membership as input to downstream

data mining models.

Churn?

False. True.

_ALL_

No

Yes

VMail Plan

1 2

Cluster ID

3

Figure 19.11 Churn behavior across clusters for VoiceMail Plan adopters and nonadopters.

THE R ZONE

# Install the required package and create the data

library(cluster)

data <- c(2, 5, 9, 15, 16, 18, 25, 33, 33, 45)
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# Single-Linkage Clustering

agn <- agnes(data,

diss = FALSE,

stand = FALSE,

method = "single")

# Make and plot the dendrogram

dend_agn <- as.dendrogram(agn)

plot(dend_agn,

xlab = "Index of Data Points",

ylab = "Steps",

main = "Single-Linkage Clustering") 0
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Single-linkage clustering

Index of data points

# Complete-Linkage Clustering

agn_complete <- agnes(data,

diss = FALSE,

stand = FALSE,

method = "complete")

# Make and plot the dendrogram

dend_agn_complete <-

as.dendrogram(agn_complete)

plot(dend_agn_complete,

xlab = "Index of Data Points",

ylab = "Steps",

main = "Complete-Linkage

Clustering")
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Index of data points

# K-Means clustering

# Create the data matrix

# from Table 10.1

m <- matrix(c(1,3,3,3,4,3,5,3,

1,2,4,2,1,1,2,1),

byrow=TRUE,

ncol = 2)

km <- kmeans(m,

centers = 2)

km
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EXERCISES

CLARIFYING THE CONCEPTS

1. To which cluster for the 90210 zip code would you prefer to belong?

2. Describe the goal of all clustering methods.

3. Suppose that we have the following data (one variable). Use single linkage to identify the

clusters. Data:

0 0 1 3 3 6 7 9 10 10

4. Suppose that we have the following data (one variable). Use complete linkage to identify

the clusters. Data:

0 0 1 3 3 6 7 9 10 10

5. What is an intuitive idea for the meaning of the centroid of a cluster?

6. Suppose that we have the following data:

a b c d e f g h i j

(2,0) (1,2) (2,2) (3,2) (2,3) (3,3) (2,4) (3,4) (4,4) (3,5)

Identify the cluster by applying the k-means algorithm, with k= 2. Try using initial cluster

centers as far apart as possible.

7. Refer to Exercise 6. Show that the ratio of the between-cluster variation to the

within-cluster variation increases with each pass of the algorithm.

8. Once again identify the clusters in Exercise 6 data, this time by applying the k-means

algorithm, with k= 3. Try using initial cluster centers as far apart as possible.

9. Refer to Exercise 8. Show that the ratio of the between-cluster variation to the

within-cluster variation increases with each pass of the algorithm.

http://www
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10. Which clustering solution do you think is preferable? Why?

11. Confirm the calculations for the second pass and third pass for MSB, MSE, and pseudo-F

for step 4 of the example given in the chapter.

HANDS-ON ANALYSIS

Use the cereals data set, included at the book series web site, for the following exercises. Make

sure that the data are normalized.

12. Using all of the variables, except name and rating, run the k-means algorithm with k= 5

to identify clusters within the data.

13. Develop clustering profiles that clearly describe the characteristics of the cereals within

the cluster.

14. Rerun the k-means algorithm with k= 3.

15. Which clustering solution do you prefer, and why?

16. Develop clustering profiles that clearly describe the characteristics of the cereals within

the cluster.

17. Use cluster membership to predict rating. One way to do this would be to construct a

histogram of rating based on cluster membership alone. Describe how the relationship

you uncovered makes sense, based on your earlier profiles.



C H A P T E R 20
KOHONEN NETWORKS

20.1 SELF-ORGANIZING MAPS

Kohonen networks were introduced in 1982 by Finnish researcher Tuevo Kohonen.1

Although applied initially to image and sound analyses, Kohonen networks are never-

theless an effective mechanism for clustering analysis. Kohonen networks represent

a type of self-organizing map (SOM), which itself represents a special class of neural

networks, which we studied in Chapter 12.

The goal of SOMs is to convert a complex high-dimensional input signal into a

simpler low-dimensional discrete map.2 Thus, SOMs are nicely appropriate for clus-

ter analysis, where underlying hidden patterns among records and fields are sought.

SOMs structure the output nodes into clusters of nodes, where nodes in closer prox-

imity are more similar to each other than to other nodes that are farther apart. Ritter3

has shown that SOMs represent a nonlinear generalization of principal components

analysis, another dimension-reduction technique.

SOMs are based on competitive learning, where the output nodes compete

among themselves to be the winning node (or neuron), the only node to be acti-

vated by a particular input observation. As Haykin describes it: “The neurons become

selectively tuned to various input patterns (stimuli) or classes of input patterns in the

course of a competitive learning process.” A typical SOM architecture is shown in

Figure 20.1. The input layer is shown at the bottom of the figure, with one input node

for each field. Just as with neural networks, these input nodes perform no processing

themselves, but simply pass the field input values along downstream.

Like neural networks, SOMs are feedforward and completely connected. Feed-
forward networks do not allow looping or cycling. Completely connected means that

every node in a given layer is connected to every node in the next layer, although not to

1Tuevo Kohonen, Self-organized formation of topologically correct feature maps, Biological Cybernetics,

Vol. 43, pp. 59–69, 1982.
2Simon Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle River, NJ,

1990.
3Helge Ritter, Self-organizing feature maps: Kohonen maps, in M.A. Arbib, ed., The Handbook of Brain
Theory and Neural Networks, pp. 846–851, MIT Press, Cambridge, MA, 1995.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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other nodes in the same layer. Like neural networks, each connection between nodes

has a weight associated with it, which at initialization is assigned randomly to a value

between 0 and 1. Adjusting these weights represents the key for the learning mech-

anism in both neural networks and SOMs. Variable values need to be normalized or

standardized, just as for neural networks, so that certain variables do not overwhelm

others in the learning algorithm.

Unlike most neural networks, however, SOMs have no hidden layer. The data

from the input layer is passed along directly to the output layer. The output layer is

represented in the form of a lattice, usually in one or two dimensions, and typically

in the shape of a rectangle, although other shapes, such as hexagons, may be used.

The output layer shown in Figure 20.1 is a 3× 3 square.

Age
Income

Input layer

Connections with weights

Output layer

Figure 20.1 Topology of a simple self-organizing map for clustering records by age and

income.

For a given record (instance), a particular field value is forwarded from a

particular input node to every node in the output layer. For example, suppose that

the normalized age and income values for the first record in the data set are 0.69

and 0.88, respectively. The 0.69 value would enter the SOM through the input

node associated with age, and this node would pass this value of 0.69 to every

node in the output layer. Similarly, the 0.88 value would be distributed through the

income input node to every node in the output layer. These values, together with

the weights assigned to each of the connections, would determine the values of a

scoring function (such as Euclidean distance) for each output node. The output node

with the “best” outcome from the scoring function would then be designated as the

winning node.
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SOMs exhibit three characteristic processes:

1. Competition. As mentioned above, the output nodes compete with each other

to produce the best value for a particular scoring function, most commonly the

Euclidean distance. In this case, the output node that has the smallest Euclidean

distance between the field inputs and the connection weights would be declared

the winner. Later, we examine in detail an example of how this works.

2. Cooperation. The winning node therefore becomes the center of a neighbor-

hood of excited neurons. This emulates the behavior of human neurons, which

are sensitive to the output of other neurons in their immediate neighborhood.

In SOMs, all the nodes in this neighborhood share in the “excitement” or

“reward” earned by the winning nodes, that of adaptation. Thus, even though

the nodes in the output layer are not connected directly, they tend to share

common features, due to this neighborliness parameter.

3. Adaptation. The nodes in the neighborhood of the winning node participate in

adaptation, that is, learning. The weights of these nodes are adjusted so as to

further improve the score function. In other words, these nodes will thereby

have an increased chance of winning the competition once again, for a similar

set of field values.

20.2 KOHONEN NETWORKS

Kohonen networks are SOMs that exhibit Kohonen learning. Suppose that we con-

sider the set of m field values for the nth record to be an input vector xn = xn1, xn2,

… , xnm, and the current set of m weights for a particular output node j to be a weight

vector wj =w1j, w2j, … , wmj. In Kohonen learning, the nodes in the neighborhood of

the winning node adjust their weights using a linear combination of the input vector

and the current weight vector:

wij,new = wij,current + 𝜂(xni − wij,current
) (20.1)

where 𝜂, 0<𝜂 < 1, represents the learning rate, analogous to the neural networks

case. Kohonen4 indicates that the learning rate should be a decreasing function

of training epochs (runs through the data set) and that a linearly or geometrically

decreasing 𝜂 is satisfactory for most purposes.

The algorithm for Kohonen networks (after Fausett5) is shown in the accompa-

nying box. At initialization, the weights are randomly assigned, unless firm a priori

knowledge exists regarding the proper value for the weight vectors. Also at initializa-

tion, the learning rate 𝜂 and neighborhood size R are assigned. The value of R may

start out moderately large but should decrease as the algorithm progresses. Note that

nodes that do not attract a sufficient number of hits may be pruned, thereby improving

algorithm efficiency.

4Tuevo Kohonen, Self-Organization and Associative Memory, 3rd ed., Springer-Verlag, Berlin, 1989.
5Laurene Fausett, Fundamentals of Neural Networks, Prentice Hall, Upper Saddle River, NJ, 1994.
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KOHONEN NETWORKS ALGORITHM

For each input vector x, perform the following steps:

• Competition. For each output node j, calculate the value D(wj, xn) of the scoring

function. For example, for Euclidean distance, D(wj, xn) =
√∑

i(wij − xni)2. Find the

winning node J that minimizes D(wj, xn) over all output nodes.

• Cooperation. Identify all output nodes j within the neighborhood of J defined by

the neighborhood size R. For these nodes, perform the following for all input record

fields:

∘ Adaptation. Adjust the weights:

wij,new = wij,current + 𝜂(xni − wij,current)

• Adjust the learning rate and neighborhood size, as needed.

• Stop when the termination criteria are met.

20.3 EXAMPLE OF A KOHONEN NETWORK STUDY

Consider the following simple example. Suppose that we have a data set with two

attributes, age and income, which have already been normalized, and suppose that

we would like to use a 2× 2 Kohonen network to uncover hidden clusters in the data

set. We would thus have the topology shown in Figure 20.2.

Age Income

Input layer

Output layer

Node 4

Node 3

Node 2

Node 1

W11 W21 W13

W22

W12

W14
W24

W23

Figure 20.2 Example: topology of the 2× 2 Kohonen network.
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A set of four records is ready to be input, with a thumbnail description of each

record provided. With such a small network, we set the neighborhood size to be R= 0,

so that only the winning node will be awarded the opportunity to adjust its weight.

Also, we set the learning rate 𝜂 to be 0.5. Finally, assume that the weights have been

randomly initialized as follows:

w11 = 0.9 w21 = 0.8 w12 = 0.9 w22 = 0.2

w13 = 0.1 w23 = 0.8 w14 = 0.1 w24 = 0.2

For the first input vector, x1 = (0.8, 0.8), we perform the following competition, coop-

eration, and adaptation sequence.

• Competition. We compute the Euclidean distance between this input vector and

the weight vectors for each of the four output nodes:

Node 1∶ D(w1, x1) =
√∑

i
(wi1 − x1i)2 =

√
(0.9 − 0.8)2 + (0.8 − 0.8)2 = 0.1

Node 2∶ D(w2, x1) =
√
(0.9 − 0.8)2 + (0.2 − 0.8)2 = 0.61

Node 3∶ D(w3, x1) =
√
(0.1 − 0.8)2 + (0.8 − 0.8)2 = 0.70

Node 4∶ D(w4, x1) =
√
(0.1 − 0.8)2 + (0.2 − 0.8)2 = 0.92

The winning node for this first input record is therefore node 1, as it minimizes

the score function D, the Euclidean distance between the input vector for this record,

and the vector of weights, over all nodes.

Note why node 1 won the competition for the first record (0.8, 0.8). Node 1

won because its weights (0.9, 0.8) are more similar to the field values for this record

than are the other nodes’ weights. For this reason, we may expect node 1 to exhibit

an affinity for records of older persons with high income. In other words, we may

expect node 1 to uncover a cluster of older, high-income persons.

• Cooperation. In this simple example, we have set the neighborhood size R= 0

so that the level of cooperation among output nodes is nil! Therefore, only the

winning node, node 1, will be rewarded with a weight adjustment. (We omit

this step in the remainder of the example.)

• Adaptation. For the winning node, node 1, the weights are adjusted as follows:

wij,new = wij,current + 𝜂(xni − wij,current)

For j= 1 (node 1), n= 1 (the first record) and learning rate 𝜂 = 0.5, this becomes

wi1, new =wi1, current + 0.5(x1i −wi1, current) for each field:

For age∶ w11,new = w11,current + 0.5(x11 − w11,current)

= 0.9 + 0.5(0.8 − 0.9) = 0.85
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For income∶ w21,new = w21,current + 0.5(x12 − w21,current)

= 0.8 + 0.5(0.8 − 0.8) = 0.8

Note the type of adjustment that takes place. The weights are nudged in the

direction of the fields’ values of the input record. That is, w11, the weight on the age
connection for the winning node, was originally 0.9, but was adjusted in the direction

of the normalized value for age in the first record, 0.8. As the learning rate 𝜂 = 0.5,

this adjustment is half (0.5) of the distance between the current weight and the field

value. This adjustment will help node 1 to become even more proficient at capturing

the records of older, high-income persons.

Next, for the second input vector, x2 = (0.8, 0.1), we have the following

sequence:

• Competition

Node 1∶ D(w1, x2) =
√
(0.85 − 0.8)2 + (0.8 − 0.1)2 = 0.78

Node 2∶ D(w2, x2) =
√
(0.9 − 0.8)2 + (0.2 − 0.1)2 = 0.14

Node 3∶ D(w3, x2) =
√
(0.1 − 0.8)2 + (0.8 − 0.1)2 = 0.99

Node 4∶ D(w4, x2) =
√
(0.1 − 0.8)2 + (0.2 − 0.1)2 = 0.71

Winning node: node 2. Note that node 2 won the competition for the second

record (0.8, 0.1), because its weights (0.9, 0.2) are more similar to the field values for

this record than are the other nodes’ weights. Thus, we may expect node 2 to “collect”

records of older persons with low income. That is, node 2 will represent a cluster of

older, low-income persons.

• Adaptation. For the winning node, node 2, the weights are adjusted as follows:

For j= 2 (node 2), n= 2 (the first record), and learning rate 𝜂 = 0.5, we have

wi2, new =wi2, current + 0.5(x2i −wi2, current) for each field:

For age∶ w12,new = w12,current + 0.5(x21 − w12,current)

= 0.9 + 0.5(0.8 − 0.9) = 0.85

For income∶ w22,new = w22,current + 0.5(x22 − w22,current)

= 0.2 + 0.5(0.1 − 0.2) = 0.15

Again, the weights are updated in the direction of the field values of the input

record. Weight w12 undergoes the same adjustment w11 above, as the current weights

and age field values were the same. Weight w22 for income is adjusted downward, as

the income level of the second record was lower than the current income weight for

the winning node. Because of this adjustment, node 2 will be even better at catching

records of older, low-income persons.
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Next, for the third input vector, x3 = (0.2, 0.9), we have the following

sequence:

• Competition

Node 1∶ D(w1, x3) =
√∑

i
(wi1 − x3i)2 =

√
(0.85 − 0.2)2 + (0.8 − 0.9)2

= 0.66

Node 2∶ D(w2, x3) =
√
(0.85 − 0.2)2 + (0.15 − 0.9)2 = 0.99

Node 3∶ D(w3, x3) =
√
(0.1 − 0.2)2 + (0.8 − 0.9)2 = 0.14

Node 4∶ D(w4, x3) =
√
(0.1 − 0.2)2 + (0.2 − 0.9)2 = 0.71

The winning node is node 3 because its weights (0.1, 0.8) are the closest to the

third record’s field values. Hence, we may expect node 3 to represent a cluster

of younger, high-income persons.

• Adaptation. For the winning node, node 3, the weights are adjusted as follows:

wi3, new =wi3, current + 0.5(x3i −wi3, current), for each field:

For age∶ w13,new = w13,current + 0.5(x31 − w13,current)

= 0.1 + 0.5(0.2 − 0.1) = 0.15

For income∶ w23,new = w23,current + 0.5(x32 − w23,current)

= 0.8 + 0.5(0.9 − 0.8) = 0.85

Finally, for the fourth input vector, x4 = (0.1, 0.1), we have the following

sequence:

• Competition

Node 1∶ D(w1, x4) =
√∑

i
(wi1 − x4i)2 =

√
(0.85 − 0.1)2 + (0.8 − 0.1)2

= 1.03

Node 2∶ D(w2, x4) =
√
(0.85 − 0.1)2 + (0.15 − 0.1)2 = 0.75

Node 3∶ D(w3, x4) =
√
(0.15 − 0.1)2 + (0.85 − 0.1)2 = 0.75

Node 4∶ D(w4, x4) =
√
(0.1 − 0.1)2 + (0.2 − 0.1)2 = 0.10

The winning node is node 4 because its weights (0.1, 0.2) have the smallest

Euclidean distance to the fourth record’s field values. We may therefore expect

node 4 to represent a cluster of younger, low-income persons.
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TABLE 20.1 Four clusters uncovered by Kohonen network

Cluster Associated with Description

1 Node 1 Older person with high income

2 Node 2 Older person with low income

3 Node 3 Younger person with high income

4 Node 4 Younger person with low income

• Adaptation. For the winning node, node 4, the weights are adjusted as follows:

wi4,new = wi4,current + 0.5(x4i − wi4,current), for each field:

For age∶ w14,new = w14,current + 0.5(x41 − w14,current)
= 0.1 + 0.5(0.1 − 0.1) = 0.10

For income∶ w24,new = w24,current + 0.5(x42 − w24,current)
= 0.2 + 0.5(0.1 − 0.2) = 0.15

Thus, we have seen that the four output nodes will represent four distinct clus-

ters if the network continues to be fed data similar to the four records shown in

Figure 20.2. These clusters are summarized in Table 20.1.

Clearly, the clusters uncovered by the Kohonen network in this simple example

are fairly obvious. However, this example does serve to illustrate how the network

operates at a basic level, using competition and Kohonen learning.

20.4 CLUSTER VALIDITY

To avoid spurious results, and to assure that the resulting clusters are reflective of the

general population, the clustering solution should be validated. One common valida-

tion method is to split the original sample randomly into two groups, develop cluster

solutions for each group, and then compare their profiles using the methods below or

other summarization methods.

Now, suppose that a researcher is interested in performing further inference,

prediction, or other analysis downstream on a particular field, and wishes to use the

clusters as predictors. Then, it is important that the researcher do not include the field

of interest as one of the fields used to build the clusters. For example, in the example

below, clusters are constructed using the churn data set. We would like to use these

clusters as predictors for later assistance in classifying customers as churners or not.

Therefore, we must be careful not to include the churn field among the variables used

to build the clusters.

20.5 APPLICATION OF CLUSTERING USING
KOHONEN NETWORKS

Next, we apply the Kohonen network algorithm to the churn data set from Chapter 3

(available at the book series web site; also available from http://www.sgi.com/tech/mlc

http://www.sgi.com/tech/mlc
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/db/). Recall that the data set contains 20 variables worth of information about 3333

customers, along with an indication of whether that customer churned (left the

company) or not. The following variables were passed to the Kohonen network

algorithm, using IBM/SPSS Modeler:

• Flag (0/1) variables

∘ International Plan and VoiceMail Plan

• Numerical variables

∘ Account length, voice mail messages, day minutes, evening minutes, night
minutes, international minutes, and customer service calls

∘ After applying Z-score standardization to all numerical variables.

The topology of the network was as in Figure 20.3, with every node in the input

layer being connected with weights (not shown) to every node in the output layer,

which is labeled in accordance with their use in the Modeler results. The Kohonen

learning parameters were set in Modeler as follows. For the first 20 cycles (passes

through the data set), the neighborhood size was set at R= 2, and the learning rate

was set to decay linearly starting at 𝜂 = 0.3. Then, for the next 150 cycles, the neigh-

borhood size was reset to R= 1, while the learning rate was allowed to decay linearly

from 𝜂 = 0.3 to 𝜂 = 0.

As it turned out, the Modeler Kohonen algorithm used only six of the nine

available output nodes, as shown in Figure 20.4, with output nodes 01, 11, and 21

being pruned. (Note that each of the six clusters is actually of constant value in this

plot, such as (0,0) and (1,2). A random shock (x, y agitation, artificial noise) was

introduced to illustrate the size of the cluster membership.)

Input layer

20

21

2212

11

1000

01

02

Output layer

VMPlan IntPlan AcctLen VMMess DayMin EveMin NiteMin IntMin CSC

Figure 20.3 Topology of 3× 3 Kohonen network used for clustering the churn data set.
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Figure 20.4 Modeler uncovered six clusters.

20.6 INTERPRETING THE CLUSTERS

How are we to interpret these clusters? How can we develop cluster profiles? Con-

sider Figure 20.5, which plots the clusters similar to Figure 20.4, but with panels for

whether a customer is an adopter of the International Plan. Figure 20.5 shows that

International Plan adopters reside exclusively in Clusters 12 and 22, with the other

clusters containing only non-adopters of the International Plan. The Kohonen cluster-

ing algorithm has found a high-quality discrimination along this dimension, dividing

the data set neatly among adopters and non-adopters of the International Plan.
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Figure 20.5 International Plan adopters reside exclusively in Clusters 12 and 22.

Figure 20.6 shows the VoiceMail Plan adoption status of the cluster members.

The three clusters along the bottom row (i.e., Cluster 00, Cluster 10, and Cluster 20)

contain only non-adopters of the VoiceMail Plan. Clusters 02 and 12 contain only
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Figure 20.6 Similar clusters are closer to each other.

adopters of the VoiceMail Plan. Cluster 22 contains mostly non-adopters and also

some adopters of the VoiceMail Plan.

Recall that because of the neighborliness parameter, clusters that are closer

together should be more similar than clusters that are farther apart. Note in Figure 20.5

that all International Plan adopters reside in contiguous (neighboring) clusters, as do

all non-adopters. Similarly for Figure 20.6, except that Cluster 22 contains a mixture.

We see that Cluster 12 represents a special subset of customers, those who have

adopted both the International Plan and the VoiceMail Plan. This is a well-defined

subset of the customer base, which perhaps explains why the Kohonen network

uncovered it, even though this subset represents only 2.4% of the customers.

Figure 20.7 provides information about how the values of all the variables are

distributed among the clusters, with one column per cluster and one row per vari-

able. The darker rows indicate the more important variables, that is, the variables

that proved more useful for discriminating among the clusters. Consider Account

Length_Z. Cluster 00 contains customers who tend to have been with the company

for a long time, that is, their account lengths tend to be on the large side. Contrast this

with Cluster 20, whose customers tend to be fairly new.

For the quantitative variables, the data analyst should report the means for each

variable, for each cluster, along with an assessment of whether the difference in means

across the clusters is significant. It is important that the means reported to the client

appear on the original (untransformed) scale, and not on the Z scale or min–max

scale, so that the client may better understand the clusters.

Figure 20.8 provides these means, along with the results of an analysis of

variance (see Chapter 5) for assessing whether the difference in means across

clusters is significant. Each row contains the information for one numerical vari-

able, with one analysis of variance for each row. Each cell contains the cluster

mean, standard deviation, standard error (standard deviation∕
√

cluster count),

and cluster count. The degrees of freedom are df1 = k − 1 = 6 − 1 = 5 and
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Clusters

Cluster
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CustServ Calls_ZCustServ Calls_ZCustServ Calls_ZCustServ Calls_ZCustServ Calls_ZCustServ Calls_Z

Day Mins_ZDay Mins_ZDay Mins_ZDay Mins_ZDay Mins_ZDay Mins_Z

Eve Mins_ZEve Mins_ZEve Mins_ZEve Mins_ZEve Mins_ZEve Mins_Z

Intl Mins_ZIntl Mins_ZIntl Mins_ZIntl Mins_ZIntl Mins_ZIntl Mins_Z

Figure 20.7 How the variables are distributed among the clusters.

df2 = N − k = 3333 − 6 = 3327. The F-test statistic is the value of F = MSTR∕MSE

for the analysis of variance for that particular variable, and the Importance statistic

is simply 1− p-value, where p-value = P(F > F test statistic).
Note that both Figures 20.7 and 11.8 concur in identifying account length and

the number of voice mail messages as the two most important numerical variables for

discriminating among clusters. Next, Figure 20.7 showed graphically that the account

length for Cluster 00 is greater than that of Cluster 20. This is supported by the statis-

tics in Figure 20.8, which shows that the mean account length of 141.508 days for

Cluster 00 and 61.707 days for Cluster 20. Also, tiny Cluster 12 has the highest mean

number of voice mail messages (31.662), with Cluster 02 also having a large amount

(29.229). Finally, note that the neighborliness of Kohonen clusters tends to make

neighboring clusters similar. It would have been surprising, for example to find a

cluster with 141.508 mean account length right next to a cluster with 61.707 mean

account length. In fact, this did not happen.
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Figure 20.8 Assessing whether the means across clusters are significantly different.

In general, not all clusters are guaranteed to offer obvious interpretability. The

data analyst should team up with a domain expert to discuss the relevance and appli-

cability of the clusters uncovered using Kohonen or other methods. Here, however,

most of these clusters appear fairly clear-cut and self-explanatory.

20.6.1 Cluster Profiles

• Cluster 00: Loyal Non-Adopters. Belonging to neither the VoiceMail Plan

nor the International Plan, customers in large Cluster 00 have nevertheless

been with the company the longest, with by far the largest mean account

length, which may be related to the largest number of calls to customer

service. This cluster exhibits the lowest average minutes usage for day minutes

and international minutes, and the second lowest evening minutes and night

minutes.

• Cluster 02: Voice Mail Users. This large cluster contains members of the Voice-

Mail Plan, with therefore a high mean number of voice mail messages, and

no members of the International Plan. Otherwise, the cluster tends toward the

middle of the pack for the other variables.
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• Cluster 10: Average Customers. Customers in this medium-sized cluster

belong to neither the Voice Mail Plan nor the International Plan. Except for

the second-largest mean number of calls to customer service, this cluster

otherwise tends toward the average values for the other variables.

• Cluster 12: Power Customers. This smallest cluster contains customers who

belong to both the VoiceMail Plan and the International Plan. These sophis-

ticated customers also lead the pack in usage minutes across three categories

and are in second place in the other category. They also have the fewest aver-

age calls to customer service. The company should keep a watchful eye on this

cluster, as they may represent a highly profitable group.

• Cluster 20: Newbie Non-AdoptersUsers. Belonging to neither the VoiceMail

Plan nor the International Plan, customers in large Cluster 00 represent the

company’s newest customers, on average, with easily the shortest mean account

length. These customers set the pace with the highest mean night minutes

usage.

• Cluster 22: International Plan Users. This small cluster contains members

of the International Plan and only a few members of the VoiceMail Plan.

The number of calls to customer service is second lowest, which may

mean that they need a minimum of hand-holding. Besides the lowest mean

night minutes usage, this cluster tends toward average values for the other

variables.

Cluster profiles may of themselves be of actionable benefit to companies and

researchers. They may, for example, suggest marketing segmentation strategies in an

era of shrinking budgets. Rather than targeting the entire customer base for a mass

mailing, for example, perhaps only the most profitable customers may be targeted.

Another strategy is to identify those customers whose potential loss would be of

greater harm to the company, such as the customers in Cluster 12 above. Finally,

customer clusters could be identified that exhibit behavior predictive of churning;

intervention with these customers could save them for the company.

Suppose, however, that we would like to apply these clusters to assist us in the

churn classification task. We may compare the proportions of churners among the

various clusters, using graphs such as Figure 20.9. From the figure we can see that

customers in Clusters 12 (power customers) and 22 (International Plan users) are in

greatest danger of leaving the company, as shown by their higher overall churn pro-

portions. Cluster 02 (VoiceMail Plan users) has the lowest churn rate. The company

should take a serious look at its International Plan to see why customers do not seem

to be happy with it. Also, the company should encourage more customers to adopt

its VoiceMail Plan, in order to make switching companies more inconvenient. These

results and recommendations reflect our findings from Chapter 3, where we initially

examined the relationship between churning and the various fields. Note also that

Clusters 12 and 22 are neighboring clusters; even though churn was not an input field

for cluster formation, the type of customers who are likely to churn are more similar

to each other than to customers not likely to churn.
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Figure 20.9 Proportions of churners among the clusters.

20.7 USING CLUSTER MEMBERSHIP AS INPUT TO
DOWNSTREAM DATA MINING MODELS

Cluster membership may be used to enrich the data set and improve model efficacy.

Indeed, as data repositories continue to grow and the number of fields continues to

increase, clustering has become a common method of dimension reduction.

We will illustrate how cluster membership may be used as input for downstream

data mining models, using the churn data set and the clusters uncovered above. Each

record now has associated with it a cluster membership assigned by the Kohonen

networks algorithm. We shall enrich our data set by adding this cluster membership

field to the input fields used for classifying churn. A classification and regression

tree (CART) decision tree model was run, to classify customers as either churners or

non-churners. The resulting decision tree output is shown in Figure 20.10.

The root node split is on whether DayMin_Z (the Z-standardized version of

day minutes; the analyst should untransform these values if this output is meant for

the client) is greater than about 1.573. This represents the 142 users who have the

Figure 20.10 Output of CART decision tree for data set enriched by cluster membership.
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highest day minutes, 1.573 standard deviations above the mean. For this group, the

second-level split is by cluster, with Cluster 02 split off from the remaining clusters.

Note that for high day minutes, the mode classification is True (churner), but that

within this subset, membership in Cluster 02 acts to protect from churn, as the 31

customers with high day minutes and membership in Cluster 02 have a 100% prob-

ability of not churning. Recall that Cluster 02, which is acting as a brake on churn

behavior, represents Voice Mail Users, who had the lowest churn rate of any cluster.

The R Zone

# Open ‘kohonen’ package. Read in and prepare the data

library(kohonen)

churn <- read.csv(file = "C:/… /churn.txt", stringsAsFactors=TRUE)

IntPlan <- VMPlan <- Churn <- c(rep(0, length(churn$Int.l.Plan))) # Flag variables

for (i in 1:length(churn$Int.l.Plan)) {

if (churn$Int.l.Plan[i]=="yes") IntPlan[i] = 1

if (churn$VMail.Plan[i]=="yes") VMPlan[i] = 1

if (churn$Churn[i] == "True") Churn[i] = 1

}

AcctLen <- (churn$Account.Length - mean(churn$Account.Length))/sd(churn$Account.Length)

VMMess <- (churn$VMail.Message - mean(churn$VMail.Message)) /

sd(churn$VMail.Message)

DayMin <- (churn$Day.Mins - mean(churn$Day.Mins))/sd(churn$Day.Mins)

EveMin <- (churn$Eve.Mins - mean(churn$Eve.Mins))/sd(churn$Eve.Mins)

NiteMin <- (churn$Night.Mins - mean(churn$Night.Mins))/sd(churn$Night.Mins)

IntMin <- (churn$Intl.Mins - mean(churn$Intl.Mins))/sd(churn$Intl.Mins)

CSC <- (churn$CustServ.Calls - mean(churn$CustServ.Calls))/sd(churn$CustServ.Calls)

# Run the algorithm to get a 3x2 Kohonen network

# Make the variables into one matrix, and

# make sure the records are the rows

dat <- t(rbind(IntPlan, VMPlan, AcctLen,

VMMess, DayMin, EveMin, NiteMin,

IntMin, CSC))

som.6 <- som(dat,

grid = somgrid(3, 2),

rlen = 170,

alpha = c(0.3, 0.00),

radius = 2)

# Plot the make-up of each cluster

plot(som.6,

type = c("codes"),

palette.name = rainbow,

main = "Cluster Content")

IntPlan

AcctLen

VMPlan

VMMess

Cluster content

EveMin

DayMin

NiteMin

CSC

IntMin
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# Plot the counts in each cluster

plot(som.6,

type = c("counts"),

palette.name = rainbow,

main = "Cluster Counts")
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# Plot make-up of clusters

som.6$unit.classif # Winning Clusters

som.6$grid$pts # Plot locations

coords <- matrix(0, ncol = 2, nrow = dim(dat)[1])

for(i in 1:dim(dat)[1]){

coords[i,] <-

som.6$grid$pts[som.6$unit.classif[i],]

}

pchVMPlan <- ifelse(dat[,2]==0 , 1, 16)

colVMPlan <- ifelse(dat[,2]==0 , 1, 2)

plot(jitter(coords), main = "Kohonen Network

colored by VM Plan",

col = colVMPlan,

pch = pchVMPlan)
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# Table of Percent Churn by cluster

c.table <- table(Churn, som.6$unit.classif)

round(prop.table(c.table, 2)*100, 2)
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EXERCISES

1. Describe some of the similarities between Kohonen networks and the neural networks of

Chapter 7. Describe some of the differences.

2. Describe the three characteristic processes exhibited by SOMs such as Kohonen networks.

What differentiates Kohonen networks from other SOM models?

http://www.R-project.org
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3. Using weights and distance, explain clearly why a certain output node will win the com-

petition for the input of a certain record.

4. For larger output layers, what would be the effect of increasing the value of R?

5. Describe what would happen if the learning rate 𝜂 did not decline?

6. This chapter shows how cluster membership can be used for downstream modeling. Does

this apply to the cluster membership obtained by hierarchical and k-means clustering

as well?

HANDS-ON ANALYSIS

Use the adult data set at the book series Web site for the following exercises.

7. Apply the Kohonen clustering algorithm to the data set, being careful not to include the

income field. Use a topology that is not too large, such as 3× 3.

8. Construct a scatter plot (with x/y agitation) of the cluster membership, with an overlay of

income. Discuss your findings.

9. Construct a bar chart of the cluster membership, with an overlay of income. Discuss your

findings. Compare to the scatter plot.

10. Construct a bar chart of the cluster membership, with an overlay of marital status. Discuss

your findings.

11. If your software supports this, construct a web graph of income, marital status, and the

other categorical variables. Fine-tune the web graph so that it conveys good information.

12. Generate numerical summaries for the clusters. For example, generate a cluster mean

summary.

13. Using the information above and any other information you can bring to bear, construct

detailed and informative cluster profiles, complete with titles.

14. Use cluster membership as a further input to a CART decision tree model for classifying

income. How important is clustering membership in classifying income?

15. Use cluster membership as a further input to a C4.5 decision tree model for classifying

income. How important is clustering membership in classifying income? Compare to the

CART model.
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BIRCH CLUSTERING

21.1 RATIONALE FOR BIRCH CLUSTERING

BIRCH, which stands for Balanced Iterative Reducing and Clustering using Hier-

archies, was developed in 1996 by Tian Zhang, Raghu Ramakrishnan, and Miron

Livny.1 BIRCH is especially appropriate for very large data sets, or for streaming

data, because of its ability to find a good clustering solution with only a single scan

of the data. Optionally, the algorithm can make further scans through the data to

improve the clustering quality. BIRCH handles large data sets with a time com-

plexity and space efficiency that is superior to other algorithms, according to the

authors.

The BIRCH clustering algorithm consists of two main phases or steps,2 as

shown here.

BIRCH CLUSTERING ALGORITHM

• Phase 1: Build the CF Tree. Load the data into memory by building a cluster-feature
tree (CF tree, defined below). Optionally, condense this initial CF tree into a smaller

CF.

• Phase 2: Global Clustering. Apply an existing clustering algorithm on the leaves

of the CF tree. Optionally, refine these clusters.

BIRCH is sometimes referred to as Two-Step Clustering, because of the two

phases shown here. We now consider what constitutes each of these phases.

1Tian Zhang, Raghu Ramakrishnan, and Miron Livny, BIRCH: an efficient data clustering method for

very large databases. In Proceedings of 1996 ACM-SIGMOD International Conference on Management
of Data, pp. 103–114, Montreal, Quebec, Canada, June 1996, ACM Press.
2We have blended the authors’ optional phases into their respective required phases.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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21.2 CLUSTER FEATURES

BIRCH clustering achieves its high efficiency by clever use of a small set of sum-

mary statistics to represent a larger set of data points. For clustering purposes, these

summary statistics constitute a CF, and represent a sufficient substitute for the actual

data. In their original paper, Zhang et al. suggested the following summary statistics

for the CF:

CLUSTER FEATURE

A CF is a set of three summary statistics that represent a set of data points in a single cluster.

These statistics are as follows:

• Count. How many data values in the cluster.

• Linear Sum. Sum the individual coordinates. This is a measure of the location of the

cluster.

• Squared Sum. Sum the squared coordinates. This is a measure of the spread of the

cluster.

Note that, together, the linear sum and the squared sum are equivalent to the mean

and variance of the data point.

For example, consider Clusters 1 and 2 in Figure 21.1. Cluster 1 contains data

values (1, 1), (2, 1), and (1, 2), whereas Cluster 2 contains data values (3, 2), (4, 1),

and (4, 2). CF1, the CF for Cluster 1, consists of the following:

CF1 = {3, (1 + 2 + 1, 1 + 1 + 2), (12 + 22 + 12, 12 + 12 + 22)}
= {3, (4, 4), (6, 6)}

And for Cluster 2, the CF is

CF2 = {3, (3 + 4 + 4, 2 + 1 + 2), (32 + 42 + 42, 22 + 12 + 22)}
= {3, (11, 5), (41, 9)}

CF1 and CF2 represent the data in Clusters 1 and 2.

0
0

1

2

3

Cluster 1 Cluster 2

1 2 3 4 5

Figure 21.1 Clusters 1 and 2.
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One mechanism of the BIRCH algorithm calls for the merging of clusters under

certain conditions. The Additivity Theorem states that the CFs for two clusters may

be merged simply by adding the items in their respective CF trees. Thus, if we needed

to merge Clusters 1 and 2, the resulting CF would be

CF12 = {3 + 3, (4 + 11, 4 + 5), (6 + 41, 6 + 9)} = {6, (15, 9), (47, 15)}

21.3 CLUSTER FEATURE TREE

A CF tree is a tree structure composed of CFs. A CF tree represents a compressed

form of the data, preserving any clustering structure in the data. A CF tree has the

following parameters:

CLUSTER FEATURE TREE PARAMETERS

• Branching Factor B. B determines the maximum children allowed for a non-leaf

node.

• Threshold T. T is an upper limit to the radius of a cluster in a leaf node.

• Number of Entries in a Leaf Node L.

The general structure of a CF tree is shown in Figure 21.2.

For a CF entry in a root node or a non-leaf node, that CF entry equals the sum

of the CF entries in the child nodes of that entry. A leaf node CF is referred to simply

as a leaf.

21.4 PHASE 1: BUILDING THE CF TREE

Phase 1 of the BIRCH algorithm consists of building the CF tree. This is done using

a sequential clustering approach, whereby the algorithm scans the data one record

at a time, and determines whether a given record should be assigned to an existing

cluster, or a new cluster should be constructed. The CF tree building process consists

of four steps, as follows:

CF TREE BUILDING PROCESS

1. For each given record, BIRCH compares the location of that record with the loca-

tion of each CF in the root node, using either the linear sum or the mean of the

CF. BIRCH passes the incoming record to the root node CF closest to the incoming

record.
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2. The record then descends down to the non-leaf child nodes of the root node CF

selected in step 1. BIRCH compares the location of the record with the location of

each non-leaf CF. BIRCH passes the incoming record to the non-leaf node CF closest

to the incoming record.

3. The record then descends down to the leaf child nodes of the non-leaf node CF

selected in step 2. BIRCH compares the location of the record with the location

of each leaf. BIRCH tentatively passes the incoming record to the leaf closest to the

incoming record.

4. Perform one of (a) or (b):

a. If the radius (defined below) of the chosen leaf including the new record does

not exceed the Threshold T, then the incoming record is assigned to that leaf.

The leaf and all of its parent CFs are updated to account for the new data

point.

b. If the radius of the chosen leaf including the new record does exceed the Threshold

T, then a new leaf is formed, consisting of the incoming record only. The parent

CFs are updated to account for the new data point.

Root node

Non-leaf node

Leaf node

CFRoot,1

CFNon-Leaf,1

CF1 CF2 CFL

CFNon-Leaf,2 CFNon-Leaf,B

CFRoot,2 CFRoot,B

Other non-leaf nodes

Other leaf nodes

Figure 21.2 General structure of a CF tree, with branching factor B, and L leafs in each leaf

node.



564 CHAPTER 21 BIRCH CLUSTERING

Now, if step 4b is executed, and there are already the maximum of L leafs in the

leaf node, then the leaf node is split into two leaf nodes. The most distant leaf node

CFs are used as leaf node seeds, with the remaining CFs being assigned to whichever

leaf node is closer. If the parent node is full, split the parent node, and so on. This

process is illustrated in the example below.

Each leaf node CF may be viewed as a sub-cluster. In the cluster step, these

sub-clusters will be combined into clusters. For a given cluster, let the cluster centroid

be

x =
∑

xi

n

Then the radius of the cluster is

R =

√∑
(xi − x)2

n

Note that the radius of a cluster may be calculated even without knowing the data

points, as long as we have the count n, the linear sum LS, and the squared sum SS.

This allows BIRCH to evaluate whether a given data point belongs to a particular

sub-cluster without needing to scan the original data set. The derivation for the sum

of squares is as follows: ∑
(xi − x)2

=
∑

(x2
i − 2xxi + x2)

=
∑

x2
i − 2x

∑
xi + nx2

=
∑

x2
i −

(∑
xi

)2

n

= SS − (LS)2

n

Then,

R =
√

SS − (LS)2∕n

n

The Threshold T allows the CF tree to be resized when it grows too big, that is, when

B or L are exceeded. In such a case, T may be increased, allowing more records to be

assigned to the individual CFs, thereby reducing the overall size of the CF tree, and

allowing more records to be input.

21.5 PHASE 2: CLUSTERING THE SUB-CLUSTERS

Once the CF tree is built, any existing clustering algorithm may be applied to the

sub-clusters (the CF leaf nodes), to combine these sub-clusters into clusters. For

example, in their original paper presenting BIRCH clustering, the authors used
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agglomerative hierarchical clustering3 for the cluster step, as does IBM/SPSS

Modeler. Because there are many fewer sub-clusters than data records, the task

becomes much easier for the clustering algorithm in the cluster step.

As mentioned earlier, BIRCH clustering achieves its high efficiency by substi-

tuting a small set of summary statistics to represent a larger set of data points. When

a new data value is added, these statistics may be easily updated. Because of this,

the CF tree is much smaller than the original data set, allowing for more efficient

computation.

A detriment of BIRCH clustering is the following. Because of the tree struc-

ture inherent in the CF tree, the clustering solution may be dependent on the input

ordering of the data records. To avoid this, the data analyst may wish to apply BIRCH

clustering on a few different random sortings of the data, and find consensus among

the results.

However, a benefit of BIRCH clustering is that the analyst is not required to

select the best choice of k, the number of clusters, as is the case with some other

clustering methods. Rather, the number of clusters in a BIRCH clustering solution is

an outcome of the tree-building process. (See later in the chapter for more on choosing

the number of clusters with BIRCH.)

21.6 EXAMPLE OF BIRCH CLUSTERING, PHASE 1:
BUILDING THE CF TREE

Let us examine in detail the workings of the BIRCH clustering algorithm as applied

to the following one-dimensional toy data set.4

x1 = 0.5 x2 = 0.25 x3 = 0 x4 = 0.65 x5 = 1 x6 = 1.4 x7 = 1.1

Let us define our CF tree parameters as follows:

• Threshold T= 0.15; no leaf may exceed 0.15 in radius.

• Number of entries in a leaf node L= 2.

• Branching factor B= 2; maximum number of child nodes for each non-leaf

node.

The first data value x1 = 0.5 is entered. The root node is initialized with the

CF values of the first data value. A new leaf Leaf1 is created, and BIRCH assigns

the first record x1 to Leaf1. Because it contains only one record, the radius of

Leaf1 is zero, and thus less than T= 0.15. The CF tree after one record is shown in

Figure 21.3.

The second data value x2 = 0.25 is entered. BIRCH tentatively passes x2 =
0.25 to Leaf1. The radius of Leaf1 is now R = 0.126 < T = 0.15, so x2 is assigned to

Leaf1. The summary statistics for CF1 are then updated as shown in Figure 21.4.

The third data value x3 = 0 is entered. BIRCH tentatively passes x3 = 0 to

Leaf1. However, the radius of Leaf1 now increases to R = 0.205 > T = 0.15. The

3See Chapter 19.
4Thanks to James Cunningham for valuable discussions regarding this example.
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X1=0.05

Leaf 1: R=0

Root - Node 0

CF1: n=1, LS=0.5, SS=0.25

Figure 21.3 CF Tree after the first data value is entered.

Root - Node 0

Leaf 1: R=0.126

X1=0.05

CF1: n=2, LS=0.75, SS=0.313

X2=0.25

Figure 21.4 Second data value entered: Summary statistics are updated.

Threshold value T = 0.15 is exceeded, so x3 is not assigned to Leaf1. Instead, a new

leaf is initialized, called Leaf2, containing x3 only. The summary statistics for CF1

and CF2 are shown in Figure 21.5.

The fourth data value x4 = 0.65 is entered. BIRCH compares x4 to the locations

of CF1 and CF2. The location is measured by x = LS∕n. We have xCF1
= 0.75∕2 =

0.375 and xCF2
= 0∕1 = 0. The data point x4 = 0.65 is thus closer to CF1 than to CF2.

BIRCH tentatively passes x4 to CF1. The radius of CF1 now increases to R = 0.166 >

T = 0.15. The Threshold value T = 0.15 is exceeded, so x4 is not assigned to CF1.

Instead, we would like to initialize a new leaf. However, L= 2 means that we cannot

have three leafs in a leaf node. We must therefore split the root node into (i) Node1,

which has as its children Leaf1 and Leaf2, and (ii) Node2, whose only leaf Leaf3



21.6 EXAMPLE OF BIRCH CLUSTERING, PHASE 1: BUILDING THE CF TREE 567

Root - Node 0

Leaf 1: R=0.126

X1=0.05

CF1: n=2, LS=0.75, SS=0.313

CF2: n=1, LS=0, SS=0

X2=0.25

Leaf 2: R=0

X3=0

Figure 21.5 Third data value entered: A new leaf is initialized.

contains only x4, as illustrated in Figure 21.6. The summary statistics for all leafs and

nodes are updated, as shown in Figure 21.6. Note that the summary statistics for the

parent CFs equal the sum of their children CFs.

Root - Node 0

Node 1 Node 2

Leaf 3: R=0Leaf 2: R=0Leaf 1: R=0.126

X1=0.05
X4=0.65

X2=0.25

X3=0

CF12: n=3, LS=0.75, SS=0.313

CF1: n=2, LS=0.75, SS=0.313 CF3: n=1, LS=0.65, SS=0.423

CF2: n=1, LS=0, SS=0

CF3: n=1, LS=0.65, SS=0.423

Figure 21.6 Fourth data value entered. The leaf limit L= 2 is surpassed, necessitating the

creation of new nodes.

The fifth data value x5 = 1 is entered. BIRCH compares x5 = 1 with the loca-

tion of CF12 and CF3. We have xCF12
= 0.75∕3 = 0.25 and xCF4

= 0.65∕1 = 0.65.

The data point x5 = 1 is thus closer to CF3 than to CF
12

. BIRCH passes x5 to
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CF3. The radius of CF3 now increases to R = 0.175 > T = 0.15, so x5 cannot be

assigned to CF3. Instead, a new leaf in leaf node Leaf4 is initialized, with CF,

CF4, containing x5 only. The summary statistics for CF34 are updated, as shown in

Figure 21.7.

Root - Node 0

Node 1

Leaf 3: R=0Leaf 2: R=0Leaf 1: R=0.126

X1=0.05
X4=0.65

Leaf 4: R=0

X5=1

X2=0.25

X3=0

CF12: n=3, LS=0.75, SS=0.313

CF1: n=2, LS=0.75, SS=0.313

CF2: n=1, LS=0, SS=0

CF34: n=2, LS=1.65, SS=1.423

Node 2

CF3: n=1, LS=0.65, SS=0.423

CF4: n=1, LS=1, SS=1

Figure 21.7 Fifth data value entered: Another new leaf is initialized.

The sixth data value x6 = 1.4 is entered. At the root node, BIRCH compares

x6 = 1.4 with the location of CF12 and CF34. We have xCF12
= 0.75∕3 = 0.25 and

xCF34
= 1.65∕2 = 0.825. The data point x6 = 1.4 is thus closer to CF34, and BIRCH

passes x6 to CF34. The record descends to Node 2, and BIRCH compares x6 = 1.4

with the location of CF3 and CF
4
. We have xCF3

= 0.65 and xCF4
= 1. The data point

x6 = 1.4 is thus closer to CF4 than to CF3. BIRCH tentatively passes x6 to CF4. The

radius of CF4 now increases to R = 0.2 > T = 0.15. The Threshold value T = 0.15

is exceeded, so x6 is not assigned to CF4. But the branching factor B= 2 means that

we may have at most two leaf nodes branching off of any non-leaf node. Therefore,

we will need a new set of non-leaf nodes, Node2.1 and Node2.2, branching off from

Node2. Node2.1 contains CF3 and CF4, while Node2.2 contains the desired new CF5

and the new leaf node Leaf 5 as its only child, containing only the information from

x6. This tree is shown in Figure 21.8.

Finally, the last data value x7 = 1.1 is entered. In the root node, BIRCH

compares x7 = 1.1 with the location of CF12 and CF345. We have xCF12
= 0.25 and

xCF345
= 1.02, so that x7 = 1.1 is closer to CF345, and BIRCH passes x7 to CF345.

The record then descends down to Node 2. The comparison at this node has x7 = 1.1

closer to CF34 than to CF5. The record then descends down to Node 2.1. Here,

x7 = 1.1 closer to CF4 than to CF3. BIRCH tentatively passes x7 to CF4, and to

Leaf 4. The radius of Leaf 4 becomes R = 0.05, which does not exceed the radius

threshold value of T = 0.15. Therefore, BIRCH assigns x7 to Leaf 4. The numerical

summaries in all of its parents are updated. The final form of the CF tree is shown in

Figure 21.9.
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Root - Node 0

Node 1

Leaf 3: R=0 Leaf 4: R=0 Leaf 5: R=0

Leaf 2: R=0Leaf 1:

X1=0.05

X4=0.65 X5=1 X6=1.4

Node 2.2Node 2.1

X2=0.25

X3=0

CF12: n=3, LS=0.75, SS=0.313

CF345: n=3, LS=3.05, SS=3.393

Node 2

CF34: n=2, LS=1.65, SS=1.423

CF3: n=1, LS=0.65, SS=0.423

CF4: n=1, LS=1, SS=1

CF5: n=1, LS=1.4, SS=1.96

CF5: n=1, LS=1.4, SS=1.96

CF1: n=2, LS=0.75, SS=0.313

CF2: n=1, LS=0, SS=0

Figure 21.8 Sixth data value entered: A new leaf node is needed, as are a new non-leaf node

and a root node.

Root - Node 0

Node 1

Leaf 3: R=0 Leaf 4: R=0.05 Leaf 5: R=0

Leaf 2: R=0Leaf 1:

X1=0.05

X4=0.65 X5=1

X7=1.1

X6=1.4

Node 2.2Node 2.1

X2=0.25

X3=0

CF12: n=3, LS=0.75, SS=0.313

CF1: n=2, LS=0.75, SS=0.313

CF2: n=1, LS=0, SS=0

CF345: n=4, LS=4.15, SS=4.212

Node 2

CF34: n=3, LS=2.75, SS=2.252

CF3: n=1, LS=0.65, SS=0.423

CF4: n=2, LS=2.1, SS=2.21

CF5: n=1, LS=1.4, SS=1.96

CF5: n=1, LS=1.4, SS=1.96

Figure 21.9 Seventh (and last) data value entered: Final form of CF tree.



570 CHAPTER 21 BIRCH CLUSTERING

21.7 EXAMPLE OF BIRCH CLUSTERING, PHASE 2:
CLUSTERING THE SUB-CLUSTERS

Phase 2 often uses agglomerative hierarchical clustering, as we shall perform here.

The five CFs CF1, CF2, … , CF5 are the objects that the agglomerative clustering

shall be carried out on, not the original data. We use the following simple algorithm:

AGGLOMERATIVE CLUSTERING OF CLUSTER FEATURES

Let kmax represent the total number of distinct CFs found by BIRCH.

For k = kmax to 2, perform the following:

• Find the two sub-cluster centers that are closest together.

• Merge the indicated clusters. Update the summary statistics. Report evaluative mea-

sures.

The cluster centers are as follows:

xCF2
= 0 xCF1

= 0.375 xCF3
= 0.65 xCF4

= 1.05 xCF5
= 1.4

We start with k = kmax = 5. Now, perhaps k= 5 is the optimal cluster solution for this

problem. Perhaps not. What we are doing here is forming a set of candidate clustering

solutions for k= 5, k= 4, k= 3, and k= 2. We shall then choose the best clustering

solution based on a set of evaluative measures. Let us proceed.

The two closest clusters are CF1 and CF3. Combining these CFs, we obtain a

new cluster center of xCF1,3
= (2 × 0.375 + 1 × 0.65)∕3 = 0.47. The remaining clus-

ter centers are

xCF2
= 0 xCF1,3

= 0.47 xCF4
= 1.05 xCF5

= 1.4

Here, the two nearest clusters are CF4 and CF5. When we combine these CFs, the

combined cluster center is xCF4,5
= (2 × 1.05 + 1 × 1.4)∕3 = 1.17. The remaining

cluster centers are

xCF2
= 0 xCF1,3

= 0.47 xCF4,5
= 1.17

Among these, the two nearest clusters are CF2 and CF1,3. Combining these CFs, we

get a new cluster center of xCF2,1,3
= (2 × 0.375 + 1 × 0 + 1 × 0.65)∕4 = 0.35. This

leaves us with our last remaining cluster centers:

xCF2,1,3
= 0.35 xCF4,5

= 1.17

Combining these two clusters would result in one big cluster of the entire data set.

Each of the above sets of cluster centers represents a candidate clustering solution.

We turn now to the problem of how to evaluate these candidate clusters, and so to

choose the best clustering solution.
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21.8 EVALUATING THE CANDIDATE CLUSTER
SOLUTIONS

In Chapter 23, we will examine methods for measuring cluster goodness. Here we

apply one of the methods, the pseudo-F statistic

F = MSB

MSE
=

SSB∕k − 1

SSE∕N − k

in order to select the value of k that delivers the optimal clustering solution for our

little data set.

For each of the candidate clustering solutions shown above, the pseudo-F statis-

tic and p-value was calculated, and shown in Table 21.1.

TABLE 21.1 The pseudo-F method selects k= 2 as the preferred clustering solution

Value of k MSB MSE Pseudo-F p-Value

2 1.1433 0.3317 17.24 0.009
3 0.6533 0.0408 15.52 0.013

4 0.4628 0.0289 16.02 0.024

5 0.3597 0.0181 19.84 0.049

The smallest p-value occurs when k= 2. Thus, the preferred clustering solution

is for the following cluster centers:

xCF2,1,3
= 0.35 xCF4,5

= 1.17

This is indeed the clustering solution preferred by IBM/SPSS Modeler’s Two-Step
(BIRCH) Algorithm, as the excerpted results in Figure 21.10 indicate, although it

should be noted that Modeler uses a different method to select the best model.

One may wonder whether we may calculate the pseudo-F statistic, without hav-

ing recourse to the original data, only the summary statistics in the set of CFs. The

answer is, yes, we can, and the proof is left as an exercise.

21.9 CASE STUDY: APPLYING BIRCH CLUSTERING TO
THE BANK LOANS DATA SET

Recall the Loans data sets from Chapter 21. The Loans_training data set contains

about 150,000 records and the Loans_test data set contains about 50,000 records.

The task is to classify loan applications as approved or not (the flag response vari-

able), using the following predictors: debt-to-income ratio, FICO score, and request

amount. The amount of interest is included as well, but is a mathematical function of

the request amount, and so is perfectly correlated with that predictor.
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Input (predictor) importance

1.0 0.8 0.6 0.4 0.2 0.0

Clusters Cell distribution

Cluster

Label

Description
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42.9%

(3)
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Cluster-1 Cluster-2

Figure 21.10 Modeler’s Two-Step (BIRCH) Algorithm selects the same clustering solution

that we did.

21.9.1 Case Study Lesson One: Avoid Highly Correlated
Inputs to Any Clustering Algorithm

This heading telegraphs our punch line: Analysts should beware of included highly

correlated inputs to any clustering algorithm. This section shows just how costly such

an error can be.

Define two clustering input collections:

• The With Interest input collection wrongly includes interest as an input, along

with the predictors debt-to-income ratio, FICO score, and request amount.

• The No Interest input collection includes only the predictors debt-to-income
ratio, FICO score, and request amount as inputs, and does not include interest.

BIRCH clustering was applied to both input collections.5 The With Interest
clustering model is shown in Figure 21.11. Two clusters are identified, with a reported

mean silhouette (MS) value of about 0.6. The No Interest clustering model is shown

in Figure 21.12. Three clusters are identified, with a reported MS value of about 0.4.

Thus, the silhouette measure would lead us to believe that the With Interest clustering

solution is preferable. However, as we mentioned in Chapter 21, there may be times

when the data analyst may have to choose a model that is attuned to the requirements

of the client rather than a model that is preferred by a given statistic. Such is the

case here.

Figure 21.13 shows how the predictors influenced the composition of

the clusters. For the With Interest model, Cluster 1 contains those records

5Criteria selected in IBM Modeler were log-likelihood and BIC.
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Model summary

Cluster sizes

39.0%
61.0%

Cluster

Cluster-1

Cluster-2

Cluster quality

Algorithm

Size of smallest cluster 58,595 (39%)

91,707 (61%)

1.57

Size of largest cluster

Ratio of sizes:
largest cluster to
smallest cluster

TwoStep

Inputs 4

Clusters

–1.0 –0.5 0.0

Poor Fair Good

Silhouette measure of cohesion and separation

0.5 1.0

2

Figure 21.11 The With Interest clustering model identifies two clusters, and has a higher silhouette value.
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Model summary

Cluster sizes

46.8%
30.1%

23.1%

Cluster

Cluster-1

Cluster-2

Cluster-3

Cluster quality

Algorithm

Size of smallest cluster 34,696 (23.1%)

70,393 (46.8%)

2.03

Size of largest cluster

Ratio of sizes:
largest cluster to

smallest cluster

TwoStep

Inputs 3

Clusters

Poor Fair Good

3

–1.0 –0.5 0.0

Silhouette measure of cohesion and separation

0.5 1.0

Figure 21.12 The No Interest clustering model identifies three clusters.
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Clusters
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Cluster-1
Cluster-1 Cluster-3

Cluster-2
Cluster-2

Label
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Inputs
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Figure 21.13 Predictor influence on cluster composition. The With Interest model is essen-

tially double counting request amount.

with low FICO score, low request amount (and therefore low interest), and relatively

high debt-to-income ratio. Cluster 2 contains records with the opposite levels. Note

that the graphs for interest and request amount are essentially identical. This illus-

trates that we are essentially double counting request amount by including interest,
which is a function of request amount, as an input.

The No Interest model, however, shows no such double counting. Let us briefly

profile the clusters for the No Interest model.

• Cluster 1: Big Profits, Probably. Cluster 1 contains those with moderately low

debt-to-income ratio, moderately high FICO score, and high request amount.

The bank would usually like to lend to these people, since they tend to be fairly

financially secure. However, they are not as secure as Cluster 3. Most will likely

pay back the loan, and the high request amount means that there is plenty of

interest (and therefore profit) to be had. But the occasional default will also be

high.

• Cluster 2: Iffy Propositions. Cluster 2 consists of applicants with high

debt-to-income ratios and low FICO scores. The bank may be advised to tread

carefully with this group.

• Cluster 3: Secure Small Profits. Cluster 3 contains the most financially secure

applicants, with the lowest debt-to-income ratio and the highest FICO scores.

Unfortunately for the bank, these customers are looking for small loans only,

that is, the request amount is small. Thus profits will be small, per applicant.
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But risk is small as well. Approving these customers should, on the whole, be

a no-brainer for the bank.

A bank manager may comment that these cluster profiles “feel real,” that is,

they seem to reflect actual segments of applicants. Consulting analysts should not

underestimate such reality checks.

One way to measure the reality of the clusters is to examine their effects on

downstream classification models. So, next we measure the relative efficacy of using

cluster membership only (and no other predictors) on a CART model for predicting

loan approval. In Chapter 16, we found that the data-driven cost matrix for this prob-

lem was as shown in Table 21.2.

TABLE 21.2 Cost matrix for the bank loan case study

Predicted Category

0 1

Actual category 0 CostTN = $0 CostFP = $13, 427

1 CostFN = $0 CostTP = −$6, 042

Two CART models were trained on the Loans_training data set, using only the

cluster membership for the With Interest cluster model and the No Interest cluster

model, respectively. These CART models were then evaluated using the Loans_test
data set. Table 21.3 shows the contingency table the With Interest model, while

Table 21.4 shows the contingency table for the No Interest model.

The model costs for these models are as follows:

• With Interest Model: (15, 624)($0) + (9310)($13, 427) + (14, 823)($0) +
(9941)(−$6042) = $64, 941, 848, for an average cost of $1306.73 per

customer.

TABLE 21.3 Contingency table for With Interest model

Predicted Category

Disapprove Approve

Actual category Disapprove 15, 624 9310

Approve 14, 823 9941

TABLE 21.4 Contingency table for No Interest model

Predicted Category

Disapprove Approve

Actual category Disapprove 11, 350 13, 584

Approve 145 24, 619
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• No Interest Model: (11, 350)($0) + (13, 584)($13, 427) + (145)($0) +
(24, 619)(−$6042) = $33, 644, 370, for an average cost of $676.98 per

customer.

Note that the simple step of being careful to remove the perfectly correlated

predictor (interest) from the clustering algorithm has resulted in an estimated increase

in decrease in cost of more than $31 million! Of course, the danger of using correlated

inputs is not unique to BIRCH clustering; this warning applies across all clustering

algorithms.

21.9.2 Case Study Lesson Two: Different Sortings May Lead
to Different Numbers of Clusters

Other clustering algorithms require the user to specify a value of k, that is, the number

of clusters in the model. However, for BIRCH, the number of clusters is an implicit

outcome of the tree-building process. So, the user need not specify k. However, there

is a downside. Because of the tree structure inherent in the CF tree, the clustering

solution is dependent on the input ordering of the data records. So, different orderings

of the data records may lead to different numbers of BIRCH clusters. We illustrate

this phenomenon here.

We produced eight different orderings of the approximately 150,000 records in

the Loans_training data set. The first ordering was the original ordering of the data

used for the No Interest model above. The remaining seven orderings were accom-

plished as follows:

• Step 1. Generate a sort variable consisting of random draws from a Uniform

(0,1) distribution.

• Step 2. Sort the records in ascending order, based on the sort variable.

• Step 3. Run BIRCH on the records obtained in step 2.

The clustering solutions obtained by each of the eight different sort orderings

are summarized in Figure 21.14. Note the following:

• Sorts 1, 2, and 8 have k= 3 clusters.

• Sorts 3, 4, 6, and 7 have k= 4 clusters.

• Sort 5 has k= 6 clusters.

When different sortings produce varying values of k, the analyst should try to

arrive at a consensus as to the best value of k. At first, we would be tempted to declare

k= 4, because it received the most “votes” among the different sortings. For example,

the highest MS values are for k= 4 models (see Table 21.5). However, before we

declare a winner, it would be helpful to take a closer look at the performance of these

cluster models for predicting loan approval.

For each of the eight sortings, we used the training set to construct a CART

model using only the cluster memberships as predictors. We then evaluated each

model using the test data set. The somewhat surprising results are shown in Table 21.5
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Figure 21.14 Pie chart summaries of the BIRCH clusters resulting from the eight different

sortings. Which is the best?

(MS, mean silhouette). The most important column is the “Cost per Customer” col-

umn, since these figures affect the bank’s bottom line. The three sorts resulting in

profit are shown in bold. Note that the three sorts with the highest MS are among the

lowest performing models in terms of cost, suggesting that MS may not be a very

helpful statistic for our selection of k for this data set.

So, it seems that consensus is eluding us for choice of k with this data set. At

this point in the analysis, we are almost beyond the question of choosing k, since
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TABLE 21.5 Model summaries for BIRCH clusters as classification predictors: eight
different data sorts (best performance highlighted)

TN FP FN TP Cost Per Customer k MS

Sort 1 11,360 13,584 145 24,619 $676.98 3 0.4

Sort 2 16,990 7,944 5,149 19,615 −$𝟐𝟑𝟖.𝟒𝟑 3 0.4
Sort 3 19,469 5,465 6,943 17,821 − $ 690.09 4 0.4
Sort 4 12,444 12,490 1,437 23,327 $538.48 4 0.5

Sort 5 19,451 5,483 7,389 17,375 − $ 631.00 6 0.4
Sort 6 13,538 11,396 380 24,384 $114.41 4 0.4

Sort 7 11,987 12,947 121 24,643 $501.96 4 0.5

Sort 8 9,938 14,996 3 24,619 $1,041.20 3 0.5

the profitability of the models varies considerably for a given value of k. Instead,

why not just proceed with the actual clusters obtained with Sort 3 (k= 4) and Sort 5
(k= 6), the two most profitable models? Both of these clustering solutions are remark-

ably powerful, in that they produce profits using only the cluster memberships as

predictors. So the analyst will make a lot of money for the bank if he or she starts

with these clusters, and proceeds to enhance these models using the original predictor

variables.

In practice, BIRCH is often used to “suggest” a value of k, so that the actual

clustering may be performed using some other method, such as k-means clustering.

In this case, the analyst may wish to (i) report that BIRCH “suggests” k= 3 through

6, and (ii) proceed with these candidate values of k using k-means or some other

clustering algorithm.

Finally, close communication with the client is important at all times, but espe-

cially in situations like this. Clients often have a good idea of the types of customers

they have, and will often have insight into how many of these groups there are. Fur-

ther, the client may prefer that the number of clusters be small, in order to facilitate

in-company dissemination of the cluster results.

THE R ZONE

# Open required package, read in the data

library(birch)

loan.test <- read.csv(file="C:/… /Loans_Test.csv",

header = TRUE)

loan.train <- read.csv(file="C:/… /Loans_Training.csv",

header = TRUE)

# Use 5,000 records for a small example

train <- as.matrix(loan.train[1:1000,-c(1,5)])
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# Birch clustering

b1 <- birch(x = train, radius=1000) # Create the Birch tree

# Cluster the sub-clusters using kmeans

kb1 <- kmeans.birch(birchObject = b1, centers = 2, nstart = 1)

# Plot the results

par(mfrow=c(2,2))

plot(b1[,c(2,3)],

col = kb1$clust$sub)

plot(jitter(train[,c(1,3)], .1),

col = kb1$clust$sub,

pch = 16)

plot(jitter(train[,c(1,2)], .1),

col = kb1$clust$sub,

pch = 16)

plot(train[,c(2,3)],

col = kb1$clust$sub,

pch = 16)
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EXERCISES

1. Why is BIRCH appropriate for streaming data?

2. Describe the two phases of the BIRCH clustering algorithm.

3. What is a CF?

4. How are the CFs for two clusters merged?

5. Describe the parameters of the CF tree.

6. Why is Phase 2 of the BIRCH algorithm efficient?

http://www
http://CRAN.R-project.org/package=birch
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7. Why is it bad practice to include two highly correlated inputs to a clustering algorithm?

8. Is the MS value always indicative of the best cluster solution?

HANDS-ON EXERCISES

For Exercises 9–12, using the Loans data set, demonstrate that it is bad practice to include

interest with the other predictors, as follows:

9. Follow the methodology in Case Study Lesson One to develop cluster models with and

without interest.

10. Using the Loans_training data set, develop CART models for predicting loan approval,

based on cluster membership only, for the two cluster models.

11. Evaluate each CART model using the Loans_test data set. Provide contingency tables.

Compare the model costs, as in Table 21.4.

12. Based on your work in the previous exercises, what is the lesson we should learn?

For Exercises 13–16, using the Loans data set, demonstrate that different sortings may

lead to different numbers of clusters. Make sure you do not include interest as an input to

the clustering algorithms.

13. Generate four different sortings of the Loans_training data set. Together with the original

order from the No Interest model you generated earlier, this makes five different sortings.

14. Run BIRCH on each of the five different sortings. Report the value of k and the MS

for each.

15. Calculate model cost for each of the five different sortings. Which model has the highest

profitability or the lowest cost?

16. Briefly profile the clusters for the winning model from the previous exercise.



C H A P T E R 22
MEASURING CLUSTER
GOODNESS

22.1 RATIONALE FOR MEASURING CLUSTER
GOODNESS

Every modeling technique requires an evaluation phase. For example, we may work

hard to develop a multiple regression model for predicting the amount of money to

be spent on a new car. But, if the standard error of the estimate s for this regression

model is $100,000, then the usefulness of the regression model is questionable. In the

classification realm, we would expect that a model predicting who will respond to our

direct-mail marketing operation will yield more profitable results than the baseline

“send-a-coupon-to-everybody” or “send-out-no-coupons-at-all” models.

In a similar way, clustering models need to be evaluated as well. Some of the

questions of interest might be the following:

• Do my clusters actually correspond to reality, or are they simply artifacts of

mathematical convenience?

• I am not sure how many clusters there are in the data. What is the optimal

number of clusters to identify?

• How do I measure whether one set of clusters is preferable to another?

In this chapter, we introduce two methods for measuring cluster goodness, the

silhouette method, and the pseudo-F statistic. These techniques will help to address

these questions by evaluating and measuring the goodness of our cluster solutions. We

also examine a method to validate our clusters using cross-validation with graphical

and statistical analysis.

Any measure of cluster goodness, or cluster quality, should address the concepts

of cluster separation as well as cluster cohesion. Cluster separation represents how

distant the clusters are from each other; cluster cohesion refers to how tightly related

the records within the individual clusters are. Good measures of cluster quality need

to incorporate both criteria. For example, it has been written elsewhere that the sum
of squares error (SSE) is a good measure of cluster quality. However, by measuring

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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the distance between each record and its cluster center, SSE accounts only for cluster

cohesion and does not account for cluster separation. Thus, SSE is monotonically

decreasing as the number of clusters increases, which is not a desired property of

a valid measure of cluster goodness. Of course, both the silhouette method and the

pseudo-F statistic account for both cluster cohesion and cluster separation.

22.2 THE SILHOUETTE METHOD

The silhouette is a characteristic of each data value, and is defined as follows:

SILHOUETTE

For each data value i,

Silhouettei = si =
bi − ai

max(bi, ai)

where ai is the distance between the data value and its cluster center, and bi is the distance

between the data value and the next closest cluster center.

The silhouette value is used to gauge how good the cluster assignment is for that

particular point. A positive value indicates that the assignment is good, with higher

values being better than lower values. A value that is close to zero is considered to be

a weak assignment, as the observation could have been assigned to the next closest

cluster with limited negative consequence. A negative silhouette value is considered

to be misclassified, as assignment to the next closest cluster would have been better.

Note how the definition of silhouette accounts for both separation and cohesion.

The value of ai represents cohesion, as it measures the distance between the data

value and its cluster center, while bi represents separation, as it measures the distance

between the data value and a different cluster. This is illustrated in Figure 22.1. Each

of the data values in Cluster 1 have their values of ai and bi represented by solid lines

and dotted lines, respectively. Clearly, bi > ai for each data value, as represented by

Cluster 1 Cluster 2

a1

a3

a2

b1

b2

b3

Figure 22.1 Illustration of how silhouette accounts for both separation and cohesion.
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the longer dotted lines. Thus, each data value’s silhouette value is positive, indicating

that the data values have not been misclassified. The dotted lines indicate separation,

and the solid lines indicate cohesion. (The silhouettes for the data values in Cluster 2

are not represented in Figure 22.1.)

Taking the average silhouette value over all records yields a useful measure of

how well the cluster solution fits the data. The following thumbnail interpretation of

average silhouette is meant as a guideline only, and should bow before the expertise

of the domain expert.

INTERPRETATION OF AVERAGE SILHOUETTE VALUE

• 0.5 or better. Good evidence of the reality of the clusters in the data.

• 0.25–0.5. Some evidence of the reality of the clusters in the data. Hopefully,

domain-specific knowledge can be brought to bear to support the reality of the

clusters.

• Less than 0.25. Scant evidence of cluster reality.

22.3 SILHOUETTE EXAMPLE

Suppose we apply k-means clustering to the following little one-dimensional data set:

x1 = 0 x2 = 2 x3 = 4 x4 = 6 x5 = 10

k-means assigns the first three data values to Cluster 1 and the last two to Cluster 2, as

shown in Figure 22.2. The cluster center for Cluster 1 is m1 = 2, and the cluster center

a2 = 0

a1 = 2 a3 = 2 a4 = 2 a5 = 2

b1 = 8

b2 = 6

b3 = 4

b4 = 4

m1 = 2 m2 = 8

b5 = 8

0 2 4 6 10

Figure 22.2 Distances between the data values and the cluster centers.
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for Cluster 2 is m2 = 8, represented by the dotted vertical lines in Figure 22.2. The

values for ai represent the distance between the data value xi and the cluster center

to which xi belongs. The values for bi represent the distance between the data value

and the other cluster center. Note that a2 = 0 because a2 = m1 = 2.

Table 22.1 contains the calculations for the individual data value silhouettes,

along with the mean silhouette. Using our rule of thumb, mean silhouette= 0.7 rep-

resents good evidence of the reality of the clusters in the data. Note that x2 is perfectly

classified as belonging to Cluster 1, as it sits right on the cluster center m1; thus, its

silhouette value is a perfect 1.00. However, x3 is somewhat farther from its own clus-

ter center, and somewhat closer to the other cluster center; hence, its silhouette value

is lower, 0.50.

TABLE 22.1 Calculations for individual data value silhouettes and mean silhouette

xi ai bi max(ai, bi) Silhouettei = si =
bi − ai

max(bi, ai)

0 2 8 8
8 − 2

8
= 0.75

2 0 6 6
6 − 0

6
= 1.00

4 2 4 4
4 − 2

4
= 0.50

6 2 4 4
4 − 2

4
= 0.50

10 2 8 8
8 − 2

8
= 0.75

Mean silhouette= 0.7

22.4 SILHOUETTE ANALYSIS OF THE IRIS DATA SET

Next, we apply the silhouette method to Fisher’s well-known Iris data set. The data

set consists of 150 observations of three species of Iris, along with measurements

of their petal width, petal length, sepal width, and sepal length. Figure 22.3 shows a

scatter plot of petal width versus petal length, with an overlay of Iris species. (Note

that min–max normalization is used.) Figure 22.3 shows that one species is well

separated, but the other two are not, at least in this dimension. So, one question we

could ask of these Irises: True there are three species in the data set, but are there

really three clusters in the data set, or only two?

It makes sense to begin with k = 3 clusters. k-means clustering was applied to

the Iris data, asking for k = 3 clusters. A logical question might be: Do the clusters

match perfectly with the species? (Of course, the species type was not included as

input to the clustering algorithm.) The answer is, not quite. Compare Figure 22.4

with Figure 22.3. For example, most of the Iris virginica belong to Cluster 2, but

some belong to Cluster 3. And most of the Iris versicolor belong to Cluster 3, but

some belong to Cluster 2.
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Figure 22.3 Two of the Iris species seem to blend into one another.
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Figure 22.4 The species do not quite correspond one-to-one with the clusters.
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So, we proceed with the silhouette analysis. The silhouette values for each

flower were calculated, and graphed in the silhouette plot in Figure 22.5. This

silhouette plot shows the silhouette values, sorted from highest to lowest, for each

cluster. Cluster 1 is the best-defined cluster, as most of its silhouette values are rather

high. However, Clusters 2 and 3 have some records with high silhouette and some

records with low silhouette. However, there are no records with negative silhouette,

which would indicate the wrong cluster assignment. The mean silhouette values

for each cluster, and the overall mean silhouette, are provided in Table 22.2. These

values support our suggestion that, although Cluster 1 is well-defined, Clusters 2

and 3 are not so well-defined. This makes sense, in light of what we learned in

Figures 22.3 and 22.4.

TABLE 22.2 Mean silhouette values for k= 3 clusters

Cluster 1 Cluster 2 Cluster 3 Overall

Mean silhouette 0.8002 0.5593 0.5254 0.6258

Many of the low silhouette values for Clusters 2 and 3 come from the boundary

area between their respective clusters. Evidence for this is shown in Figure 22.6. The

silhouette values were binned (for illustrative purposes): A silhouette value below

0.5 is low; a silhouette value at least 0.5 is high. The lower silhouette values in this

boundary area result from the proximity of the “other” cluster center. This holds down

the value of bi, and thus of the silhouette value.
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Figure 22.5 Silhouette plot of the Iris data, for k = 3 clusters.



588 CHAPTER 22 MEASURING CLUSTER GOODNESS

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

SilhouetteBin

≤ 0.33

> 0.33

0.8

1.0

1.0

Petal length (mm)

Cluster 1

Cluster 3

Cluster 2

P
e

ta
l 
w

id
th

 (
m

m
)

Figure 22.6 The boundary area between Clusters 2 and 3 is where you will find many low

silhouette values.

Also, throughout this section, it is worth noting that the clusters were formed

using four predictors, but we are examining scatter plots of two predictors only. This

represents a projection of the predictor space down to two dimensions, and so loses

some of the information available in four dimensions.

Next, k-means was applied, with k = 2 clusters. This clustering combines I. ver-
sicolor and I. virginica into a single cluster, as shown in Figure 22.7. The silhouette

plot for k = 2 clusters is shown in Figure 22.8. There seem to be fewer low silhou-

ette values than for k = 3 clusters. This is supported by the mean silhouette values

reported in Table 22.3. The overall mean silhouette is 17% higher than for k = 3, and

the cluster mean silhouettes are higher as well.

So, it is clear that the silhouette method prefers the clustering model where

k = 2. This is fine, but just be aware that the k = 2 solution recognizes no distinction

between I. versicolor and I. virginica, whereas the k = 3 solution does recognize this

distinction. Such a distinction may be important to the client. There may be times

when the data analyst may have to choose a model that is attuned to the requirements

of the client rather than a model that is preferred by a given statistic.

Next, we turn to another useful tool for measuring cluster goodness, the

pseudo-F statistic.

TABLE 22.3 Mean silhouette values for k= 3 clusters

Cluster 1 Cluster 2 Overall

Mean silhouette 0.8285 0.6838 0.7321
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Figure 22.7 Iris versicolor and Iris virginica are now combined in Cluster 2.
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Figure 22.8 Silhouette plot of the Iris data, for k = 2 clusters.
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22.5 THE PSEUDO-F STATISTIC

Suppose we have k clusters, with ni data values respectively, so that Σni = N, the

total sample size. Let xij refer to the jth data value in the ith cluster, let mi refer to the

cluster center (centroid) of the ith cluster, and let M represent the grand mean of all

the data. Define SSB, the sum of squares between the clusters, as follows:

SSB =
k∑

i=1

ni ⋅ Distance2(mi,M)

Define SSE or the sum of squares within the clusters, as follows:

SSE =
k∑

i=1

nj∑
j=1

Distance2(xij,mi)

where

Distance(a, b) =
√∑

(ai − bi)
2

Then, the pseudo-F statistic equals

F = MSB

MSE
=

SSB∕k − 1

SSE∕N − k

The pseudo-F statistic is measures the ratio of (i) the separation between the clusters,

as measured by MSB, the mean square between the clusters, to (ii) the spread of the

data within the clusters, as measured by the mean square error, MSE.

The hypotheses being tested are the following:

H0 ∶ There are no clusters in the data.

Ha ∶ There are k clusters in the data.

Reject H0 for a sufficiently small p-value, where:

p-value = P(Fk−1,n−k > pseudo-F value)

The reason we call this statistic pseudo-F, is that it rejects the null hypothesis far

too easily. For example, 100 random Uniform(0,1) variates were drawn, and k-means

clustering was told to find k = 2 clusters in this random uniformly distributed data,

where there should be no clusters.

k-Means duly found the clusters shown in Figure 22.9, by simply separating

the data values larger than 0.5 from those smaller than 0.5. The resulting pseudo-F
statistic is given as follows:

F =
SSB∕k − 1

SSE∕n − k
=

6.4606∕1

2.2725∕98
= 6.4606

0.0232
= 278.61

with a p-value near zero, strongly rejecting the null hypothesis that there are no clus-

ters in the data. But as the data is randomly generated, the presumption must be that

there are no true clusters in the data. For this reason, the F statistic should not be
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Uniform

Figure 22.9 The pseudo-F statistic found the presence of clusters in randomly generated data.

used to test for the presence of clusters in data, and thereby earns the nomenclature,

pseudo-F.

However, if we have reason to believe that clusters do exist in the data, but we

do not know how many clusters there are, then pseudo-F can be helpful. The process

is as follows:

USING PSEUDO-F TO SELECT THE OPTIMAL NUMBER OF CLUSTERS

1. Use a clustering algorithm to develop a clustering solution for a variety of values

of k.

2. Calculate the pseudo-F statistic and p-value for each candidate, and select the can-

didate with the smallest p-value as the best clustering solution.

Note: It has been written elsewhere that the best clustering model is the one

with the largest value of pseudo-F. This is not always correct. One must account

for the different degrees of freedom k − 1 and n − k for each model. For example,

suppose Model A has k − 1 = 5, n − k = 100, and pseudo-F= 3.1, while Model B

has k − 1 = 6, n − k = 99, and pseudo-F= 3.0. The larger value of pseudo-F is for

Model A. However, Model A’s p-value is 0.0121, while Model B’s p-value is 0.0098,

indicating that Model B is in fact preferred.

22.6 EXAMPLE OF THE PSEUDO-F STATISTIC

Recall that we applied k-means clustering to the following data set, and found, for

k = 2, that k-means assigns the first three data values to Cluster 1 and the last two to

Cluster 2.

x1 = 0 x2 = 2 x3 = 4 x4 = 6 x5 = 10

Let us calculate the pseudo-F statistic for this clustering.

We have k = 2 clusters, with n1 = 3 and n2 = 2 data values, and N = 5. The

cluster centers are m1 = 2 and m2 = 8, and the grand mean is M = 4.4. Now, because

we are in one dimension, Distance(mi,M) = |mi − M|, so that:

SSB =
k∑

i=1

ni ⋅ Distance2(mi,M)

= 3 ⋅ (2 − 4.4)2 + 2 ⋅ (8 − 4.4)2 = 43.2
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Next,

SSE =
k∑

i=1

nj∑
j=1

Distance2(xij,mi)

= (0 − 2)2 + (2 − 2)2 + (4 − 2)2 + (6 − 8)2 + (10 − 8)2 = 16

Then, the pseudo-F statistic equals

F = MSB

MSE
=

SSB∕k − 1

SSE∕N − k
=

43.2∕1

16∕3
= 43.2

5.33
= 8.1

Figure 22.10 shows the distribution of the F statistic, with df1 = k − 1 = 1 and df2 =
N − k = 3. Note that the p-value is 0.06532, which does not indicate strong evidence

in favor of the reality of the clusters. But this is probably due in part to the very small

sample size.

Distribution of F with df1 = 1 and df2 = 3

0 8.1

0.06532

Figure 22.10 The p-value of 0.06532 does not indicate strong evidence in favor of the reality

of the clusters.

22.7 PSEUDO-F STATISTIC APPLIED TO THE IRIS
DATA SET

Next, we see which value of k is favored by the pseudo-F statistic for clustering the

Iris data set. For the vector (sepal length, sepal width, petal length, petal width), we

have N = 150 data values, with the grand mean

M = (0.4287, 0.4392, 0.4676, 0.4578)
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For k = 3 clusters, we have the following cluster counts and cluster centers:

• Cluster 1: n1 = 50 and m1 = (0.1961, 0.5908, 0.0786, 0.06)
• Cluster 2: n2 = 39 and m2 = (0.7073, 0.4509, 0.7970, 0.8248)
• Cluster 3: n2 = 61 and m3 = (0.4413, 0.3074, 0.5757, 0.5492)

Then we have the following contribution to SSB for each cluster:

• Cluster 1: 50 × {(0.1961−0.4287)2 +(0.5908−0.4392)2 +(0.0786−0.4676)2
+(0.06 − 0.4578)2}

• Cluster 2: 39 × {(0.7073−0.4287)2 +(0.4509−0.4392)2 +(0.7970−0.4676)2
+(0.8248 − 0.4578)2}

• Cluster 3:61 × {(0.4413−0.4287)2 +(0.3074−0.4392)2 +(0.5757−0.4676)2
+(0.5492 − 0.4578)2}

Summing the three contributions gives us SSB =
∑k

i=1 ni ⋅ Distance2(mi,M) =
34.1397.

The value for SSE =
∑k

i=1

∑nj

j=1
Distance2(xij,mi) is obtained by squaring

the distance between each observation and its cluster center, and then summing all

the entries. Having done this (calculations not shown), we obtain SSE = 6.9981. The

pseudo-F statistic is then

F = MSB

MSE
=

SSB∕k − 1

SSE∕N − k
=

34.1397∕2

6.9981∕147
= 358.5

with a p-value equal to zero to the 57th (!) decimal place.

For k = 2, perform calculations analogous to those above to obtain:

F =
28.7319∕1

12.1437∕148
= 350.2

with a p-value equal to zero only to the 41st decimal place. Thus, the pseudo-F statis-

tic prefers the k = 3 solution, in contrast to the silhouette method, which prefers the

k = 2 solution.

There are other methods for determining the optimal number of clusters. For

example, the Bayesian Information Criterion may be used, as demonstrated by Zhao,

Xu, and Franti.1

Next, we turn to a topic closely associated with measuring cluster goodness:

the topic of cluster validation.

22.8 CLUSTER VALIDATION

As with any other data mining modeling technique, the application of cluster analysis

should be subject to cross-validation, in order to ensure that the clusters are real, and

not just a result of random noise in the training data set. Many sophisticated cluster

1Qinpei Zhao, Mantao Xu, and Pasi Franti, Knee Point Detection on Bayesian Information Criterion, 20th

IEEE Conference on Tools with Artificial Intelligence, 2008.
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validation techniques exist, such as the Prediction Strength2 method. However, these

methods require data programming beyond the intent of this book.

Instead, we use the following simple, graphical and statistical approach to clus-

ter validation, summarized as follows:

CLUSTER VALIDATION METHODOLOGY

Goal: Confirm that the clusters found in the test data set match those found in the training
data set.

1. Apply cluster analysis to the training data set.

2. Apply cluster analysis to the test data set.

3. Use graphics and statistics to confirm that the clusters in the training data set match

the clusters in the test data set.

This methodology is simply a restatement of the usual cross-validation method-

ology, in terms of cluster analysis. We now apply this cluster validation methodology

to the Loans data set.

22.9 CLUSTER VALIDATION APPLIED TO THE LOANS
DATA SET

Recall the Loans data set, where a bank loan approval analyst is using debt-to-income
ratio (DIR), FICO score, and request amount in order to predict loan approval. There

are 150,302 records in the training data set and 49,698 records in the test data set. For

simplicity, k-means clustering was applied to both the training and the test data sets,

with k = 3 clusters.

Summary graphics of the clusters generated from the training and test data sets

are shown in Figures 22.11 and 22.12. For each partition, Cluster 1 is the smallest

and Cluster 3 is the largest, with the percentages involved relatively close. For each

partition:

• Cluster 1 contains high debt-to-income applicants, with low FICO scores and

low request amounts;

• Cluster 2 contains moderate debt-to-income applicants, with moderate/high

FICO scores, and high request amounts;

• Cluster 3 contains low debt-to-income applicants, with high FICO scores, and

low request amounts.

Table 22.4 contains the summary statistics (mean, standard deviation, num-

ber of records) for the clusters generated by the training and test data sets (DIR).

2Cluster Validation by Prediction Strength, by Robert Tibshirani and Guenther Walther, Journal of Com-
putational and Graphical Statistics, Volume 14, Issue 3, 2005.
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Debt-to-income

ratio (mm)

Debt-to-income

ratio (mm)
Debt-to-income

ratio (mm)

FICO score (mm) FICO score (mm) FICO score (mm)

Request amount (mm) Request amount (mm) Request amount (mm)

Cluster Cluster 1 Cluster 2 Cluster 3

Size

Inputs

18.7%

(28160)
27.9%

(41970)
53.3%

(80172)

Figure 22.11 Summary graphics of the clusters generated by the training data set.

Cluster Cluster 1 Cluster 2 Cluster 3

Debt-to-income

ratio (mm)

Debt-to-income

ratio (mm)

Debt-to-income

ratio (mm)

FICO score (mm) FICO score (mm) FICO score (mm)

Request amount (mm) Request amount (mm) Request amount (mm)

Size

Inputs

17.2%

(8543)

28.6%

(14198)

54.2%

(26957)

Figure 22.12 Summary graphics of the clusters generated by the test data set.

Table 22.5 contains the difference in variable means for each cluster, along with the

t-statistic for the two-sample t-test,3 and the p-value for this hypothesis test.

Practically all the p-values are small, indicating rejection of the null hypothesis

that the true means are equal. In other words, the hypothesis test results suggest that

the clusters from the training and test data sets do not match.

However, here we should recall a possible downside to statistical hypothesis

tests: that the null hypothesis is very easily rejected for very large sample sizes. It is

3See, for example, Larose, Discovering Statistics, second edition, W.H. Freeman and Company Publishers,

New York, 2013.
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TABLE 22.4 Summary statistics for clusters generated by training and test data sets

Training Test Training Test Training Test

DIR DIR FICO FICO Amount Amount

Cluster 1
Mean 0.200 0.195 0.399 0.385 0.130 0.134

Standard deviation 0.170 0.171 0.120 0.115 0.100 0.104

Records 28,160 8543 28,160 8543 28,160 8543

Cluster 2
Mean 0.212 0.210 0.628 0.630 0.591 0.587

Standard deviation 0.147 0.147 0.112 0.111 0.139 0.140

Records 41,970 14,198 41,970 14,198 41,970 14,198

Cluster 3
Mean 0.153 0.156 0.664 0.662 0.202 0.196

Standard deviation 0.102 0.107 0.076 0.077 0.105 0.103

Records 80,172 26,957 80,172 26,957 80,172 26,957

TABLE 22.5 Difference between the variables, with results from the two-sample
hypothesis test

Cluster 1 Cluster 2 Cluster 3

DIR FICO Amount DIR FICO Amount DIR FICO Amount

Difference 0.005 0.014 −0.004 0.002 −0.002 0.004 −0.003 0.002 0.006

t-Statistics 2.37 9.76 −3.12 1.40 −1.85 2.95 −4.03 3.70 8.23

p-Value 0.018 0.000 0.002 0.161 0.064 0.003 0.000 0.000 0.000

well known that classical hypothesis tests will reject the null hypothesis for tiny effect

sizes, or tiny differences between samples, when the sample sizes are large enough.

For example, take the t-test for the difference between partitions for the mean DIR for

Cluster 3. In Table 22.5, the p-value is zero, and the null hypothesis is rejected. But,

suppose we repeat this t-test with the very same values for the means and standard

deviations, but this time with only a 10th of the number of records in each partition:

8017 for the training set and 2696 for the test set. In that case, the p-value becomes

0.203 and the null hypothesis is no longer rejected. So, for the very same difference

in means, sufficiently increasing the sample sizes will eventually lead to rejection of

most null hypotheses. This makes classical hypothesis testing of limited usefulness

for most big data applications.

Instead, consider whether the difference of 0.003 between the partitions for the

Cluster 3 DIR means is really of practical significance. Probably not. Instead, the

analyst should concentrate on the big picture: We are trying to determine whether

there is a match between the clusters uncovered in the training and test data sets. If

the clusters are broadly similar, with similar profiles, and variable means close to each

other, then they should be confirmed as validated. Based on these criteria, we judge

the clusters for the Loans data set to be validated.
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Why, then, is Table 22.5 included here? First, for small-to-moderate sample

sizes, statistical inference is quite helpful in this situation. Second, regardless of the

number of records involved, the analyst should report the difference in variable means

between the partitions, so that the client (or someone well familiar with the data) can

render judgment on whether the difference is of practical significance.

THE R ZONE

# Read in and prepare the data

i.data <− iris # Iris is a built-in dataset

# Min-max normalization

i.data$SL <− (i.data$Sepal.Length - min(i.data$Sepal.Length))/

(max(i.data$Sepal.Length) - min(i.data$Sepal.Length))

i.data$SW <− (i.data$Sepal.Width - min(i.data$Sepal.Width))/

(max(i.data$Sepal.Width) - min(i.data$Sepal.Width))

i.data$PL <− (i.data$Petal.Length - min(i.data$Petal.Length))/

(max(i.data$Petal.Length) - min(i.data$Petal.Length))

i.data$PW <− (i.data$Petal.Width - min(i.data$Petal.Width))/

(max(i.data$Petal.Width) - min(i.data$Petal.Width))

# Silhouette values
# Requires package ’cluster’

library(cluster)

# k-means (k=3)

km1 <− kmeans(i.data[,6:9], 3)

dist1 <− dist(i.data[,6:9],

method = "euclidean")

sil1 <− silhouette(km1$cluster, dist1)

plot(sil1, col = c("black", "red", "green"),

main = "Silhouette Plot: 3-Cluster

K-Means Clustering of Iris Data")

# k-means (k=2)

km2 <− kmeans(i.data[,6:9], 2)

dist2 <− dist(i.data[,6:9],

method = "euclidean")

sil2 <− silhouette(km2$cluster, dist2)

plot(sil2, col = c("black", "red"),

main = "Silhouette Plot: 2-Cluster

K-Means Clustering of Iris Data")

0.0 0.2 0.4

Silhouette width si

Average silhouette width : 0.5

0.6 0.8 1.0

3: 33 | 0.49

2: 21 | 0.24

1:

j : nj | avei∈Cj Si

3 clusters Cjn = 150

Silhouette Plot: 3-Cluster K-Means Clustering of Iris Data

96 | 0.56

0.0 0.2 0.4

Silhouette width si

Average silhouette width : 0.63

0.6 0.8 1.0

2: 100 | 0.57

50 | 0.761:

j : nj | avei∈Cj Si

2 clusters Cjn = 150

Silhouette Plot: 2-Cluster K-Means Clustering of Iris Data
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# Plot silhouette values

silval1 <− ifelse(sil1[,3] <= 0.33, 0, 1)

plot(i.data$PL, i.data$PW, col = silval1+1,

pch = 16,

main = "Silhouette Values, K = 3",

xlab = "Petal Length (min-max)",

ylab = "Petal Width (min-max)"

legend("topleft", col=c(1,2), pch = 16,

legend=c("<= 0.33", "> 0.33"))

silval2 <− ifelse(sil2[,3] <= 0.33, 0, 1)

plot(i.data$PL, i.data$PW, col = silval2+1,

pch = 16,

main = "Silhouette Values, K = 2",

xlab = "Petal Length (min-max)",

ylab = "Petal Width (min-max")

legend("topleft", col=c(1,2), pch = 16,

legend=c("<= 0.33", "> 0.33"))
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# Pseudo-F

# Requires package ’clusterSim’

library("clusterSim")

n <− dim(i.data)[1]

psF1 <− index.G1(i.data[,6:9], cl = km1$cluster)

pf(psF1, 2, n-2)

psF2 <− index.G1(i.data[,6:9], cl = km2$cluster)

pf(psF2, 1, n-1)

# Cluster validation—prepare the data

loan.test <− read.csv(file="C:/… /Loans_Test.csv", header = TRUE)

loan.train <− read.csv(file="C:/… /Loans_Training.csv", header = TRUE)

test <− loan.test[,-1]

train <− loan.train[,-1]

kmtest <− kmeans(test, centers = 3)

kmtrain <− kmeans(train, centers = 3)
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# Cluster validation—variable summaries by cluster

clust.sum <− matrix(0.0, ncol = 3, nrow = 4)

colnames(clust.sum) <− c("Cluster 1",

"Cluster 2", "Cluster 3")

rownames(clust.sum) <− c("Test Data Mean",

"Train Data Mean", "Test Data Std Dev",

"Test Data Std Dev")

clust.sum[1,] <−
tapply(test$Debt.to.Income.Ratio,

kmtest$cluster, mean)

clust.sum[2,] <−
tapply(train$Debt.to.Income.Ratio,

kmtrain$cluster, mean)

clust.sum[3,] <−
tapply(test$Debt.to.Income.Ratio,

kmtest$cluster, sd)

clust.sum[4,] <−
tapply(train$Debt.to.Income.Ratio,

kmtrain$cluster, sd)
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EXERCISES

1. Why do we need evaluation measures for cluster algorithms?

2. What is cluster separation and cluster cohesion?

3. Why is SSE not necessarily a good measure of cluster quality?

4. What is a silhouette? What is its range? Is it a characteristic of a cluster, a variable, or a

data value?

5. How do we interpret a silhouette value?

6. Explain how silhouette accounts for both separation and cohesion.

7. How is average silhouette interpreted?

8. When will a data value have a perfect silhouette value? What is this value?

mailto:dudek@ue.wroc.pl
http://CRAN.R-project.org/package=clusterSim
http://www.R-project.org
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9. Describe what a silhouette plot is.

10. Should the analyst always choose the cluster solution with the better mean silhouette

value? Explain.

11. Explain how the pseudo-F statistic accounts for both separation and cohesion.

12. Why does the pseudo-F statistic have the word pseudo in its name?

13. Explain how we can use the pseudo-F statistic to select the optimal number of clusters.

14. True or false: The best clustering model is the one with the largest value of pseudo-F.

Explain.

15. What is our cluster validation methodology?

16. Why might statistical hypothesis tests not be very helpful for big data applications?

17. What are the criteria for determining whether there is a match between the clusters uncov-

ered in the training and test data sets?

HANDS-ON EXERCISES

Use the Loans_training data set and the Loans_test data set for the following exercises. These

data sets are available from the textbook web site www.DataMiningConsultant.com.

18. Use k-means with k = 3 to generate a cluster model with the training data set.

19. Generate a silhouette plot of your cluster model.

20. Calculate the mean silhouette values for each cluster, as well as the overall mean silhouette

for the cluster model.

21. Provide a two-dimensional scatter plot, using variables of your choice, with an overlay

of cluster membership. Choose variables that result in an interesting plot. Note where the

cluster boundaries are close, and where they are not so close.

22. Using the same variables as the previous exercise, provide a two-dimensional scatter plot,

with an overlay of binned silhouette values, as shown in this chapter. Comment on the

relationship between your two scatter plots.

23. Repeat Exercises 18–22 using k-means with k = 4.

24. Compare the mean silhouette values for the two cluster models. Which model is preferred?

25. Compare the pseudo-F statistics for the two cluster models. Which model is preferred?

26. Develop a good classification model for predicting loan approval, based solely on cluster

membership. Apply data-driven misclassification costs as shown in Chapter 16. Com-

pare your results for the k = 3 and k = 4 cases using overall model cost. Which model is

preferred?

27. With the test data set, apply k-means with the value of k from the preferred model above.

Perform validation of the clusters you uncovered with the training and test data sets of the

preferred model.

http://www.DataMiningConsultant.com
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C H A P T E R 23
ASSOCIATION RULES

23.1 AFFINITY ANALYSIS AND MARKET BASKET
ANALYSIS

Affinity analysis is the study of attributes or characteristics that “go together.” Meth-

ods for affinity analysis, also known as market basket analysis, seek to uncover asso-
ciations among these attributes; that is, it seeks to uncover rules for quantifying

the relationship between two or more attributes. Association rules take the form “If

antecedent, then consequent,” along with a measure of the support and confidence

associated with the rule. For example, a particular supermarket may find that of the

1000 customers shopping on a Thursday night, 200 bought diapers, and of the 200

who bought diapers, 50 bought beer. Thus, the association rule would be: “If buy

diapers, then buy beer,” with a support of
50

1000
= 5% and a confidence of

50

200
= 25%.

Examples of association tasks in business and research include

• investigating the proportion of subscribers to your company’s cell phone plan

that respond positively to an offer of a service upgrade;

• examining the proportion of children whose parents read to them who are them-

selves good readers;

• predicting degradation in telecommunications networks;

• finding out which items in a supermarket are purchased together, and which

items are never purchased together;

• determining the proportion of cases in which a new drug will exhibit dangerous

side effects.

What types of algorithms can we apply to mine association rules from a par-

ticular data set? The daunting problem that awaits any such algorithm is the curse

of dimensionality: The number of possible association rules grows exponentially in

the number of attributes. Specifically, if there are k attributes, we limit ourselves to

binary attributes, and we account only for the positive cases (e.g., buy diapers= yes),

which are on the order of k ⋅ 2k−1 possible association rules.1 Consider that a typical

1Hand, Mannila, and Smyth, Principles of Data Mining, MIT Press, 2001.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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application for association rules is market basket analysis and that there may be thou-
sands of binary attributes (buy beer? buy popcorn? buy milk? buy bread? etc.), the

search problem appears at first glance to be utterly hopeless. For example, suppose

that a tiny convenience store has only 100 different items, and a customer could either

buy or not buy any combination of those 100 items. Then there are 2100 ≅ 1.27 × 1030

possible association rules that await your intrepid search algorithm.

The a priori algorithm for mining association rules, however, takes advantage

of structure within the rules themselves to reduce the search problem to a more man-

ageable size. Before we examine the a priori algorithm, however, let us consider

some basic concepts and notation for association rule mining. We begin with a simple

example.

Suppose that a local farmer has set up a roadside vegetable stand and is offering

the following items for sale: {asparagus, beans, broccoli, corn, green peppers, squash,

tomatoes}. Denote this set of items as I. One by one, customers pull over, pick up

a basket, and purchase various combinations of these items, subsets of I. (For our

purposes, we do not keep track of how much of each item is purchased, just whether

or not that particular item is purchased.) Suppose Table 23.1 lists the transactions

made during one fine fall afternoon at this roadside vegetable stand.

23.1.1 Data Representation for Market Basket Analysis

There are two principal methods of representing this type of market basket data: using

either the transactional data format or the tabular data format. The transactional data
format requires only two fields, an ID field and a content field, with each record rep-

resenting a single item only. For example, the data in Table 23.1 could be represented

using transactional data format as shown in Table 23.2.

TABLE 23.1 Transactions made at the roadside vegetable stand

Transaction Items Purchased

1 Broccoli, green peppers, corn

2 Asparagus, squash, corn

3 Corn, tomatoes, beans, squash

4 Green peppers, corn, tomatoes, beans

5 Beans, asparagus, broccoli

6 Squash, asparagus, beans, tomatoes

7 Tomatoes, corn

8 Broccoli, tomatoes, green peppers

9 Squash, asparagus, beans

10 Beans, corn

11 Green peppers, broccoli, beans, squash

12 Asparagus, beans, squash

13 Squash, corn, asparagus, beans

14 Corn, green peppers, tomatoes, beans, broccoli
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TABLE 23.2 Transactional data format for the
roadside vegetable stand data

Transaction ID Items

1 Broccoli

1 Green peppers

1 Corn

2 Asparagus

2 Squash

2 Corn

3 Corn

3 Tomatoes

⋮ ⋮

In the tabular data format, each record represents a separate transaction, with as

many 0/1 flag fields as there are items. The data from Table 23.1 could be represented

using the tabular data format, as shown in Table 23.3.

TABLE 23.3 Tabular data format for the roadside vegetable stand data

Transaction Asparagus Beans Broccoli Corn Green Peppers Squash Tomatoes

1 0 0 1 1 1 0 0

2 1 0 0 1 0 1 0

3 0 1 0 1 0 1 1

4 0 1 0 1 1 0 1

5 1 1 1 0 0 0 0

6 1 1 0 0 0 1 1

7 0 0 0 1 0 0 1

8 0 0 1 0 1 0 1

9 1 1 0 0 0 1 0

10 0 1 0 1 0 0 0

11 0 1 1 0 1 1 0

12 1 1 0 0 0 1 0

13 1 1 0 1 0 1 0

14 0 1 1 1 1 0 1

23.2 SUPPORT, CONFIDENCE, FREQUENT ITEMSETS,
AND THE A PRIORI PROPERTY

Let D be the set of transactions represented in Table 23.1, where each transaction T
in D represents a set of items contained in I. Suppose that we have a particular set of

items A (e.g., beans and squash), and another set of items B (e.g., asparagus). Then

an association rule takes the form if A, then B (i.e., A ⇒ B), where the antecedent
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A and the consequent B are proper subsets of I, and A and B are mutually exclusive.

This definition would exclude, for example, trivial rules such as if beans and squash,

then beans.

The support s for a particular association rule A ⇒ B is the proportion of trans-

actions in D that contain both A and B. That is,

Support = P(A ∩ B) =
Number of transactions containing both A and B

Total number of transactions
.

The confidence c of the association rule A ⇒ B is a measure of the accuracy of the

rule, as determined by the percentage of transactions in D containing A that also

contain B. In other words,

Confidence = P(B|A) = P(A ∩ B)
P(A)

=
Number of transactions containing both A and B

Number of transactions containing A

Analysts may prefer rules that have either high support or high confidence, and

usually both. Strong rules are those that meet or surpass certain minimum support

and confidence criteria. For example, an analyst interested in finding which super-

market items are purchased together may set a minimum support level of 20% and

a minimum confidence level of 70%. However, a fraud detection analyst or a terror-

ism detection analyst would need to reduce the minimum support level to 1% or less,

because comparatively few transactions are either fraudulent or terror-related.

An itemset is a set of items contained in I, and a k-itemset is an itemset con-

taining k items. For example, {beans, squash} is a 2-itemset, and {broccoli, green

peppers, corn} is a 3-itemset, each from the vegetable stand set I. The itemset fre-
quency is simply the number of transactions that contain the particular itemset. A

frequent itemset is an itemset that occurs at least a certain minimum number of times,

having itemset frequency≥𝜙. For example, suppose that we set 𝜙= 4. Then itemsets

that occur more than four times are said to be frequent. We denote the set of frequent

k-itemsets as Fk.

MINING ASSOCIATION RULES

The mining of association rules from large databases is a two-step process:

1. Find all frequent itemsets; that is, find all itemsets with frequency≥𝜙.

2. From the frequent itemsets, generate association rules satisfying the minimum sup-

port and confidence conditions.

The a priori algorithm takes advantage of the a priori property to shrink the search

space. The a priori property states that if an itemset Z is not frequent, then adding another

item A to the itemset Z will not make Z more frequent. That is, if Z is not frequent,

Z ∪ A will not be frequent. In fact, no superset of Z (itemset containing Z) will be

frequent. This helpful property reduces significantly the search space for the a priori

algorithm.
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A PRIORI PROPERTY

If an itemset Z is not frequent, then for any item A, Z ∪ A will not be frequent.

23.3 HOW DOES THE A PRIORI ALGORITHM WORK
(PART 1)? GENERATING FREQUENT ITEMSETS

Consider the set of transactions D represented in Table 23.1. How would the a priori

algorithm mine association rules from this data set?

Let 𝜙= 4, so that an itemset is frequent if it occurs four or more times in D. We

first find F1, the frequent 1-itemsets, which represent simply the individual vegetable

items themselves. To do so, we may turn to Table 23.3 and take the column sums,

which give us the number of transactions containing each particular vegetable. As

each sum meets or exceeds 𝜙= 4, we conclude that each 1-itemset is frequent. Thus,

F1 = {asparagus, beans, broccoli, corn, green peppers, squash, tomatoes}.

Next, we turn to finding the frequent 2-itemsets. In general, to find Fk, the a

priori algorithm first constructs a set Ck of candidate k-itemsets by joining Fk−1 with

itself. Then it prunes Ck using the a priori property. The itemsets in Ck that survive

the pruning step then form Fk. Here, C2 consists of all the combinations of vegetables

in Table 23.4.

As 𝜙= 4, we have F2 = { {asparagus, beans}, {asparagus, squash}, {beans,

corn}, {beans, squash}, {beans, tomatoes}, {broccoli, green peppers}, {corn,

tomatoes} }. Next, we use the frequent itemsets in F2 to generate C3, the candidate

3-itemsets. To do so, we join F2 with itself, where itemsets are joined if they have the
first k− 1 items in common (in alphabetical order). For example, {asparagus, beans}

and {asparagus, squash} have the first k−= 1 item in common, asparagus. Thus,

they are joined into the new candidate itemset {asparagus, beans, squash}. Similarly,

{beans, corn} and {beans, squash} have the first item, beans, in common, generating

TABLE 23.4 Candidate 2-ItemSets

Combination Count Combination Count

Asparagus, beans 5 Broccoli, corn 2

Asparagus, broccoli 1 Broccoli, green peppers 4

Asparagus, corn 2 Broccoli, squash 1

Asparagus, green peppers 0 Broccoli, tomatoes 2

Asparagus, squash 5 Corn, green peppers 3

Asparagus, tomatoes 1 Corn, squash 3

Beans, broccoli 3 Corn, tomatoes 4

Beans, corn 5 Green peppers, squash 1

Beans, green peppers 3 Green peppers, tomatoes 3

Beans, squash 6 Squash, tomatoes 2

Beans, tomatoes 4
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the candidate 3-itemset {beans, corn, squash}. Finally, candidate 3-itemsets {beans,

corn, tomatoes} and {beans, squash, tomatoes} are generated in like manner. Thus,

C3 = { {asparagus, beans, squash}, {beans, corn, squash}, {beans, corn, tomatoes},

{beans, squash, tomatoes} }.

C3 is then pruned, using the a priori property. For each itemset s in C3, its size

k− 1 subsets are generated and examined. If any of these subsets are not frequent,

s cannot be frequent and is therefore pruned. For example, consider s= {asparagus,

beans, squash}. The subsets of size k− 1= 2 are generated, as follows: {asparagus,

beans}, {asparagus, squash}, and {beans, squash}. From Table 23.4, we see that

each of these subsets is frequent and that therefore s= {asparagus, beans, squash}

is not pruned. The reader will verify that s= {beans, corn, tomatoes} will also not be

pruned.

However, consider s= {beans, corn, squash}. The subset {corn, squash} has

frequency 3< 4=𝜙, so that {corn, squash} is not frequent. By the a priori property,

therefore, {beans, corn, squash} cannot be frequent, is therefore pruned, and does

not appear in F3. Also consider s= {beans, squash, tomatoes}. The subset {squash,

tomatoes} has frequency 2< 4=𝜙, and hence is not frequent. Again, by the a priori

property, its superset {beans, squash, tomatoes} cannot be frequent and is also pruned,

not appearing in F3.

We still need to check the count for these candidate frequent itemsets. The item-

set {asparagus, beans, squash} occurs four times in the transaction list, but {beans,

corn, tomatoes} occurs only three times. Therefore, the latter candidate itemset is

also pruned, leaving us with a singleton frequent itemset in F3: {asparagus, beans,

squash}. This completes the task of finding the frequent itemsets for the vegetable

stand data D.

23.4 HOW DOES THE A PRIORI ALGORITHM WORK
(PART 2)? GENERATING ASSOCIATION RULES

Next, we turn to the task of generating association rules using the frequent item-

sets. This is accomplished using the following two-step process, for each frequent

itemset s:

GENERATING ASSOCIATION RULES

1. First, generate all subsets of s.

2. Then, let ss represent a nonempty subset of s. Consider the association rule R ∶ ss ⇒
(s − ss), where (s- ss) indicates the set s without ss. Generate (and output) R if R
fulfills the minimum confidence requirement. Do so for every subset ss of s. Note

that for simplicity, a single-item consequent is often desired.

For example, consider s= {asparagus, beans, squash} from F3. The proper

subsets of s are {asparagus}, {beans}, {squash}, {asparagus, beans}, {asparagus,
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squash}, and {beans, squash}. For the first association rule shown in Table 23.5, we

consider ss= {asparagus, beans}, so that (s− ss)= {squash}. We consider the rule

R: {asparagus, beans}⇒ {squash}. The support is the proportion of transactions in

which both {asparagus, beans} and {squash} occur, which is 4 (or 28.6%) of the 14

total transactions in D. To find the confidence, we note that {asparagus, beans} occurs

in 5 of the 14 transactions, four of which also contain {squash}, giving us our confi-

dence of 4

5
= 80%. The statistics for the second rule in Table 23.5 arise similarly. For

the third rule in Table 23.5, the support is still 4

14
= 28.6%, but the confidence falls

to 66.7%. This is because {beans, squash} occurs in six transactions, four of which

also contain {asparagus}. Assuming that our minimum confidence criterion is set at

60% and that we desire a single consequent, we therefore have the candidate rules

shown in Table 23.5. If our minimum confidence were set at 80%, the third rule would

not be reported.

TABLE 23.5 Candidate association rules for vegetable stand data: two
antecedents

If Antecedent, then Consequent Support Confidence

If buy asparagus and beans, then buy squash
4

14
= 28.6% 4

5
= 80%

If buy asparagus and squash, then buy beans
4

14
= 28.6% 4

5
= 80%

If buy beans and squash, then buy asparagus
4

14
= 28.6% 4

6
= 66.7%

Finally, we turn to single-antecedent/single-consequent rules. Applying the

association rule generation method outlined in the box above, and using the itemsets

in F2, we may generate the candidate association rules shown in Table 23.6.

To provide an overall measure of usefulness for an association rule, analysts

sometimes multiply the support times the confidence. This allows the analyst to rank

the rules according to a combination of prevalence and accuracy. Table 23.7 provides

such a list for our present data set, after first filtering the rules through a minimum

confidence level of 80%.

Compare Table 23.7 with Figure 23.1, the association rules reported by Mod-

eler’s version of the a priori algorithm, with minimum 80% confidence, and sorted by

support × confidence. The third column, which Modeler calls “Support %,” is actu-

ally not what we defined support to be in this chapter (following Han and Kamber,2

Hand et al.,3 and other texts). Instead, what Modeler calls “support” is the proportion

of occurrences of the antecedent alone rather than the antecedent and the consequent.

To find the actual support for the association rule using the Modeler results, multiply

the reported “support” times the reported confidence. For example, Modeler reports

50% support and 85.714% confidence for the first association rule, but this really

2Jiawei Han and Micheline Kamber, Data Mining Concepts and Techniques, Second Edition, Morgan

Kaufmann, San Francisco, CA, 2006.
3David Hand, Heikki Mannila, and Padhraic Smith, Principles of Data Mining, MIT Press, Cambridge,

MA, 2001.
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TABLE 23.6 Candidate association rules for vegetable stand data: one
antecedent

If Antecedent, then Consequent Support Confidence

If buy asparagus, then buy beans
5

14
= 35.7% 5

6
= 83.3%

If buy beans, then buy asparagus
5

14
= 35.7% 5

10
= 50%

If buy asparagus, then buy squash
5

14
= 35.7% 5

6
= 83.3%

If buy squash, then buy asparagus
5

14
= 35.7% 5

7
= 71.4%

If buy beans, then buy corn
5

14
= 35.7% 5

10
= 50%

If buy corn, then buy beans
5

14
= 35.7% 5

8
= 62.5%

If buy beans, then buy squash
6

14
= 42.9% 6

10
= 60%

If buy squash, then buy beans
6

14
= 42.9% 6

7
= 85.7%

If buy beans, then buy tomatoes
4

14
= 28.6% 4

10
= 40%

If buy tomatoes, then buy beans
4

14
= 28.6% 4

6
= 66.7%

If buy broccoli, then buy green peppers
4

14
= 28.6% 4

5
= 80%

If buy green peppers, then buy broccoli
4

14
= 28.6% 4

5
= 80%

If buy corn, then buy tomatoes
4

14
= 28.6% 4

8
= 50%

If buy tomatoes, then buy corn
4

14
= 28.6% 4

6
= 66.7%

TABLE 23.7 Final list of association rules for vegetable stand data: ranked by support ×
confidence, minimum confidence 80%

Support ×
If Antecedent, then Consequent Support Confidence Confidence

If buy squash, then buy beans
6

14
= 42.9% 6

7
= 85.7% 0.3677

If buy asparagus, then buy beans
5

14
= 35.7% 5

6
= 83.3% 0.2974

If buy asparagus, then buy squash
5

14
= 35.7% 5

6
= 83.3% 0.2974

If buy broccoli, then buy green peppers
4

14
= 28.6% 4

5
= 80% 0.2288

If buy green peppers, then buy broccoli
4

14
= 28.6% 4

5
= 80% 0.2288

If buy asparagus and beans, then buy squash
4

14
= 28.6% 4

5
= 80% 0.2288

If buy asparagus and squash, then buy beans
4

14
= 28.6% 4

5
= 80% 0.2288
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Figure 23.1 Association rules for vegetable stand data, generated by Modeler.

means 50% × 85.714% = 42.857% support, according to the generally accepted def-

inition of support. Be careful with Figure 23.1, because it reports the consequent

before the antecedent. Apart from the “support” anomaly, the software’s association

rules shown in Figure 23.1 represent the same rules as those we found step by step,

and by hand, for the vegetable stand data.

Armed with this knowledge, the vegetable stand entrepreneur can deploy mar-

keting strategies that take advantage of the patterns uncovered above. Why do these

particular products co-occur in customers’ market baskets? Should the product lay-

out be altered to make it easier for customers to purchase these products together?

Should personnel be alerted to remind customers not to forget item B when purchas-

ing associated item A?

23.5 EXTENSION FROM FLAG DATA TO GENERAL
CATEGORICAL DATA

Thus far, we have examined association rules using flag data types only. That is, all

of the vegetable stand attributes took the form of Boolean 0/1 flags, resulting in the

tabular data format found in Table 23.3, reflecting a straightforward market basket

analysis problem. However, association rules are not restricted to flag data types. In

particular, the a priori algorithm can be applied to categorical data in general. Let us

look at an example.
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Recall the normalized adult data set analyzed in Chapters 8 and 9. Here in

Chapter 12, we apply the a priori algorithm, for the predictor variables marital status,
sex, work class, and the target variable income in that same data set, using Modeler.

Minimum support of 15%, minimum confidence of 80%, and a maximum of two

antecedents are specified, with the resulting association rules shown in Figure 23.2.

Figure 23.2 Association rules for categorical attributes found by the a priori algorithm.

Some of these rules contain the nominal variables Marital status and Work
class, each of which contain several values, so that these attributes are truly non-flag

categorical attributes. The a priori algorithm simply finds the frequent itemsets just

as before, this time counting the occurrences of the values of the categorical variables

rather than simply the occurrence of the flag.

For example, consider the second rule reported in Figure 23.2: “If Marital
status=Never-married, then income<=50K,” with confidence 95.319%. There

were 8225 instances in the data set where the attribute Marital status took the value

Never-married, which represents 32.9% of the number of records in the data set.

(Again, Modeler refers to this as the “support,” which is not how most researchers

define that term.) The support for this rule is (0.329)(0.95319)= 0.3136. That is,

31.362% of the records contained the value Never-married for Marital status and

the value “<=50K” for income, thus making this pairing a frequent 2-itemset of

categorical attributes.

23.6 INFORMATION-THEORETIC APPROACH:
GENERALIZED RULE INDUCTION METHOD

The structure of association rules, where the antecedent and consequent are both

Boolean statements, makes them particularly well suited for handling categorical

data, as we have seen. However, what happens when we try to extend our association

rule mining to a broader range of data, specifically numerical attributes?

Of course, it is always possible to discretize the numerical attributes, for

example, by arbitrarily defining income under $30,000 as low, income over $70,000

as high, and other income as medium. Also, we have seen how both C4.5 and CART

handle numerical attributes by discretizing the numerical variables at favorable

locations. Unfortunately, the a priori algorithm is not well equipped to handle
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numeric attributes unless they are discretized during preprocessing. Of course,

discretization can lead to a loss of information, so if the analyst has numerical inputs

and prefers not to discretize them, he or she may choose to apply an alternative

method for mining association rules: generalized rule induction (GRI). The GRI

methodology can handle either categorical or numerical variables as inputs, but still

requires categorical variables as outputs.

GRI was introduced by Smyth and Goodman in 1992.4 Rather than using

frequent itemsets, GRI applies an information-theoretic approach (as did the

C4.5 decision tree algorithm) to determining the “interestingness” of a candidate

association rule.

23.6.1 J-Measure

Specifically, GRI applies the J-measure:

J = p(x)
[

p (y|x) ln
p(y|x)
p(y)

+ [1 − p(y|x)] ln
1 − p(y|x)
1 − p(y)

]
where

• p(x) represents the probability or confidence of the observed value of x. This is

a measure of the coverage of the antecedent. How prevalent is this value of the

antecedent attribute? You can calculate p(x) using a frequency distribution for

the variable in the antecedent.

• p(y) represents the prior probability or confidence of the value of y. This is a

measure of the prevalence of the observed value of y in the consequent. You can

calculate p(y) using a frequency distribution for the variable in the consequent.

• p(y|x) represents the conditional probability, or posterior confidence, of y given

that x has occurred. This is a measure of the probability of the observed value

of y given that this value of x has occurred. That is, p(y|x) represents an updated

probability of observing this value of y after taking into account the additional

knowledge of the value of x. In association rule terminology, p(y|x) is measured

directly by the confidence of the rule.

• ln represents the natural log function (log to the base e).

lsvdvpds

For rules with more than one antecedent, p(x) is considered to be the probability

of the conjunction of the variable values in the antecedent.

As usual, the user specifies desired minimum support and confidence criteria.

For GRI, however, the user also specifies how many association rules he or she would

like to be reported, thereby defining the size of an association rule table referenced by

the algorithm. The GRI algorithm then generates single-antecedent association rules,

and calculates J, the value of the J-measure for the rule. If the “interestingness” of the

new rule, as quantified by the J-measure, is higher than the current minimum J in the

4Padhraic Smyth and Rodney M. Goodman, An information theoretic approach to rule induction from

databases, IEEE Transactions on Knowledge and Data Engineering, Vol. 4, No. 4, August 1992.
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rule table, the new rule is inserted into the rule table, which keeps a constant size by

eliminating the rule with minimum J. More specialized rules with more antecedents

are then considered.

How can the behavior of the J-statistic be described? Clearly (as p(x) sits

outside the brackets), higher values of J will be associated with higher values of

p(x). That is, the J-measure will tend to favor those rules whose antecedent value is

more prevalent, reflecting higher coverage in the data set. Also, the J-measure tends

toward higher values when p(y) and p(y|x) are more extreme (near 0 or 1). Hence,

the J-measure will also tend to favor those rules whose consequent probability, p(y),

is more extreme, or whose rule confidence, p(y|x), is more extreme.

The J-measure favors rules with either very high or very low confidence. Why

would we be interested in an association rule with extremely low confidence? For

example, suppose that we have a rule R: If buy beer, then buy fingernail polish, with

confidence p(y|x)= 0.01%, which would presumably be favored by the J-measure,

because the confidence is so low. The analyst could then consider the negative form
of R: If buy beer, then NOT buy fingernail polish, with confidence 99.99%. Although

such negative rules are often interesting (“I guess we better move that fingernail polish

out of the beer section… ”), they are often not directly actionable.

23.7 ASSOCIATION RULES ARE EASY TO DO BADLY

Association rules need to be applied with care, because their results are sometimes

deceptive. Let us look at an example. Turning back to the a priori algorithm, we asked

Modeler to mine association rules from the adult database using 10% minimum sup-

port, 60% minimum confidence, and a maximum of two antecedents. One association

rule is shown from the results, in Figure 23.3.

The results (not shown) include the following association rule: If
Work_Class=Private, then Sex=Male, with 65.63% confidence. Marketing

analysts interested in small business owners might be tempted to use this association

rule in support of a new marketing strategy aimed at males. However, seen in its

proper light, this rule may in fact be worse than useless.

One needs to take into account the raw (prior) proportion of males in the data

set, which in this case is 66.84%. In other words, applying this association rule actu-

ally reduces the probability of randomly selecting a male from 0.6684 to 0.6563. You

would have been better advised to pull a name out of a hat from the entire data set

than apply this rule.

Why, then, if the rule is so useless, did the software report it? The quick answer

is that the default ranking mechanism for Modeler’s a priori algorithm is confidence.

However, it needs to be emphasized here that data miners should never simply believe

Figure 23.3 An association rule that is worse than useless.
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the computer output without making the effort to understand the models and mech-

anisms underlying the results. With the onset of sophisticated point-and-click data

mining software, poor analysis costing millions of dollars is more prevalent than ever.

In a word, data mining is easy to do badly. Insightful human expertise and constant

human vigilance are required to translate the nuggets hidden in the database into

actionable and profitable results.

With association rules, one needs to keep in mind the prior probabilities

involved. To illustrate, we now ask Modeler to provide us with a priori association

rules, but this time using the confidence difference as the evaluative measure. Here,

rules are favored that provide the greatest increase in confidence from the prior

to the posterior. One such association rule is shown in Figure 23.4: If Marital
status=Divorced, then Sex=Female. The data set contains 33.16% females, so

an association rule that can identify females with 60.029% confidence is useful.

The confidence difference for this association rule is 0.60029− 0.3316= 0.26869

between the prior and posterior confidences.

Figure 23.4 This association rule is useful, because the posterior probability (0.60029) is

much greater than the prior probability (0.3316).

Alternatively, analysts may prefer to use the confidence ratio to evaluate poten-

tial rules. This is defined as

Confidence ratio = 1 − min
(

p (y|x)
p(y)

,
p(y)

p(y|x)
)

For example, for the rule: If Marital status=Divorced, then Sex=Female, we have

p(y)= 0.3316 and p(y|x)= 0.60029, so that

min
(

p (y|x)
p(y)

,
p(y)

p(y|x)
)

=
p(y)

p(y|x) = 0.3316

0.60029
= 0.5524

and the confidence ratio equals 1− 0.5524= 0.4476. In the exercises, we explore fur-

ther the differences among these rule selection criteria.

23.8 HOW CAN WE MEASURE THE USEFULNESS OF
ASSOCIATION RULES?

As we have seen, not all association rules are equally useful. Here we are introduced

to a measure that can quantify the usefulness of an association rule: lift. We define

lift as follows:

Lift = Rule confidence

Prior proportion of the consequent

Recall the supermarket example where, of 1000 customers, 200 bought diapers, and

of these 200 customers who bought diapers, 50 also bought beer. The prior propor-

tion of those who bought beer is 50

1000
= 5%, while the rule confidence is

50

200
= 25%.
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Therefore, the lift for the association rule, “If buy diapers, then buy beer,” is

Lift = 0.25

0.05
= 5

This may be interpreted as “Customers who buy diapers are five times as likely to

buy beer as customers from the entire data set.” Clearly, this association rule would

be useful to a store manager wishing to sell more diapers. Next, suppose, of that

40 of the 1000 customers bought expensive makeup, whereas, of the 200 customers

who bought diapers, only 5 bought expensive makeup. In this case, the lift for the

association rule “If buy diapers, then buy expensive makeup” is

Lift =
5∕200

40∕1000
= 0.025

0.04
= 0.625

So, customers who buy diapers are only 62.5% as likely to buy expensive makeup as

customers in the entire data set.

In general, association rules with lift values different from 1 will be more inter-

esting and useful than rules with lift values close to 1. Why are rules with lift values

close to 1 not useful? Recall the definition of confidence for the association rule “If

A then B”:

Confidence = P(B|A) = P(A ∩ B)
P(A)

Then, to obtain lift, we divide by the prior probability of the consequent B, giving us:

Lift = Rule confidence

Prior proportion of the consequent
= P(A ∩ B)

P(A)P(B)
Now, events A and B are independent when P(A ∩ B) = P(A)P(B). Thus, the ratio
P(A∩B)

P(A)P(B) being close to 1 implies that A and B are independent events, meaning that

knowledge of the occurrence of A does not alter the probability of the occurrence of

B. Such relationships are not useful from a data mining perspective, and thus it makes

sense that we prefer our association rules to have a lift value different from 1.

23.9 DO ASSOCIATION RULES REPRESENT
SUPERVISED OR UNSUPERVISED LEARNING?

Before we leave the subject of association rules, let us touch on a few topics of

interest. First, we may ask whether association rules represent supervised or unsuper-

vised learning. Recall that most data mining methods represent supervised learning,

because (i) a target variable is prespecified, and (ii) the algorithm is provided with

a rich collection of examples where possible association between the target variable

and the predictor variables may be uncovered. Conversely, in unsupervised learning,

no target variable is identified explicitly. Rather, the data mining algorithm searches

for patterns and structure among all the variables. Clustering is perhaps the most

common unsupervised data mining method.

Association rule mining, however, can be applied in either a supervised or an

unsupervised manner. In market basket analysis, for example, one may simply be

interested in “which items are purchased together,” in which case no target variable
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would be identified. However, some data sets are naturally structured so that a par-

ticular variable fulfills the role of a consequent, and not an antecedent (see the play
example in the exercises). For example, suppose that political pollsters have collected

demographic data in their exit polling, along with the subject’s voting preference.

In this case, association rules could be mined from this data set, where the demo-

graphic information could represent possible antecedents, and the voting preference

could represent the single consequent of interest. In this way, association rules could

be used to help classify the voting preferences of citizens with certain demographic

characteristics, in a supervised learning process.

Thus, the answer to the question is that association rules, while generally used

for unsupervised learning, may also be applied for supervised learning for a classifi-

cation task.

23.10 LOCAL PATTERNS VERSUS GLOBAL MODELS

Finally, data analysts need to consider the difference between models and patterns.

A model is a global description or explanation of a data set, taking a high-level

perspective. Models may be descriptive or inferential. Descriptive models seek to

summarize the entire data set in a succinct manner. Inferential models aim to pro-

vide a mechanism that enables the analyst to generalize from samples to populations.

Either way, the perspective is global, encompassing the entire data set. However, pat-

terns are essentially local features of the data. Recognizable patterns may in fact hold

true for only a few variables or a fraction of the records in the data.

Most of the modeling methods we have covered have dealt with global model

building. Association rules, however, are particularly well suited to uncovering local

patterns in the data. As soon as one applies the if clause in an association rule, one is

partitioning a data so that, usually, most of the records do not apply. Applying the if
clause “drills down” deeper into a data set, with the aim of uncovering a hidden local

pattern that may or may not be relevant to the bulk of the data.

For example, consider the following association rule from Figure 23.4: If Mar-
ital status=Divorced, then Sex=Female, with confidence 60.029%. We see that this

association rule applies to only 13.74% of the records and ignores the remaining

86.24% of the data set. Even among this minority of records, the association rule

ignores most of the variables, concentrating on only two. Therefore, this association

rule cannot claim to be global and cannot be considered a model in the strict sense.

It represents a pattern that is local to these records and variables only.

Then again, finding interesting local patterns is one of the most important goals

of data mining. Sometimes, uncovering a pattern within the data can lead to the

deployment of new and profitable initiatives. For example, recall from the churn data

set (Chapter 3) that those customers who belonged to the VoiceMail Plan were at con-

siderably lower risk of churning than other customers (see Figure 23.5). This finding

affected only 922 (27.663%) of the 3333 records and only two of the variables, and is

thus to be considered a local pattern. Nevertheless, the discovery of this nugget could

lead to policy changes that, if properly deployed, could lead to increased profits for

the cell phone company.
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Figure 23.5 Profitable pattern: VoiceMail Plan adopters less likely to churn.

THE R ZONE

# Load the data set, load the required package, create a Transaction object

adult<− read.csv(file= "C:/… /adult.txt",

stringsAsFactors=TRUE)

library(arules)

testing<− as(adult[,-c(1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14)], "transactions")

# Run the program, view the output sorted by support

rules<− apriori(testing,

parameter= list(supp= 0.15,

conf= 0.80,

maxlen= 3))

inspect(sort(rules))

R REFERENCES

Hahsler, M, Buchta, C, Gruen, Bettina and Hornik, Kurt (2013). arules: Mining Association

Rules and Frequent Itemsets. R package version 1.0-15. http://CRAN.R-project.org/package

=arules. Accessed 2014 Oct 06.

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria:

R Foundation for Statistical Computing; 2012. 3-900051-07-0, http://www.R-project.org/.

Accessed 2014 Oct 06.

http://CRAN.R-project.org/package
http://www.R-project.org
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EXERCISES

1. Describe the two main methods of representing market basket data. What are the benefits

and drawbacks of each?

2. Describe support and confidence. Express the formula for confidence using support.

3. Restate the a priori property in your own words.

For the following several exercises, consider the following data set from Quinlan5 shown

as Table 23.8. The goal is to develop association rules using the a priori algorithm for

trying to predict when a certain (evidently indoor) game may be played. Therefore, unlike

the vegetable stand example, we may restrict our itemset search to items that include the

attribute play.

TABLE 23.8 Weather data set for association rule mining

No. Outlook Temperature Humidity Windy Play

1 Sunny Hot High False No

2 Sunny Hot High True No

3 Overcast Hot High False Yes

4 Rain Mild High False Yes

5 Rain Cool Normal False Yes

6 Rain Cool Normal True No

7 Overcast Cool Normal True Yes

8 Sunny Mild High False No

9 Sunny Cool Normal False Yes

10 Rain Mild Normal False Yes

11 Sunny Mild Normal True Yes

12 Overcast Mild High True Yes

13 Overcast Hot Normal False Yes

14 Rain Mild High True No

4. Let 𝜙= 3. Generate the frequent 1-itemsets.

5. Let 𝜙= 3. Generate the frequent 2-itemsets.

6. Let 𝜙= 3. Generate the frequent 3-itemsets.

7. Using 75% minimum confidence and 20% minimum support, generate one-antecedent

association rules for predicting play.

8. Using 75% minimum confidence and 20% minimum support, generate two-antecedent

association rules for predicting play.

9. Multiply the observed support times the confidence for each of the rules in Exercises 7

and 8, and rank them in a table.

10. Verify your manually found results using association rule software.

5J. Ross Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Francisco, CA, 1993.
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11. For each of the association rules found above by the a priori algorithm, find the J-measure.

Then order the rules by J-measure. Compare the ordering with that from the a priori sup-

port× confidence ordering.

12. Find the value of the J-measure for the sixth rule from Figure 23.5.

HANDS-ON ANALYSIS

Use the churn data set, given at the book series web site, for the following exercises. Use

the Churn_Training_File. Filter out all variables except the following: VMail Plan, Intl Plan,

CustServ Calls, and Churn. Set CustServ Calls to be ordinal. Allow the three predictors to be

in either antecedent or consequent, but do not allow Churn to be in the antecedent.

13. Set the minimum antecedent support to 1%, the minimum rule confidence to 5%, and the

maximum number of antecedents to 1. Use rule confidence as your evaluation measure.

a. Find the association rule with the greatest lift.

b. Report the following for the rule in (a).

(i) Number of instances

(ii) Support % (as defined in this chapter)

(iii) Confidence %

(iv) Rule support %

(v) Lift

(vi) Deployability

c. Using hand calculations, show how the measures were calculated.

d. Explain, in terms of this data, what each of the measures in (c) means (you can skip

(i)).

14. Set the minimum antecedent support to 1%, the minimum rule confidence to 5%, and the

maximum number of antecedents to 1.

a. Generate rules using confidence difference as your evaluation measure with evaluation

measure lower bound= 40. Explain what this evaluation measure means.

b. For the rules that are generated, use hand calculations to compute the reported evalu-

ation measure, and show that the evaluation measure lower bound has been met.

c. Generate rules using confidence difference as your evaluation measure with evaluation

measure lower bound= 30.

d. Select the rule with the highest deployability. Explain why the deployability of this

rule is greater than the rule we found in Question 13a.

15. Set the minimum antecedent support to 1%, the minimum rule confidence to 5%, and the

maximum number of antecedents to 1.

a. Generate rules using confidence ratio as your evaluation measure with evaluation mea-

sure lower bound= 40. Explain what this evaluation measure means.

b. Select the rule involving Intl Plan. Use hand calculations to compute the reported eval-

uation measure, and show that the evaluation measure lower bound has been met.

16. Compare the results from Exercise 13 with the results from the EDA and decision tree

analysis in Chapters 3 and 6. Discuss similarities and differences. Which analysis format

do you prefer? Do you find a confluence of results?
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17. Apply the GRI algorithm to uncover association rules for predicting either churn or

non-churn behavior. Specify reasonable lower bounds for support and confidence.

18. Compare the results from the a priori algorithm with those of the GRI algorithm. Which

algorithm yields a richer set of rules, and why? Which algorithm is probably preferable

for this particular data set? Why?
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C H A P T E R 24
SEGMENTATION MODELS

In Part 6: Enhancing Model Performance, we examine methods that enable us to

enhance the performance of our models. Here in this chapter, we learn about Seg-

mentation Models, where a useful clustering or subdivision of the data set is found,

allowing us to develop cluster-specific models for each segment, and thereby enhanc-

ing the overall efficacy of the model. In Chapter 25, we learn about ensemble methods,

which combine the results from a set of classification models, in order to increase the

accuracy and reduce the variability of the classification. Finally, in Chapter 26, we

consider other types of ensemble methods, including voting and model averaging.

24.1 THE SEGMENTATION MODELING PROCESS

Thus far, our models have been built to apply to all the records in the test data set,

and by extension, to all the observations in the relevant data universe or popula-

tion. However, in many applications, we can enhance the overall performance of our

models, by

a. identifying subsets of the data which differ in predictable ways from other sub-

sets of the data;

b. applying a unique, customized model to each subset.

The resulting set of models is often more efficacious, with a lower overall error

rate, say, or a higher overall profit, than a single model applied universally across the

population.

The process of identifying useful subsets can be accomplished using

exploratory data analysis (EDA), or through clustering analysis. The resulting cus-

tomized models, unique to each subset of the data, are called segmentation models.

Segmentation models are well known to be effective in the areas of marketing and

customer relationship management, but are a powerful tool that can enhance the

performance of predictive models in most applications.

The segmentation modeling process is given as follows and is illustrated in

Figure 24.1.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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prediction

Model 2

Develop

prediction

Model k

Figure 24.1 Segmentation modeling process.

SEGMENTATION MODELING PROCESS

1. Identify useful segments, using EDA, clustering, or preparatory modeling technique

such as regression with dummy variables.

2. Partition the training data set into k segments, based on the segmentation information

uncovered in step 1.

3. For each of the k segments, develop a customized prediction model for that segment.

4. For each of the k segments, deploy the customized prediction model for the records

in that particular segment.
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We provide examples of segmentation modeling, using the following segment

identification methods:

• EDA

• Cluster analysis.

24.2 SEGMENTATION MODELING USING EDA TO
IDENTIFY THE SEGMENTS

The Adult data set seeks to classify income level as greater than $50,000 or not, using

a set of predictors, which includes capital gains and capital losses. We note during the

EDA phase that individuals reporting either capital gains or capital losses tend to have

higher income than those who do not, as illustrated in the normalized bar graphs of

Figures 24.2–24.4. These graphs show the proportions of high-income (≥ $50, 000)
individuals among those having any capital gains (Figure 24.2), any capital losses

(Figure 24.3), or any capital gains or capital losses (Figure 24.4).

Next, we surmise that

a. the EDA in Figures 24.2–24.4 represents a real dichotomy within our popula-

tion, meaning that the characteristics of those who report capital gains or losses

differs systematically from those who do not;

b. we might perform better if we construct models customized to each group,

rather than a single global model for all individuals.

To test this supposition, we implement the following EDA-Driven Segmentation
Modeling Process for the Adult data set.

Figure 24.2 Capital gains.

Figure 24.3 Capital losses.

Figure 24.4 Capital gains or capital losses.
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EDA-DRIVEN SEGMENTATION MODELING PROCESS

1. Partition the Adult data set into a training set and a test set.

2. Train a classification and regression trees (CART) model to predict Income using the

entire training data set. This is our Global Model.

3. Evaluate the Global Model using the entire test data set.

4. Segment the training data set into those who have reported either capital gains or

capital losses (Caps), and those who have not (No Caps).

5. Repeat step 4 for the test data set.

6. Train a CART model to predict Income using the training set Caps group. This is the

Capital Gains or Losses Model (Caps Model).

7. Train a CART model to predict Income using the training set No Caps group. This is

the No Capital Gains or Losses Model (No Caps Model). Together, the Caps Model

and the No Caps Model represent our Segmentation Models.

8. Evaluate the Caps Model using the Caps group from the test data set.

9. Evaluate the No Caps Model using the No Caps group from the test data set.

10. Compare the contingency tables, error rates, and so on, for the Global Model versus

the combined results from the Caps Model and the No Caps Model.

To save space, the output from step 1 to step 9 is not shown here. The contin-

gency tables for each model are shown in Figure 24.5, with the rows representing

actual income and the columns representing predicted income.

Comparing the overall error rates,1 we have

Overall error rate Global Model =
257 + 787

6155
= 0.1696

Global Model

Capital Gains or Losses Model

No Capital Gains or Losses Model

Figure 24.5 Contingency tables for Global Model and each Segmented Model.

1The reader’s results will of course differ somewhat, because of the different training/test set partitions.
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Overall error rate Caps Model =
10 + 41

759
= 0.0672

Overall error rate No Caps Model =
204 + 650

5396
= 0.1583

Overall error rate Combined Caps and No Caps Models =
10 + 41 + 204 + 650

6155
= 0.1470

Clearly, our segmentation models easily outperformed the global model. The overall

error for the Caps Model was much lower, but the No Caps Model was also slightly

lower. The combined model also saw a net 2.26 decrease in the overall error rate,

which represents a better than 13% (0.0226/0.1696) decrease relative to the global

model’s error rate.

24.3 SEGMENTATION MODELING USING
CLUSTERING TO IDENTIFY THE SEGMENTS

The Churn data set is used to develop models to predict when customers will leave

the company’s service. We use clustering to develop segmentation models, in the

hopes of better understanding the various segments of the company’s clientele,

using the following Cluster-Driven Segmentation Modeling Process for the Churn
data set.

CLUSTER-DRIVEN SEGMENTATION MODELING PROCESS

1. Partition the Churn data set into a training set and a test set.

2. Train a CART model to predict Churn using the entire training data set. This is our

Global Model.

3. Evaluate the Global Model using the entire test data set.

4. Apply k-means clustering to the training data set, and develop a k= 3 cluster solution.

(Of course, the analyst may apply whatever clustering algorithm and whatever value

of k he or she feels is appropriate.)

5. Using the training set, train a customized CART model to predict Churn for each of

the k= 3 clusters. These are models Cluster1, Cluster2, and Cluster3.

6. Evaluate each customized cluster model using the test data set. (When using Modeler,

do not train a new cluster model on the test data set. The cluster node will assign each

test set record to the appropriate cluster, based on the distance of each record to the

cluster centers.)

7. Profile the clusters to better understand the customers.

8. Compare the contingency tables, error rates, costs and benefits, and so on, for the

Global Model versus the combined results from the customized cluster models.
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The cluster EDA is provided in Figure 24.6. The variables most helpful in

discriminating between the clusters are shown at the top, in decreasing order of impor-

tance. Here, follow brief cluster profiles.

• Cluster 1. The No-Plan Majority. This cluster contains nearly 65% of the

training set records (and a similar proportion of the test set). These customers

belong to neither the International Plan nor the Voice Mail Plan.

• Cluster 2. The Voice Mail Plan People. This cluster contains about 25% of

the records, and represents a preponderance of Voice Mail Plan users.

• Cluster 3. The International Plan People. This cluster contains only about

10% of the records, and represents those who have opted into the International

Plan. Note that this cluster has a spike at the upper end of customer service

calls, which does not bode well.

Now, clearly, it is more expensive to get back a customer who has churned

rather than to retain an existing customer. For this reason, in our CART models, we

shall use a 2-to-1 misclassification cost for false negatives (i.e., predictions that actual

churners will not churn).

The contingency tables for the Global Model and each of the cluster models

are shown in Figure 24.7.

As we are using misclassification costs, then overall error rate is not as impor-

tant as the model costs, as calculated here:

Model Cost Global Model = 26 × 2 + 58 = 110

Model Cost Cluster 1 Model = 15 × 2 + 36 = 66

Model Cost Cluster 2 Model = 10 × 2 + 9 = 29

Model Cost Cluster 3 Model = 5 × 2 + 0 = 10

Model Cost Combined Cluster Models = 66 + 29 + 10 = 105

Thus, the combined costs of the cluster (segmentation) models (105) is about 4.5%

less than the cost of the Global Model (110, units not specified), which should please

your client. However, a further benefit of using clusters for segmentation is what the

clusters reveal to us about the behavior of the customers. Figure 24.8 is a normalized

bar graph of the clusters, with an overlay of churn (darker= true). Clearly, Cluster 3,

the International Plan People, have a higher churn rate than the other two clusters. The

company’s managers should look to what is causing the adopters of the International

Plan to leave the company’s service.

From Figure 24.7 we can calculate the proportions of actual churners for each

cluster, and for the entire test data set.

Churn proportion Entire test data set =
26 + 90

647 + 58 + 26 + 90
= 0.1413

Churn proportion Cluster 1 = 15 + 56

446 + 36 + 15 + 56
= 0.1284
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International Plan International Plan International Plan

Voice Mail

Messages_Z

International

Minutes_Z

Customer Service

Calls_Z

Customer Service

Calls_Z

Customer Service

Calls_Z

International

Minutes_Z

International

Minutes_Z

Day Minutes_Z

Evening Minutes_Z

Night Minutes_Z

Night Calls_ZNight Calls_ZNight Calls_Z

International Calls_Z

Evening Calls_ZEvening Calls_ZEvening Calls_Z

International Calls_ZInternational Calls_Z

Night Minutes_ZNight Minutes_Z
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Account Length_ZAccount Length_ZAccount Length_Z

Evening Minutes_ZEvening Minutes_Z
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Voice Mail

Messages_Z
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(1627)
25.3%

(636)
9.9%
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Size

Inputs

Cluster 1 Cluster 2 Cluster 3

Figure 24.6 EDA for the clusters. Plan memberships are the most important variables for

discriminating among the clusters.
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Global Model

Cluster 1 Model

Cluster 2 Model

Cluster 3 Model

Figure 24.7 Contingency tables for the Global Model and each Cluster Model.

Figure 24.8 Cluster 3 (International Plan People) has a higher churn rate.

Churn proportion Cluster 2 = 10 + 5

170 + 9 + 10 + 5
= 0.0773

Churn proportion Cluster 3 = 5 + 25

44 + 0 + 5 + 25
= 0.4054

Cluster 3 has a much higher proportion of churners, than do the other clusters, as

reflected in Figure 24.8.

Next, we can compare the decision trees built for each cluster, as shown in

Figure 24.9. Note that the character of the decision trees for determining churn is
distinct for each cluster, demonstrating the uniqueness of each segment, and call-
ing for a customized approach by the company to alleviate customer churn for each
segment.

• Cluster 1. The No-Plan Majority. The root node split is on Day Minutes_Z
(standardized Day Minutes), with heavy users of day minutes (about 1.5

standard deviations above the mean) in danger of churning. Fortunately, there
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Cluster 1

Cluster 2

Cluster 3

Figure 24.9 CART decision trees for each of the three clusters.

are not many of these. Otherwise, those with a large number of customer

service calls (again, about 1.5 or more standard deviations above the mean,

which works out to be at least four customer service calls) are at risk of

churning.

• Cluster 2. The Voice Mail Plan People. Even though Cluster 2 has the lowest

churn proportion among the clusters, we still need to be aware of those who

are making a high number (at least four) of calls to customer service, for they

are at a higher risk of churning. Note that the CART model shows that, even

though only 38.9% of the 36 customers have a high number of calls to customer

service, the prediction is still for Churn=True, because the misclassification

cost of making a false negative error is twice as expensive.

• Cluster 3. The International Plan People. This is the cluster that is most trou-

blesome to our company, with an over 40% churn rate. Clearly, our International

service is driving customers away. The decision tree shows that International

Plan members who do not make many International Calls (Calls_Z ≤ −0.804)
have a 100% churn rate. Among the remaining customers, those with high Inter-

national Minutes also have a 100% churn rate. Urgent intervention is called for

to ameliorate these sad statistics.
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THE R ZONE

# Prepare the data, open the required package

adult <− read.csv(file = "C:/… /adult.txt",

stringsAsFactors=TRUE); library("rpart")

# After running data preparation as in Chapter 11

choose <− runif(dim(adult)[1], 0, 1)

train <− adult[which(choose <= 0.75),]; test<− adult[which(choose > 0.75),]

# Train a CART model to predict income on the entire training
dataset

cartfit <− rpart(income ̃ age.z + education.num.z + capital.gain.z + capital.loss.z +
hours.per.week.z + race + sex + workclass + marital.status,

data = train, method = "class")

# Evaluate Global Model using entire test dataset

pred.carttest <− predict(cartfit, newdata = test)

pred.fittest<− ifelse(pred.carttest[,1]> pred.carttest[,2], "Pred:<=50K.", "Pred:>50K.")

global.table <− table(pred.fittest, test$income)

# Segment the Training and Test data sets

train.caps <− train[which(train$capital.gain==0),]

train.nocaps <− train[which(train$capital.gain!=0),]

test.caps <− test[which(test$capital.gain==0),]

test.nocaps <− test[which(test$capital.gain!=0),]

# Train CART model to predict Income using Caps and No Caps
groups

cart.caps <− rpart(income ̃ age.z + education.num.z + capital.gain.z + capital.loss.z +
hours.per.week.z + race + sex + workclass + marital.status,

data = train.caps,

method = "class")

cart.nocaps <− rpart(income ̃ age.z + education.num.z + capital.gain.z +
capital.loss.z + hours.per.week.z + race + sex + workclass + marital.status,

data = train.nocaps,

method = "class")
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# Evaluate Caps and No Caps Model using Caps and No Caps Test
data set

p.test.caps <− predict(cart.caps, newdata = test.caps)

p.fittest.caps <− ifelse(p.test.caps[,1] > p.test.caps[,2], "Pred: <=50K.", "Pred: >50K.")

caps.table <− table(p.fittest.caps, test.caps$income)

p.test.nocaps <− predict(cart.nocaps, newdata = test.nocaps)

p.fittest.nocaps<− ifelse(p.test.nocaps[,1]> p.test.nocaps[,2], "Pred:<=50K.", "Pred:>50K.")

nocaps.table <− table(p.fittest.nocaps, test.nocaps$income)

# Compare contingency tables, error rates

global.table

caps.table

nocaps.table

(global.table[2]+global.table[3])/ sum(global.table)

(caps.table[2]+caps.table[3])/ sum(caps.table)

(nocaps.table[2]+nocaps.table[3])/ sum(nocaps.table)

(caps.table[2]+caps.table[3]+nocaps.table[2]+nocaps.table[3])/(sum(caps.table)+
sum(nocaps.table))

R REFERENCES

R Core Team. R: A Language and Environment for Statistical Computing. Vienna,

Austria: R Foundation for Statistical Computing; 2012. ISBN: 3-900051-07-0,

http://www.R-project.org/. Accessed 2014 Sep 30.

Therneau T, Atkinson B, Ripley B. 2013. rpart: Recursive partitioning. R package version

4.1-3. http://CRAN.R-project.org/package=rpart.

EXERCISES

1. Give a thumbnail explanation of segmentation modeling.

2. Name two methods for identifying useful segments.

3. Explain the segmentation modeling process.

4. What would you say to a marketing manager who wished to use only one global model

across his entire clientele, rather than trying segmentation models?

HANDS-ON ANALYSIS

Use the WineQuality data set for Exercises 5–8.

5. Perform Z-standardization. Partition the data set into a training set and a test set.

http://www.R-project.org
http://CRAN.R-project.org/package=rpart


636 CHAPTER 24 SEGMENTATION MODELS

6. Train a regression model to predict Quality using the entire training data set. This is our

Global Model.

7. Evaluate the Global Model using the entire test data set, by applying the model generated

on the training set to the records in the test set. Calculate the standard deviation of the

errors (actual values− predicted values), and the mean absolute error. (For IBM/SPSS

Modeler you can use the Analysis node to do this.)

8. Segment the training data set into red wines and white wines. Do the same for the test

data set.

9. Train a regression model to predict Quality using the red wines in the training set. This is

the Red Wines Model.

10. Train a regression model to predict Quality using the white wines in the training set. This

is the White Wines Model.

11. Evaluate the Red Wines Model using the red wines from the test data set. Calculate the

standard deviation of the errors, and the mean absolute error.

12. Evaluate the White Wines Model using the white wines from the test data set. Calculate

the standard deviation of the errors, and the mean absolute error.

13. Compare the standard deviations of the errors, and the mean absolute errors, for the Global

Model versus the combined results (weighted averages) from the Red Wines Model and

the White Wines Model.

14. Contrast the regression models generated for the two types of wines. Discuss any substan-

tive differences.
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ENSEMBLE METHODS: BAGGING
AND BOOSTING

Here in Part 6: Enhancing Model Performance, we are learning methods that allow us

to improve the performance of our models. In Chapter 24 we learned about Segmenta-

tion Models, where a useful clustering or subdivision of the data set is found, allowing

us to develop cluster-specific models for each segment, and thereby enhancing the

overall efficacy of the classification task. Here in this chapter, we are introduced to

Ensemble Methods, specifically, bagging and boosting that combine the results from

a set of classification models (classifiers), in order to increase the accuracy and reduce

the variability of the classification. Next time, in Chapter 26, we consider other types

of ensemble methods, including voting and model averaging.

We have become acquainted with a wide range of classification algorithms in

this book, including

• k-nearest neighbor classification

• Classification and regression trees (CART)

• The C4.5 algorithm

• Neural networks for classification

• Logistic regression

• Naïve Bayes and Bayesian networks.

However, we have so far used our classification algorithms one at a time. Have

you wondered what would happen if we were somehow able to combine more than

one classification model? Might the resulting combined model be more accurate, or

have less variability?

What would be the rationale for using an ensemble of classification models?

25.1 RATIONALE FOR USING AN ENSEMBLE
OF CLASSIFICATION MODELS

The benefits of using an ensemble of classification models rather than a single clas-

sification model are that

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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1. the ensemble classifier is likely to have a lower error rate (boosting);

2. the variance of the ensemble classifier will be lower than had we used certain

unstable classification models, such as decision trees and neural networks, that

have high variability (bagging and boosting);

How does an ensemble classifier succeed in having a lower error rate than the

single classifier? Consider the following example.

Suppose we have an ensemble of five binary (0/1, yes/no) classifiers, each of

which has an error rate of 0.20. The ensemble classifier will consider the classification

(prediction) for each classifier, and the classification with the most votes among the

five classifiers will be chosen as the output class for the ensemble classifier. If the

individual classifiers classify the cases similarly, then the ensemble classifier will

follow suit, in which case the error rate for the ensemble method will be the same as

for the individual classifiers, 0.20.

However, if the individual classifiers are independent, that is, if the classifica-

tion errors of the individual classifiers are uncorrelated, then the voting mechanism

ensures that the ensemble classifier will make an error only when the majority of

individual classifiers make an error. We may calculate the error rate of the ensemble

classifier in this case using the binomial probability distribution formula.

Let 𝜖 represent the individual classifier error rate. The probability that k of the

five individual classifiers will make the wrong prediction is(
5

k

)
𝜖k(1 − 𝜖)5−k =

(
5

k

)
0.2k(1 − 0.2)5−k

So, the probability that three of the five classifiers will make an error is(
5

3

)
0.23(0.8)2 = 0.0512

Similarly, the probability that four of the individual classifiers will make a wrong

prediction is (
5

4

)
0.24(0.8)1 = 0.0064

And the probability that all five of the classifiers will make an error is(
5

5

)
0.25(0.8)0 = 0.00032

Thus, the error rate of the ensemble classifier in this case equals:

Error rateEnsemble classifier =
5∑

i=3

(
5

i

)
𝜖i(1 − 𝜖)5−i =

5∑
i=3

(
5

i

)
0.2i(0.8)5−i

= 0.0512 + 0.0064 + 0.0003 = 0.05792

which is much lower than the base error rate of the individual classification models,

0.20.

When the base error rate is greater than 0.5, however, combining independent

models into an ensemble classifier will lead to an even greater error rate. An exercise
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in this section asks the reader to demonstrate how this is the case. Here in Chapter 25,

we examine two ensemble methods for improving classification model performance:

bagging and boosting. But first, we need to consider how the efficacy of a prediction

model is measured.

25.2 BIAS, VARIANCE, AND NOISE

We would like our models, either estimation models or classification models, to have

low prediction error. That is, we would like the distance (y − ŷ) between our target y
and our prediction ŷ to be small. The prediction error for a particular observation can

be decomposed as follows:

(y − ŷ) = Bias + Variance + Noise

where

• Bias refers to the average distance between the predictions (̂y, represented by

the lightning darts in Figure 25.1) and the target (y, the bull’s eye);

• Variance measures the variability in the predictions ŷ themselves;

• Noise represents the lower bound on the prediction error that the predictor can

possibly achieve.

To reduce the prediction error, then, we need to reduce the bias, the variance,

or the noise. Unfortunately, there is nothing we can do to reduce the noise: It is an

intrinsic characteristic of the prediction problem. Thus, we must try to reduce either

the bias or the variance. As we shall see, bagging can reduce the variance of classifier

Target

Noise

Bias

Variance

Figure 25.1 Prediction error = Bias + Variance + Noise
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models, while boosting can reduce both bias and variance. Thus, boosting offers a

way to short-circuit the bias–variance trade-off,1 where efforts to reduce bias will

necessarily increase the variance, and vice versa.

25.3 WHEN TO APPLY, AND NOT TO APPLY, BAGGING

Neural networks models can often fit a model to the available training data quite well,

so that they have low bias. However, small changes in initial conditions can lead to

high variability in predictions, so that neural networks are considered to have low bias

but high variance. This high variability would qualify neural networks as an unstable
classifier. According to Leo Breiman.

Some classification and regression methods are unstable in the sense that small per-

turbations in their training sets or in construction may result in large changes in the

constructed predictor.

Reference: Arcing Classifiers, by Leo Breiman, The Annals of Statistics, Vol 26, No. 3,

801–849, 1998

Table 25.1 contains a listing of the classification algorithms that Breiman states

are either stable or unstable.

It would make sense that a method for reducing variance would work best with

unstable models, where there is room for improvement in reducing variability. Thus,

it is with bagging, which works best with unstable models such as neural networks.

It is worthwhile to apply bagging to unstable models, but applying bagging to stable
models can degrade their performance. This is because bagging works with bootstrap

samples of the original data, each of which contains only about 63% of the data (see

below). Thus, it is unwise to apply bagging to k-nearest neighbor models or other

stable classifiers.

TABLE 25.1 Stable or unstable classification
algorithms

Classification Algorithm

Stable

or Unstable

Classification and regression trees Unstable

C4.5 Unstable

Neural networks Unstable

k-Nearest neighbor Stable

Discriminant analysis Stable

Naïve bayes Stable

1See Chapter 7.
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25.4 BAGGING

The term bagging was coined by Leo Breiman2 to refer to Bootstrap Aggregating;

the bagging algorithm is shown here.

THE BAGGING ALGORITHM

Step 1 Samples (with replacement) are repeatedly taken from the training data set,

so that each record has an equal probability of being selected, and each sample is

the same size as the original training data set. These are the bootstrap samples.

Step 2 A classification or estimation model is trained on each bootstrap sample drawn

in Step 1, and a prediction is recorded for each sample.

Step 3 The bagging ensemble prediction is then defined to be the class with the most

votes in Step 2 (for classification models) or the average of the predictions made

in Step 2 (for estimation models).

Thus, the bootstrap samples are drawn in Step 1, the base models are trained in

Step 2, and the results are aggregated in Step 3. Note that this process of aggregation,

either by voting or by taking the average, has the effect (for unstable models) of

reducing the error due to model variance. The reduction in variance accomplished by

bagging is in part due to the averaging out of nuisance outliers that will occur in some

of the bootstrap samples, but not others.

By way of analogy, consider a normal population with mean 𝜇 and variance 𝜎2.

The sample mean x, representing the aggregation, will then be distributed as normal,

with mean 𝜇 and variance
𝜎2

n
, for sample size n. That is, the variance of the aggregated

statistic x is smaller than that of an individual observation x.

Because sampling with replacement is used, certain observations will occur

more than once in a particular bootstrap sample, while others will not occur at all. It

can be shown that a bootstrap sample contains about 63% of the records in the original

training data set. This is because each observation has the following probability of

being selected for a bootstrap sample:

1 −
(

1 − 1

n

)n

and, for sufficiently large n, this converges to

1 − 1

e
≅ 0.63

This is why the performance of stable classifiers like k-nearest neighbor may be

degraded by using bagging, as the bootstrap samples are each missing on average

37% of the original data.

To see how bagging works, consider the data set in Table 25.2. Here, x denotes

the variable value and y denotes the classification, either 0 or 1. Suppose we have

2Leo Breiman, Bagging Predictors, Machine Learning, Volume 26, 2, pp. 123–140, 1996.
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TABLE 25.2 Data set to be sampled to create the
bootstrap samples

x 0.2 0.4 0.6 0.8 1

y 1 0 0 0 1

a one-level decision tree classifier that chooses a value of k that will minimize leaf

node entropy for the test condition x ≤ k.

Now, if bagging is not used, then the best that our classifier can do is to split

at x ≤ 0.3 or x ≤ 0.9, resulting in either cases with 20% error rate. However, suppose

we now apply the bagging algorithm.

Step 1 Bootstrap samples are taken with replacement for the data set in

Table 25.2. These samples are shown in Table 25.3. (Of course, your

bootstrap samples will differ.)

TABLE 25.3 Bootstrap samples drawn from Table 25.2, with the base classifiers

Bootstrap Sample Base Classifier

1 x 0.2 0.2 0.4 0.6 1 x ≤ 0.3 ⇒ y = 1

y 1 1 0 0 1 Otherwise, y = 0

2 x 0.2 0.4 0.4 0.6 0.8 x ≤ 0.3 ⇒ y = 1

y 1 0 0 0 0 Otherwise, y = 0

3 x 0.4 0.4 0.6 0.8 1 x ≤ 0.9 ⇒ y = 0

y 0 0 0 0 1 Otherwise, y = 0

4 x 0.2 0.6 0.8 1 1 x ≤ 0.9 ⇒ y = 0

y 1 0 0 1 1 Otherwise, y = 0

5 x 0.2 0.2 1 1 1 x ≤ 0.1 ⇒ y = 0

y 1 1 1 1 1 Otherwise, y = 0

Step 2 The one-level decision tree classifiers (base classifiers) are trained on

each separate sample, and shown on the right side of Table 25.3.

Step 3 For each record, the votes are tallied, and the majority class is selected

as the decision of the bagging ensemble classifier. As we have a 0/1 clas-

sification, this majority equals the average of the individual classifiers, the

proportion of 1’s. If the proportion is less than 0.5, then the bagging predic-

tion is 0, otherwise 1. The proportions and bagging predictions are shown

in Table 25.4.

In this case, the bagging prediction classifies each record correctly, so that the

error rate is zero for this toy example. Of course, in most big data applications, this

does not occur.

Breiman states, “The vital element is the instability of the prediction method.”

If the base classifier is unstable, then bagging can contribute to a reduction in the
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TABLE 25.4 Collection of predictions of base classifiers

Bootstrap Sample x = 0.2 x = 0.4 x = 0.6 x = 0.8 x = 1

1 1 0 0 0 0

2 1 0 0 0 0

3 0 0 0 0 1

4 0 0 0 0 1

5 1 1 1 1 1

Proportion 0.6 0.2 0.2 0.2 0.6

Bagging prediction 1 0 0 0 1

Proportion of 1’s= average⇒majority bagging prediction.

prediction error, because it reduces the classifier variance without affecting the bias,

and recall that Prediction error=Bias+Variance+Noise. If, however, the base clas-

sifier is stable, then the prediction error stems mainly from the bias in the base classi-

fier; so applying bagging will not help, and may even degrade performance, because

each bootstrap sample contains on an average only 63% of the data. Usually, how-

ever, bagging is used to reduce the classifier variability for unstable base classifiers,

and thus the bagging ensemble model will exhibit enhanced generalizability to the

test data.

Bagging does have a downside. The beauty of decision trees, which because

of their instability are common candidates for bagging, is their simplicity and inter-

pretability. Clients can understand the flow of a decision tree, and the factors leading

to a particular classification. However, aggregating (by voting or averaging) a set of

decision trees obfuscates the simple structure of the base decision tree, and loses the

easy interpretability.

For stable base classifiers, an alternative strategy is to take bootstrap samples

of the predictors rather than the records. This may be especially fruitful when there

are sets of highly correlated predictors.3

25.5 BOOSTING

Boosting was developed by Freund and Schapire in the 1990s.4 Boosting differs from

bagging in that the algorithm is adaptive. The same classification model is applied

successively to the training sample, except that, in each iteration, the boosting algo-

rithm applies greater weight to the records that have been misclassified. Boosting has

the double benefit of reducing the error due to variance (such as bagging) and also

due to bias.

3Matthieu Cord and Padraig Cunningham, editors, Machine Learning Techniques for Multimedia,

Springer-Verlag, Berlin, 2008.
4Yoav Freund and Robert E. Schapire, A decision-theoretic generalization of online learning and an appli-
cation to boosting, Journal of Computer and System Sciences, Volume 55 (1), pp. 119 – 139.
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THE BOOSTING ALGORITHM

Step 1 All observations have equal weight in the original training data set D1. An

initial “base” classifier h1 is determined.

Step 2 The observations that were incorrectly classified by the previous base clas-

sifier have their weights increased, while the observations that were correctly

classified have their weights decreased. This gives us data distribution Dm, m =
2, … ,M. A new base classifier hm, m = 2, … , M is determined, based on the

new weights. This step is repeated until the desired number of iterations M is

achieved.

Step 3 The final boosted classifier is the weighted sum of the M base classifiers.

Here follows a toy example of the ADABoost boosting algorithm, first pub-

lished in the book Boosting: Foundations and Algorithms, by Robert E. Schapire and

Yoav Freund.5

Step 1 The original training data set D1 consists of a set of 10 dichotomous

values, as shown in Figure 25.2. An initial base classifier h1 is determined

to separate the two leftmost values from the others (Figure 25.3). Shaded

area represents values classified as “+.”

+

+

+

+

+

−

− −

−

−

Figure 25.2 Original data.

Step 2 (First pass.) There were three values incorrectly classified by h1, as

shown by the boxed “+” signs in Figure 25.3. These three values have their

weights (represented by their relative size in the diagrams) increased, while

the other seven values have their weights decreased. This new data distri-

bution D2 is shown in Figure 25.4. Based on the new weights in D2, a new

base classifier h2 is determined, as shown in Figure 25.5.

Step 2 (Second pass.) Three values incorrectly classified by h2, as shown by

the boxed “−” signs in Figure 25.5. These three values have their weights

5MIT Press, 2012.
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+

+

+

+

+

−

− −

−

−

Figure 25.3 Initial base classifier.

+

+

+

+

+

D2

−

−

−

− −

Figure 25.4 First reweighting of the data.

+

+

+
+

+
−

−

−

h2

−

−

Figure 25.5 Second base classifier.
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(represented by their relative size in the diagrams) increased, while the other

seven values have their weights decreased. This new data distribution D3 is

shown in Figure 25.6. Based on the new weights in D3, a new base classifier

h3 is determined, as shown in Figure 25.7.

Step 3 The final boosted classifier, shown in Figure 25.8, is the weighted sum

of the M = 3 base classifiers: 𝛼1h1 + 𝛼2h2 + 𝛼3h3.

The weights 𝛼i assigned to each base classifier are proportional to the accuracy

of the classifier. For details on how the actual weights are calculated, see the book

by Schapire and Freund. Just as for bagging, boosting performs best when the base

classifiers are unstable. By focusing on classification errors, boosting has the effect of

reducing both the error due to bias and the error due to variance. However, boosting

can increase the variance when the base classifier is stable. Also, boosting, such as

bagging, obfuscates the interpretability of the results.

+

+

+ −

−
−−

−
+

+

D3

Figure 25.6 Second reweighting of the data.

+
+

+

−

−

−

−

−

+

+

h3

Figure 25.7 Third base classifier.
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+

+

+

−

−

−

−

−

+

+

Figure 25.8 Final boosted classifier is a weighted average of the three base classifiers.

25.6 APPLICATION OF BAGGING AND BOOSTING
USING IBM/SPSS MODELER

Finally, we offer an example of the efficacy of bagging and boosting for reducing pre-

diction error. The ClassifyRisk data set was partitioned into training and test data sets,

and three models were developed using the training set: (i) an original CART model

for predicting risk, (ii) a bagging model, where five base models were sampled with

replacement from the training set, and (iii) a boosting model, where five iterations of

the boosting algorithm were applied.

Each of (i), (ii), and (iii) were then applied to the unseen test data set. The result-

ing contingency tables are shown in Figure 25.9, where the predicted risk (“$R-risk”)

is given in the columns and the actual risk is given in the rows. A comparison of the

error rates shows that the error rates for the bagging and boosting models are lower

than that of the original CART model.6

ErrorOriginal CART model =
11 + 5

59
= 0.27

ErrorBagging model =
5 + 6

59
= 0.19

ErrorBoosting model =
5 + 9

59
= 0.24

Unfortunately, these lower error rates come with a loss of easy interpretability.

Figure 25.10 shows the decision tree for the original CART model. From this tree, the

client could implement any number of actionable decision rules, such as, for example,

“If customer income ≤$37,786.33 and age ≤47.5 and marital status is single or other,

6The reader’s results will of course differ, because of the different partitions of the data, and different

bootstrap samples drawn.
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Original CART model

Bagging ensemble model

Boosting ensemble model

Figure 25.9 Ensemble models have lower error rates than the original CART model.

Figure 25.10 Decision tree for Original CART model offers greater interpretability.

then we predict a bad loss, with 97.6% confidence.” The ensemble methods lose this

ease of interpretability by aggregating the results of several decision trees.
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THE R ZONE

# Prepare the data

risk <− read.csv(file = "C:/… /classifyrisk.txt",

stringsAsFactors=FALSE, header=TRUE, sep="\t")

choose <− runif(dim(risk)[1], 0, 1)

train <− risk [which(choose <= 0.75),]

test<− risk [which(choose > 0.75),]

# Original CART model for predicting risk

cart.o <− rpart(risk ∼ marital_status+mortgage+loans+income+age,

data = train,

method = "class")

p.0 <− predict(cart.o, newdata = test)

pred1 <− ifelse(p.0[,1] > p.0[,2], "Pred: bad loss", "Pred: good risk")

o.t <− table(pred1, test$risk)

# Bagging model (5 base models)

s1 <− train[sample(dim(train)[1], replace = TRUE),]

# Repeat the above for s2 through s5

cart1 <− rpart(risk ∼ marital_status+mortgage+loans+income+age,

data = s1, method = "class")

p1 <− predict(cart1, newdata = test)

pred1 <− ifelse(p1[,1] > p1[,2], "Pred: bad loss", "Pred: good risk")

# Repeat the above for s2, s3, s4, s5

preds <− c(pred1, pred2, pred3, pred4, pred5)

recs <− as.integer(names(preds)); fin.pred <− rep(0, dim(test)[1])

for(i in 1:dim(test)[1]){

t <− table(preds[which(recs==as.integer(rownames(test))[i])])

fin.pred[i] <− names(t)[t == max(t)]

}

bag.t <− table(fin.pred, test$risk) # Contingency table

# Boosting model (5 iterations)

cart6 <− rpart(risk ∼ marital_status+mortgage+loans+income+age,

data = train, method = "class")

p6 <− predict(cart6, newdata = train)

pred6 <− ifelse(p6[,1] > p6[,2], "bad loss", "good risk")

moreweight <− train$risk != pred6

new.weights <− ifelse(moreweight==TRUE, 2, 1)

cart7 <− rpart(risk ∼ marital_status+mortgage+loans+income+age,

weights = new.weights, data = train, method = "class")
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p7 <− predict(cart7, newdata = train)

pred7 <− ifelse(p7[,1] > p7[,2], "bad loss", "good risk")

moreweight <− train$risk != pred7

new.weights <− ifelse(moreweight==TRUE, 2, 1)

# Repeat the above for cart8 and cart9

cart10 <− rpart(risk ∼ marital_status+mortgage+loans+income+age,

weights = new.weights, data = train, method = "class")

p10 <− predict(cart10, newdata = test)

pred10 <− ifelse(p10[,1] > p10[,2], "Pred: bad loss", "Pred: good risk")

boost.t <− table(pred10, test$risk) # Contingency table

# Compare models

# Compare contingency tables

o.t

bag.t

boost.t

# Compare errors

(o.t[2]+o.t[3])/ sum(o.t)

(bag.t[2]+bag.t[3])/ sum(bag.t)

(boost.t[2]+boost.t[3])/ sum(boost.t)

R REFERENCE

1. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foun-

dation for Statistical Computing; 2012. 3-900051-07-0, http://www.R-project.org/. Accessed 01 Oct

2014.

EXERCISES

1. Describe two benefits of using an ensemble of classification models.

2. Recall the example at the beginning of the chapter, where we show that an ensemble of

five independent binary classifiers has a lower error rate than the base error rate of 0.20.

Demonstrate that an ensemble of three independent binary classifiers, each of which has

a base error rate of 0.10, has a lower error rate than 0.10.

3. Demonstrate that an ensemble of five independent binary classifiers, each with a base

error rate of 0.6, has a higher error rate than 0.6.

4. What is the equation for the decomposition of the prediction error?

5. Explain what is meant by the following terms: bias, variance, and noise.

6. True or false: bagging can reduce the variance of classifier models, while boosting can

reduce both bias and variance.

http://www.R-project.org
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7. What does it mean for a classification algorithm to be unstable?

8. Which classification algorithms are considered unstable? Which are considered stable?

9. What can happen if we apply bagging to stable models? Why might this happen?

10. What is a bootstrap sample?

11. State the three steps of the bagging algorithm.

12. How does bagging contribute to a reduction in the prediction error?

13. What is a downside of using bagging?

14. State the three steps of the boosting algorithm.

15. Explain what we mean when we say that the boosting algorithm is adaptive.

16. Does the boosting algorithm use bootstrap samples?

17. The boosting algorithm uses a weighted average of a series of classifiers. On what do the

weights in this weighted average depend?

18. True or false: Unlike bagging, boosting does not suffer from a loss of interpretability of

the results.

Use the following information for Exercises 19–23. Table 25.5 represents the data set to be

sampled to create bootstrap samples. Five bootstrap samples are shown in Table 25.6.

TABLE 25.5 Data set to be sampled to create the
bootstrap samples

x 0 0.5 1

y 1 0 1

TABLE 25.6 Bootstrap samples drawn from Table 25.5

Bootstrap Sample

1 x 0 0 0.5

y 1 1 0

2 x 0.5 1 1

y 0 1 1

3 x 0 0 1

y 1 1 1

4 x 0.5 0.5 1

y 0 0 1

5 x 0 0.5 0.5

y 1 0 0

19. Construct the base classifier for each bootstrap sample, analogous to those found in

Table 25.3.

20. Provide a table of the predictions for each base classifier, similarly to those found in

Table 25.4.
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21. Find the proportion of 1’s, and make the majority prediction for each value of x, similarly

to that in Table 25.4.

22. Verify that the ensemble classifier correctly predicts the three values of x.

23. Change the fifth bootstrap sample in Table 25.6 to the following:

x 0.5 0.5 1

y 0 0 1

Recalculate the proportion of 1’s, and the majority predictions for each value of x. Conclude

that the bagging classifier does not always correctly predict all values of x.

HANDS-ON ANALYSIS

Use the ClassifyRisk data set for Exercises 24–27.

24. Partition the data set into training and test data sets.

25. Develop three models using the training data set: (i) an original CART model for predict-

ing risk, (ii) a bagging model, where five base models are sampled with replacement from

the training set, and (iii) a boosting model, where five iterations of the boosting algorithm

are applied.

26. Apply each of (i), (ii), and (iii) to the test data set. Produce the contingency tables for each

model. Compare the error rates for the bagging and boosting models against that of the

original CART model.

27. Extract a sample interesting decision rule from the original CART model. Comment on

the interpretability of the results from the bagging and boosting models.



C H A P T E R 26
MODEL VOTING AND
PROPENSITY AVERAGING

In Part 6: Enhancing Model Performance, we are examining methods for improv-

ing the performance of our classification and prediction models. In Chapter 24, we

learned about segmentation models, where useful segments of the data are leveraged

to enhance the overall effectiveness of the model. Then, in Chapter 25, we learned

about ensemble methods, which combine the results from a set of classification mod-

els, in order to increase the accuracy and reduce the variability of the classification.

Now, here in this chapter, we consider methods for combining different types of mod-

els, using model voting and propensity averaging.

26.1 SIMPLE MODEL VOTING

In Olympic figure skating, the champion skater is not decided by a single judge alone,

but by a panel of judges. The preferences of the individual judges are aggregated

using some combination function, which then decides the winner. In data analysis,

different classification models (e.g., CART (classification and regression trees) vs

logistic regression) may provide different classifications for the same data. Thus,

data analysts may also be interested in combining classification models, using model

voting or propensity averaging, so that the strengths and weaknesses of each model

are smoothed out through combination with the other models. Model voting and

propensity averaging are considered to be ensemble methods, because the ultimate

classification decision is based, in part, on the input from each of the base classifiers.

One method of combining models is to use simple voting (also called majority
classification). Consider Table 26.1. Suppose we have a classification task, with a flag

target. We develop three independent classification models: (i) a CART model, (ii)

a logistic regression model, and (iii) a neural network model. For each record, each

model supplies a classification of either response (1) or non-response (0). Table 26.1

shows five records, with the classification supplied by each model, along with the

“winning” classification, as tabulated by majority vote among the three classification

models.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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TABLE 26.1 Example of simple model voting

Records CART

Logistic

Regression

Neural

Network C5.0

Naïve

Bayes

Majority

Classification

1 0 0 0 0 0 0
2 0 1 0 0 0 0
3 0 1 0 0 1 0
4 1 1 0 0 1 1
5 1 1 1 1 1 1

In this case, the logistic regression model was more likely to classify the records

as 1, while the neural network model was less likely. The simple voting scheme is a

way of averaging out these predictions, in the hopes that such a consensus model

will provide more stable results. This process is analogous to bootstrap aggregation

(bagging). However, in bagging, the classification models are the same while the

records are resampled. Here, with simple model voting, the models may be different,

as in Table 26.1.

26.2 ALTERNATIVE VOTING METHODS

Note that the majority classification is only one way of counting the votes of the mod-

els. Here follows a list of possible ways of combining the votes of binary classification

models:

• Majority Classification. The classification with more than 50% of the votes is

selected.

• Plurality Classification. The classification with more votes than any other

classification is selected, without having to achieve a majority. For binary clas-

sification models, majority classification and plurality classification are equiv-

alent.

• Single Sufficient Classification. If at least one model votes positive, then the

combination classification is positive.

• Twofold Sufficient Classification. If at least two models vote positive, then

the combination classification is positive.

• k-Fold Sufficient Classification. If at least k models vote positive, then the

combination classification is positive, where k < m (total number of models).

• Positive Unanimity Classification. The combination classification is positive

only if all models vote positive.

(Of course, there are analogous methods for counting the negative votes.) Note

that these alternative methods of counting votes often result in different classifi-

cation decisions for the combination classifier. Table 26.2 shows the classification

decisions made for each different method of counting the votes, for the data from

Table 26.1.
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TABLE 26.2 Alternative voting methods lead to different winners

Records

Plurality

Classification

Single

Sufficient

Twofold

Sufficient

Threefold

Sufficient

Fourfold

Sufficient

Positive

Unanimity

1 0 0 0 0 0 0

2 0 1 0 0 0 0

3 0 1 1 0 0 0

4 1 1 1 1 0 0

5 1 1 1 1 1 1

What are the characteristics of the ensemble models associated with these dif-

ferent voting methods?

• Single sufficient classification is highly aggressive in recognizing positive

responses. Thus, its sensitivity1 may be high, but it may also be prone to

making a higher number of false positive predictions.

• By contrast, positive unanimity classification is resistant to recognizing positive

responses. Hence, while its specificity2 may be high, it may nevertheless be in

danger of having too many false negatives.

• We would expect that majority classification would fall somewhere between

the behaviors in the previous two bullets, having moderate rates of all four

statistics cited. Also, for combining m models (where m is odd), we would

expect ((m + 1)∕2)-fold classification to reflect the behavior of the majority

classification strategy.

The downside of ensemble classifiers in general extends to voting models; that

is, their lack of interpretability. It may be more difficult to explain to a client how a

voting ensemble works, compared to the straightforward interpretability of decision

trees.

26.3 MODEL VOTING PROCESS

The model voting process is illustrated in Figure 26.1, and may be summarized as

follows:

MODEL VOTING PROCESS

1. Partition the data set into a training data set and a test data set.

2. Train a set of base classifiers using the training data set.

1Ratio of true positive predictions to actual positive responses.
2Ratio of true negative predictions to actual negative responses.
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3. Apply the base classifier models from step 2 to the test data set.

4. Combine the classification results from step 3 into voting ensemble models, using

whatever voting methods the analyst or client prefers, including the following:

∘ Majority classification

∘ Single sufficient classification

∘ Twofold sufficient classification

∘ Positive unanimity classification.

5. Evaluate all base classifier models and all voting ensemble models with respect to

overall error rate, sensitivity, specificity, proportion of false positives (PFP), and pro-

portion of false negatives (PFN). Deploy the best performing model.

26.4 AN APPLICATION OF MODEL VOTING

To illustrate the application of simple model voting and alternative voting methods

to actual data, the model voting process was applied to the ClassifyRisk data set.

1. The data set was partitioned into a training data set and a test data set.

2. The following base classifiers were trained to predict Risk, using the training

set:

∘ Bayesian network

∘ Logistic regression

∘ Neural network.

3. For the purposes of this example, a random sample of 25 records was taken

from the test data set, to be referred to as the working test data set. Each of the

three base classifiers from step 2 was applied to the working test data set.

4. The classification results from the three base classifiers were combined into

voting ensemble models, using the following voting methods:

∘ Majority classification

∘ Single sufficient classification

∘ Twofold sufficient classification

∘ Positive unanimity classification.

5. Each of the base classifiers from step 3 and each of the four voting ensemble

models from step 4 were evaluated with respect to overall error rate, sensitivity,

specificity, PFP, and PFN.

The working test data set is shown in Table 26.3, along with the classification

results from the three base classifiers in step 2 and the four voting ensemble models

in step 5. Risk represents the actual outcome, and the columns to the right of Risk rep-

resent the predictions of the base classifiers and the voting ensemble models. (Good
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Original

data set

Training

data set
Test

data set

Apply base

classifiers to

test set

Evaluate all base classifiers and all

voting ensemble models.

Deploy best performing model

Train base

classifiers on

training set

Construct voting ensemble models:

Majority classification

Single sufficient

Twofold sufficient

Positive unanimity

Figure 26.1 Model voting process.

Risk is coded as 1, Bad Loss is coded as 0, and Income is rounded to the nearest dol-

lar to save space.) Tables 26.4–26.10 represent the contingency tables of each base

classifier and voting model.

Table 26.11 contains the model evaluation measures for all of the models. Each

of the base classifiers share the same overall error rate, 0.16. However, the positive

unanimity ensemble model has a lower overall error rate of 0.12. (The best perfor-

mance for each of the models is shown in bold.) As expected, the single sufficient

model has the best sensitivity and PFN among the ensemble models, but does not

perform so well with respect to specificity and PFP. The positive unanimity model

does very well in specificity and PFP, and not so well in sensitivity and PFN.



TA
B

LE
26

.3
W

o
rk

in
g

te
st

d
at

a
se

t

M
o
rt

L
o
an

s
A

g
e

M
ar

it
al

S
ta

tu
s

In
co

m
e

R
is

k

B
ay

es

N
et

L
o
g

R
eg

N
eu

ra
l

N
et

M
aj

o
ri

ty

S
in

g
le

S
u

ffi
ci

en
t

T
w

o
fo

ld

S
u

ffi
ci

en
t

P
o

si
ti

v
e

U
n

an
im

it
y

Y
2

3
3

O
th

er
3
1
,2

8
7

0
0

0
0

0
0

0
0

Y
2

3
9

O
th

er
3
0
,9

5
4

0
0

0
0

0
0

0
0

Y
1

1
7

S
in

g
le

2
7
,9

4
8

0
0

0
0

0
0

0
0

Y
2

4
3

S
in

g
le

3
7
,0

3
6

0
0

0
0

0
0

0
0

Y
2

3
4

S
in

g
le

2
3
,9

0
5

0
0

0
0

0
0

0
0

Y
1

2
8

M
ar

ri
ed

3
8
,4

0
7

0
1

1
0

1
1

1
0

N
1

2
3

M
ar

ri
ed

2
3
,3

3
3

0
0

0
0

0
0

0
0

N
2

3
8

O
th

er
3
2
,9

6
1

0
0

0
0

0
0

0
0

Y
2

2
6

O
th

er
2
8
,2

9
7

0
0

0
0

0
0

0
0

Y
2

4
3

O
th

er
2
8
,1

6
5

0
0

0
0

0
0

0
0

N
2

4
6

O
th

er
2
7
,8

6
9

0
0

0
0

0
0

0
0

Y
2

3
3

O
th

er
2
7
,6

1
5

0
0

0
0

0
0

0
0

Y
3

4
1

O
th

er
2
4
,3

0
8

0
0

0
0

0
0

0
0

Y
1

5
3

S
in

g
le

3
5
,8

1
6

0
1

0
1

1
1

1
0

Y
2

4
2

S
in

g
le

2
4
,5

3
4

0
0

0
0

0
0

0
0

Y
1

6
2

S
in

g
le

3
3
,1

3
9

1
1

1
1

1
1

1
1

N
1

2
5

S
in

g
le

3
4
,1

3
4

1
0

0
0

0
0

0
0

Y
2

4
9

S
in

g
le

3
1
,3

6
3

1
1

0
0

0
1

0
0

N
1

3
5

S
in

g
le

2
8
,2

7
7

1
0

0
0

0
1

0
0

N
1

3
0

M
ar

ri
ed

4
9
,7

5
1

1
1

1
1

1
1

1
1

N
1

5
6

M
ar

ri
ed

4
7
,4

1
2

1
1

1
1

1
1

1
1

Y
1

4
7

M
ar

ri
ed

4
7
,6

6
5

1
1

1
1

1
1

1
1

N
1

4
8

M
ar

ri
ed

4
1
,3

3
5

1
1

1
1

1
1

1
1

N
0

4
3

S
in

g
le

5
5
,2

5
1

1
1

1
1

1
1

1
1

Y
1

4
8

S
in

g
le

4
0
,6

3
1

1
1

1
1

1
1

1
1

658



26.4 AN APPLICATION OF MODEL VOTING 659

TABLE 26.4 Bayesian networks model

Predicted Risk

0 1

Actual Risk 0 13 2

1 2 8

TABLE 26.5 Logistic regression model

Predicted Risk

0 1

Actual Risk 0 14 1

1 3 7

TABLE 26.6 Neural networks model

Predicted Risk

0 1

Actual Risk 0 14 1

1 3 7

TABLE 26.7 Majority voting ensemble
model

Predicted Risk

0 1

Actual Risk 0 13 2

1 3 7

TABLE 26.8 Single sufficient ensemble
model

Predicted Risk

0 1

Actual Risk 0 13 2

1 2 8

TABLE 26.9 Twofold sufficient ensemble
model

Predicted Risk

0 1

Actual Risk 0 13 2

1 3 7
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TABLE 26.10 Positive unanimity
ensemble model

Predicted Risk

0 1

Actual Risk 0 15 0

1 3 7

TABLE 26.11 Model evaluation measures for all base classifiers and voting ensembles (best
performance in bold).

Model Overall Error Rate Sensitivity Specificity PFP PFN

Bayesian networks 0.16 0.80 0.87 0.20 0.13

Logistic regression 0.16 0.70 0.93 0.12 0.18

Neural networks 0.16 0.70 0.93 0.12 0.18

Majority vote 0.20 0.70 0.87 0.22 0.19

Single sufficient 0.16 0.80 0.87 0.20 0.13

Twofold sufficient 0.20 0.70 0.87 0.22 0.19

Positive unanimity 0.12 0.70 1.00 0.00 0.17

This example demonstrates that a well-chosen voting ensemble scheme can

sometimes lead to better performance than any of the base classifiers. In effect, voting

enables an ensemble classifier to be better than the sum of its parts. Of course, such

an improvement in performance is not guaranteed across all data sets. But it is often

worth a try.

26.5 WHAT IS PROPENSITY AVERAGING?

Voting is not the only method for combining model results. The voting method rep-

resents, for each model, an up-or-down, black-and-white decision without regard for

measuring the confidence in the decision. The analyst may prefer a method that takes

into account the confidence, or propensity, that the models have for a particular clas-

sification. This would allow for finer tuning of the decision space.

Fortunately, such propensity measures are available in IBM/SPSS Modeler. For

each model’s results, Modeler reports not only the decision, but also the confidence of

the algorithm in its decision. The reported confidence measure relates to the reported

classification. Because we would like to do calculations with this measure, we must

first transform the reported confidence into a propensity for a particular class, usually

the positive class. For the ClassifyRisk data set, we do this as follows:

If predicted class is Good Risk, then Propensity = Reported Confidence

If predicted class is Bad Loss , then Propensity = 1 − Reported Confidence
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For an ensemble of m base classifiers, then the mean propensity, or average
propensity, is calculated as follows:

Mean Propensity =
PropensityModel 1 + PropensityModel 2 + · · · + PropensityModel m

m

We may then combine several classification models of various types, such as

decision trees, neural networks, and Bayesian networks, and find the mean propensity

for a positive response across all these models.

Note that the mean propensity is a field that takes a value for each record. Thus,

we may examine the distribution of mean propensities over all records, and select a

particular value that may be useful for partitioning the data set into those for whom

we will predict a positive response, and those for whom we will predict a negative

response.

26.6 PROPENSITY AVERAGING PROCESS

The propensity averaging process is illustrated in Figure 26.2, and may be summa-

rized as follows:

THE PROPENSITY AVERAGING PROCESS

1. Partition the data set into a training data set and a test data set.

2. Train a set of base classifiers using the training data set.

3. Apply the base classifier models from step 2 to the test data set.

4. For each record in the test data set, calculate the propensity of that record toward a

positive response for the target variable, for each of the base classifiers. Compute the

mean propensity for each record across all base classifiers.

5. Construct a normalized histogram of mean propensity, with an overlay of the target

variable. (See Figure 26.3 for an illustration.)

6. Scan the histogram from left to right, to identify candidate threshold values of the

mean propensity for partitioning the test set into those with positive and negative

values for the target variable. The goal is to select a set of candidate threshold val-

ues that discriminate well between responders to its right and non-responders to

its left.

7. Evaluate all base classifiers, as well as the models defined by the candidate

threshold values selected in step 6, using evaluative measures such as overall

error rate, sensitivity, specificity, PFP, and PFN. Deploy the best performing

model.

26.7 AN APPLICATION OF PROPENSITY AVERAGING

The construction of a propensity-averaged ensemble classification model is illustrated

using the Adult2_training data set and the Adult2_test data set. The binary target
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Original
data set

Training
data set

Test
data set

Train base
classifiers on
training set

Apply base
classifiers to

test set

For each record, calculate propensity toward positive
response, for each base classifier.

For each record, compute mean propensity

Construct normalized histogram of mean propensity, with an
overlay of target variable

Identify candidate threshold values for partitioning test set
into responders and non-responders

Evaluate all models, the base classifiers and the models
defined by the candidate threshold values.

Deploy the best performing model

Figure 26.2 Propensity averaging process.

variable Income indicates whether income is above $50,000 or not. The propensity

averaging process was applied, and is as follows:

1. The Adult data set was partitioned into a training data set and a test data set.

2. The following base classifiers were trained to predict Risk, using the training

set:
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∘ CART

∘ Logistic regression

∘ Neural network.

3. Each of the three base classifiers from step 2 was applied to the test data set.

4. For each record in the test data set, the propensity of that record toward a

positive response (Income > $50,000) was calculated, for each of the base clas-

sifiers. The mean propensity was then computed for each record.

5. A normalized histogram of the mean propensity, with an overlay of Income,

was constructed (Figure 26.3).
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Figure 26.3 Distribution of mean propensity, with Income overlay.

6. The histogram in Figure 26.3 was then scanned from left to right, to identify

candidate threshold values of the mean propensity for partitioning the test set

into those with positive and negative values for the target, Income. The goal

is to select a set of candidate threshold values that discriminate well between

responders to its right and non-responders to its left.

7. A table (Table 26.12) was constructed of the candidate threshold values selected

in step 6, together with their evaluative measures such as overall error rate,

sensitivity, specificity, PFP, and PFN. The base classifiers are also included in

this table.

A threshold value of t defines positive and negative response as follows:

If mean propensity ≥ t, then target response is classified as positive

If mean propensity is < t, then target response is classified as negative
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TABLE 26.12 Candidate mean propensity threshold values, with evaluative measures (best
performance in bold).

Threshold Value Overall Error Rate Sensitivity Specificity PFP PFN

0.34 0.1672 0.7346 0.8639 0.3689 0.0887

0.4 0.1610 0.6158 0.9097 0.3163 0.1180

0.6 0.1691 0.4477 0.9523 0.2517 0.1552

0.4005 0.1608 0.6158 0.9099 0.3158 0.1180

0.4007 0.1607 0.6158 0.9101 0.3153 0.1180

0.4009 0.1608 0.6151 0.9101 0.3156 0.1182

CART 0.1608 0.5436 0.9328 0.2806 0.1342

Log Reg 0.1748 0.5105 0.9249 0.3171 0.1436

Neur Net 0.1688 0.5388 0.9238 0.3085 0.1366

Table 26.12 contains the candidate threshold values for the mean propensity,

together with evaluative measures for the model defined by the candidate values, as

well as the base classifiers. Scanning Figure 26.3, the eye alights on 0.34, 0.4, and 0.6

as good candidate threshold values. Evaluating the models defined by these threshold

values reveals that 0.4 is the best of these three, with the lowest overall error rate

(assuming that is the preferred measure). Fine-tuning around the value of 0.4 eventu-

ally shows that 0.4005, 0.4007, and 0.4009 are the best candidate values, with 0.4007

having the lowest overall error rate of 0.1607.

Note that this overall error rate of 0.1607 barely edges out that of the original

CART model, 0.1608. So, bearing in mind that propensity-averaged models have

very low interpretability, the original CART model is probably to be preferred here.

Nevertheless, propensity averaging can sometimes offer enhanced classification

performance, and, when accuracy trumps interpretability, their application may be

worth a try.

Table 26.12 helps us describe the expected behavior of the ensemble model, for

various mean propensity threshold values.

• Lower threshold values are highly aggressive in recognizing positive responses.

A model defined by a low threshold value will thus have high sensitivity, but

may also be prone to making a higher number of false positive predictions.

• Higher threshold values are resistant to recognizing positive responses. A

model defined by a higher threshold value will have good specificity, but be in

danger of having a high PFN.

Ensembles using voting or propensity averaging can handle base classifiers

with misclassification costs. For voting ensembles, the base classifiers’ preferences

account for any misclassification costs, so that combining these preferences is no

different than for models with no misclassification costs. It is similar for the propen-

sity averaging process. Each base classifier will take the misclassification costs into

account when calculating propensities, so the process is the same as for models with

no misclassification costs. Of course, the models would need to be evaluated using

the defined misclassification costs rather than, say, overall error rate.
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THE R ZONE

# Prepare the data

risk <− read.csv(file = "C:/… /classifyrisk.txt",

stringsAsFactors=FALSE,

header=TRUE,

sep="\t")

risk$loans_n <− (risk$loans - min(risk$loans))/(max(risk$loans)-min(risk$loans))

# And so on for the continuous variables

risk$ms_single <− ifelse(risk$marital_status=="single", 1, 0)

# And so on for categorical variables

crisk.n <− risk[,7:13]

# Create 75% Training, 25% Testing dataset

choose <− runif(dim(crisk.n)[1], 0, 1)

train <− crisk.n[which(choose <= .75),]

test <− crisk.n[which(choose > 0.75), ]

# Build the individual models

# Logistic Regression

lr <− glm(risk_good ∼ ms_married+ms_single+mortgage_y+loans_n+income_n+age_n,

data = train,

family=binomial)

# Neural network

library(nnet)

nn <− nnet(risk_good ∼ ms_married+ms_single+mortgage_y+loans_n+income_n+age_n,

data = train, size = 10)

# Classify working test set

# Create the working test set (n=25)

pick25 <− sample(1:dim(test)[1], size = 25, replace = FALSE)

test.25 <− test[pick25,]

# Classify working test set using models

pred.lr <− ifelse(round(predict(lr, test.25))<.5, 0, 1)

pred.nn <− round(predict(nn, newdata=test.25))
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# Voting ensemble models

pred.all <− matrix(c(test.25$risk_good, pred.lr, pred.nn), ncol = 3)

pred.all <− pred.all[order(test.25$risk_good),]

colnames(pred.all) <− c("Risk", "Log Reg", "Neural Net")

sing.s <− pos.un <− rep(0, 25)

for(i in 1:25){

if(pred.all[i,2]==1 || pred.all[i,3]==1){

sing.s[i] <− 1# Single Sufficient

}

if(pred.all[i,2]==1 && pred.all[i,3]==1){

pos.un[i] <− 1 # Positive Unanimity

}

}

pred.all <− cbind(pred.all, sing.s, pos.un)

# Evaluate results

lr.t <− table(pred.all[,1], pred.all[,2])

nn.t <− table(pred.all[,1], pred.all[,3])

ss.t <− table(pred.all[,1], pred.all[,4])

pu.t <− table(pred.all[,1], pred.all[,5])

rownames(lr.t) <− rownames(nn.t) <−
rownames(ss.t) <− rownames(pu.t) <−
c("Good Risk", "Bad Loss")

colnames(lr.t) <− colnames(nn.t) <−
colnames(ss.t) <− colnames(pu.t) <−
c("Pred: Good Risk", "Pred: Bad Loss")

lr.t; nn.t

ss.t; pu.t
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EXERCISES

1. What is another term for simple model voting?

2. What is the difference between majority classification and plurality classification?

3. Explain what single sufficient and twofold sufficient classification represent.

http://www.R-project.org
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4. Describe what negative unanimity would be.

5. Describe the characteristics of the models associated with the following voting methods:

a. Single sufficient classification

b. Positive unanimity classification

c. Majority classification.

6. What is a detriment of using voting ensemble models?

7. Is a voting ensemble model constructed from the classification results of the training set

or the test set?

8. True or false: Voting ensemble models always perform better than any of their constituent

classifiers.

9. What is the rationale for using propensity averaging rather than a voting ensemble?

10. For a binary target, how is the propensity for a positive response calculated?

11. For an ensemble of m base classifiers, state in words the formula for mean propensity.

12. True or false: Propensity is a characteristic of a data set rather than a single record.

13. When scanning the normalized histogram of mean propensity values, what should we look

for in a candidate threshold value?

14. How does a threshold value of t define positive and negative responses of the target

variable?

15. Describe how propensity averaging ensemble models would behave, for the following:

a. Lower threshold values

b. Higher threshold values.

16. True or false: Ensemble models using voting or propensity averaging do not perform well

with misclassification costs.

HANDS-ON ANALYSIS

Use the Adult2_training data set and the Adult2_test data set to perform model voting in

Exercises 17–21.x2

17. Use the training set to train a CART model, a logistic regression model, and a neural

network model to be your set of base classifiers for predicting Income.

18. Apply the base classifier models to the test data set.

19. Combine the classification results into voting ensemble models, using the following

methods:

a. Majority classification

b. Single sufficient classification

c. Twofold sufficient classification

d. Positive unanimity classification.

20. Evaluate all base classifier models and all voting ensemble models with respect to overall

error rate, sensitivity, specificity, proportion of false positives, and proportion of false

negatives. Which model performed the best?
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21. Apply a misclassification cost of 2 (rather than the default of 1) for a false negative. Redo

Exercises 23–29 using the new misclassification cost. Make sure to evaluate the models

using the new misclassification cost rather than the measures mentioned in Exercise 28.

Use the Churn data set to perform propensity averaging in Exercises 22–29.

22. Partition the data set into a training data set and a test data set.

23. Use the training set to train a CART model, a logistic regression model, and a neural

network model to be your set of base classifiers for predicting Churn.

24. Apply the base classifier models to the test data set.

25. For each record in the test data set, calculate the propensity of that record toward a positive

response for Churn, for each of the base classifiers. Compute the mean propensity for each

record across all base classifiers.

26. Construct a normalized histogram of mean propensity, with an overlay of Churn. (See

Figure 26.3 for an illustration.)

27. Scan the histogram from left to right, to identify candidate threshold values of the mean

propensity for partitioning the test set into churners and non-churners. The goal is to select

a set of candidate threshold values that discriminate well between churners to its right and

non-churners to its left.

28. Evaluate all base classifiers, as well as the models defined by the candidate threshold

values selected in the previous exercise, using overall error rate, sensitivity, specificity,

proportion of false positives, and proportion of false negatives. Deploy the best performing

model.

29. Apply a misclassification cost of 5 (rather than the default of 1) for a false negative. Redo

Exercises 23–29 using the new misclassification cost. Make sure to evaluate the models

using the new misclassification cost rather than the measures mentioned in Exercise 28.
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C H A P T E R 27
GENETIC ALGORITHMS

27.1 INTRODUCTION TO GENETIC ALGORITHMS

Genetic algorithms (GAs) attempt to computationally mimic the processes by which

natural selection operates, and apply them to solve business and research problems.

Developed by John Holland in the 1960s and 1970s (Holland1), GAs provide a frame-

work for studying the effects of such biologically inspired factors as mate selection,

reproduction, mutation, and crossover of genetic information.

In the natural world, the constraints and stresses of a particular environment

force the different species (and different individuals within species) to compete to

produce the fittest offspring. In the world of GAs, the fitness of various potential

solutions is compared, and the fittest potential solutions evolve to produce ever more

optimal solutions.

Not surprisingly, the field of GAs has borrowed heavily from genomic termi-

nology. Each cell in our body contains the same set of chromosomes, strings of DNA

that function as a blueprint for making one of us. Then, each chromosome can be

partitioned into genes, which are blocks of DNA designed to encode a particular trait

such as eye color. A particular instance of the gene (e.g., brown eyes) is an allele.

Each gene is to be found at a particular locus on the chromosome. Recombination, or

crossover, occurs during reproduction, where a new chromosome is formed by com-

bining the characteristics of both parents’ chromosomes. Mutation, the altering of a

single gene in a chromosome of the offspring, may occur, randomly and relatively

rarely. The offspring’s fitness is then evaluated, either in terms of viability (living

long enough to reproduce) or in the offspring’s fertility.

Now, in the field of GAs, a chromosome refers to one of the candidate solutions

to the problem, a gene is a single bit or digit of the candidate solution, and an allele
is a particular instance of the bit or digit (e.g., 0 for binary-encoded solutions or the

number 7 for real-valued solutions). Recall that binary numbers have base two, so

that the first “decimal” place represents “ones,” the second represents “twos,” the

third represents “fours,” the fourth represents “eights,” and so forth. So the binary

1Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Second Edition:

MIT Press, 1992.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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string 10101010 represents

(1 × 128) + (0 × 64) + (1 × 32) + (0 × 16) + (1 × 8) + (0 × 4) + (1 × 2) + (0 × 1)
= 170

in decimal notation.

There are three operators used by GAs, selection, crossover, and mutation.

1. Selection. The selection operator refers to the method used for selecting which

chromosomes will be reproducing. The fitness function evaluates each of the

chromosomes (candidate solutions), and the fitter the chromosome, the more

likely it will be selected to reproduce.

2. Crossover. The crossover operator performs recombination, creating two new

offspring by randomly selecting a locus and exchanging subsequences to the

left and right of that locus between two chromosomes chosen during selection.

For example, in binary representation, two strings 11111111 and 00000000

could be crossed over at the sixth locus in each to generate the two new offspring

11111000 and 00000111.

3. Mutation. The mutation operator randomly changes the bits or digits at a par-

ticular locus in a chromosome, usually, however with very small probability.

For example, after crossover, the 11111000 child string could be mutated at

locus two to become 10111000. Mutation introduces new information to the

genetic pool, and protects against converging too quickly to a local optimum.

Most GAs function by iteratively updating a collection of potential solutions,

called a population. Each member of the population is evaluated for fitness on each

cycle. A new population then replaces the old population using the above operators,

with the fittest members being chosen for reproduction or cloning. The fitness func-

tion f (x) is a real-valued function operating on the chromosome (potential solution),

not the gene, so that the x in f (x) refers to the numeric value taken by the chromosome

at the time of fitness evaluation.

27.2 BASIC FRAMEWORK OF A GENETIC ALGORITHM

The following introductory GA framework is adapted from Mitchell2 in her interest-

ing book An Introduction to Genetic Algorithms.

• Step 0. Initialization. Assume that the data are encoded in bit strings (1’s and

0’s). Specify a crossover probability or crossover rate pc, and a mutation prob-
ability or mutation rate pm. Usually, pc is chosen to be fairly high (e.g., 0.7),

and pm is chosen to be very low (e.g., 0.001).

• Step 1. The population is chosen, consisting of a set of n chromosomes, each

of length l.

2Melanie Mitchell, An Introduction to Genetic Algorithms, MIT Press, Cambridge, Mass, Second edition,

2002.
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• Step 2. The fitness f (x) for each chromosome in the population is calculated.

• Step 3. Iterate through the following steps until n offspring have been gener-

ated.

∘ Step 3a. Selection. Using the values from the fitness function f (x) from step

2, assign a probability of selection to each individual chromosome, with

higher fitness providing a higher probability of selection. The usual term

for the way these probabilities are assigned is the roulette wheel method. For

each chromosome xi, find the proportion of this chromosome’s fitness to the

total fitness summed over all the chromosomes. That is, find f (xi)∕∑
i f (xi), and

assign this proportion to be the probability of selecting that chromosome for

parenthood. Each chromosome then has a proportional slice of the putative

roulette wheel spun to choose the parents. Then select a pair of chromosomes

to be parents, based on these probabilities. Allow the same chromosome to

be potentially selected to be a parent more than once. Allowing a chromo-

some to pair with itself will generate three copies of that chromosome to the

new generation. If the analyst is concerned about converging too quickly to

a local optimum, then perhaps such pairing should not be allowed.

∘ Step 3b. Crossover. Select a randomly chosen locus (crossover point) for

where to perform the crossover. Then, with probability pc, perform crossover

with the parents selected in step 3a, thereby forming two new offspring. If

the crossover is not performed, clone two exact copies of the parents to be

passed on to the new generation.

∘ Step 3c. Mutation. With probability pm, perform mutation on each of the

two offspring at each locus point. The chromosomes then take their place in

the new population. If n is odd, discard one new chromosome at random.

• Step 4. The new population of chromosomes replaces the current population.

• Step 5. Check whether termination criteria have been met. For example, is the

change in mean fitness from generation to generation vanishingly small? If con-

vergence is achieved, then stop and report results; otherwise, go to step 2.

Each cycle through this algorithm is called a generation, with most GA appli-

cations taking from 50 to 500 generations to reach convergence. Mitchell suggests

that researchers try several different runs with different random number seeds, and

report the model evaluation statistics (e.g., best overall fitness) averaged over several

different runs.

27.3 SIMPLE EXAMPLE OF A GENETIC ALGORITHM
AT WORK

Let us examine a simple example of a GA at work. Suppose our task is to find the

maximum value of the normal distribution with mean 𝜇 = 16 and standard deviation

𝜎 = 4 (Figure 27.1). That is, we would like to find the maximum value of:

f (x) = 1√
2𝜋𝜎

exp
( −1

2𝜎2
(x − 𝜇)2

)
= 1√

2𝜋(4)
exp

(
−1

2(4)2
(x − 16)2

)
.
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f(x)

4 8 12 16 20 24 28 x

Figure 27.1 Find the maximum value of the normal(16, 4) distribution.

We allow X to take on only the values described by the first five binary digits;

that is, 00000 through 11111, or 0–31 in decimal notation.

27.3.1 First Iteration

• Step 0. Initialization. We define the crossover rate to be pc = 0.75 and the muta-
tion rate to be pm = 0.002.

• Step 1. Our population will be a set of four chromosomes, randomly chosen

from the set 00000–11111. So, n = 4 and l = 5. These are 00100 (4), 01001

(9), 11011 (27), and 11111 (31).

• Step 2. The fitness f (x) for each chromosome in the population is calculated.

• Step 3. Iterate through the following steps until n offspring have been gener-

ated.

∘ Step 3a. Selection. We have the sum of the fitness values equal to∑
i f (xi) = 0.001108 + 0.021569 + 0.002273 + 0.000088 = 0.025038.

Then, the probability that each of our chromosomes will be selected

for parenthood is found by dividing their value for f (x) by the sum 0.025038.

These are also shown in Table 27.1. Clearly, chromosome 01001 gets a very

large slice of the roulette wheel! The random selection process gets under-

way. Suppose that chromosomes 01001 and 11011 are selected to be the first

pair of parents, because these are the two chromosomes with the highest

fitness.

∘ Step 3b. Crossover. The locus is randomly chosen to be the second

position. Suppose the large crossover rate of pc, 0.75, leads to crossover

between 01001 and 11011 occurring at the second position. This is shown

in Figure 27.2. Note that the strings are partitioned between the first and

the second bits. Each child chromosome receives one segment from each of

the parents. The two chromosomes thus formed for the new generation are

01011 (11) and 11001 (25).
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TABLE 27.1 Fitness and probability of selection for each chromosome

Chromosome Decimal Value Fitness Selection Probability

00100 4 0.001108 0.04425

01001 9 0.021569 0.86145

11011 27 0.002273 0.09078

11111 31 0.000088 0.00351

Current
generation

New
generation 0 1 1 10

1 1 1 100 1 10 0

1 1 10 0

Figure 27.2 Performing crossover at locus two on the first two parents.

∘ Step 3c. Mutation. Because of the low mutation rate, suppose that none of

the genes for 01011 or 11001 are mutated. We now have two chromosomes

in our new population. We need two more, so we cycle back to step 3a.

∘ Step 3a. Selection. Suppose that this time chromosomes 01001 (9) and

00100 (4) are selected by the roulette wheel method.

∘ Step 3b. Crossover. However, this time suppose that crossover does not

take place. Thus, clones of these chromosomes become members of the new

generation, 01001 and 00100. We now have n = 4 members in our new pop-

ulation.

• Step 4. The new population of chromosomes therefore replaces the current pop-

ulation.

• Step 5. And we iterate back to Step 2.

27.3.2 Second Iteration

• Step 2. The fitness f (x) for each chromosome in the population is calculated,

as shown in Table 27.2.

∘ Step 3a. Selection. The sum of the fitness values for the second generation is∑
i f (xi) = 0.076274, which means that the average fitness among the chro-

mosomes in the second generation is three times that of the first generation.

The selection probabilities are calculated, and shown in Table 27.2.

We ask you to continue this example in the exercises.
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TABLE 27.2 Fitness and probability of selection for the second generation

Chromosome Decimal Value Fitness Selection Probability

00100 4 0.001108 0.014527

01001 9 0.021569 0.282783

01011 11 0.045662 0.598657

11001 25 0.007935 0.104033

27.4 MODIFICATIONS AND ENHANCEMENTS:
SELECTION

For the selection operator, the analyst should be careful to balance fitness with diver-

sity. If fitness is favored over variability, then a set of highly fit but suboptimal chro-

mosomes will dominate the population, reducing the ability of the GA to find the

global optimum. If diversity is favored over fitness, then model convergence will be

too slow.

For example, in the first generation above, one particular gene 01001 (9) dom-

inated the fitness measure, with over 86% of the selection probability. This is an

example of selection pressure, and a potential example of the crowding phenomenon

in GAs, where one particular chromosome that is much fitter than the others begins

to reproduce, generating too many clones and similar copies of itself in future gen-

erations. By reducing the diversity of the population, crowding impairs the ability of

the GA to continue to explore new regions of the search space.

A variety of techniques are available to handle crowding. De Jong3 suggested

that new generation chromosomes should replace the individual most similar to itself

in the current generation. Goldberg and Richardson4 posited a fitness sharing func-

tion, where a particular chromosome’s fitness was decreased by the presence of other

similar population members, where the more similarity, the greater the decrease.

Thus, diversity was rewarded.

Changing the mating conditions can also be used to increase population diver-

sity. Deb and Goldberg5 showed that if mating can take place only between suffi-

ciently similar chromosomes, then distinct “mating groups” will have a propensity

to form. These groups displayed low within-group variation and high between-group

3Kenneth De Jong, 1975. An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Ph.D. Thesis,

University of Michigan, Ann Arbor.
4David Goldberg and Jon Richardson, 1987. Genetic algorithms with sharing for multi-modal function

optimization, in Genetic Algorithms and Their Applications: Proceedings of the Second International
Conference on Genetic Algorithms, J. Greffenstette, editor, Erlbaum.
5Kalyanmoy Deb and David Goldberg, 1989. An investigation of niche and species formation in genetic

function optimization, in Proceedings of the Third International Conference on Genetic Algorithms, J.

Greffenstette, editor, Morgan Kaufmann.
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variation. However, Eshelman6 and Eshelman and Schaffer7 investigated the opposite

strategy by not allowing matings between chromosomes that were sufficiently alike.

The result was to maintain high variability within the population as a whole.

Sigma scaling, proposed by Forrest,8 maintains the selection pressure at a rel-

atively constant rate, by scaling a chromosome’s fitness by the standard deviation of

the fitnesses. If a single chromosome dominates at the beginning of the run, then the

variability in fitnesses will also be large, and scaling by the variability will reduce

the dominance. Later in the run, when populations are typically more homogeneous,

scaling by this smaller variability will allow the highly fit chromosomes to reproduce.

The sigma-scaled fitness is as follows:

fsigma-scaled(x) = 1 +
f (x) − 𝜇f

𝜎f

where 𝜇f and 𝜎f refer to the mean fitness and standard deviation of the fitnesses for

the current generation.

Boltzmann selection varies the selection pressure, depending on how far along

in the run the generation is. Early on, it may be better to allow lower selection pres-

sure, allowing the less-fit chromosomes to reproduce at rates similar to the fitter

chromosomes, and thereby maintaining a wider exploration of the search space. Later

on in the run, increasing the selection pressure will help the GA to converge more

quickly to the optimal solution, hopefully the global optimum. In Boltzmann selec-

tion, a temperature parameter T is gradually reduced from high levels to low levels.

A chromosome’s adjusted fitness is then found as follows:

fBoltzmann(x) =
exp(f (x)∕T)

Mean(exp(f (x)∕T))
As the temperature falls, the difference in expected fitness increases between

high-fit and low-fit chromosomes.

Elitism, developed by De Jong, refers to the selection condition requiring that

the GA retain a certain number of the fittest chromosomes from one generation to the

next, protecting them against destruction through crossover, mutation, or inability to

reproduce. Michell, Haupt, and Haupt9 and others report that elitism greatly improves

GA performance.

Rank selection ranks the chromosomes according to fitness. Ranking avoids

the selection pressure exerted by the proportional fitness method, but it also ignores

the absolute differences among the chromosome fitnesses. Ranking does not take

variability into account, and provides a moderate adjusted fitness measure, because

6Larry Eschelman, 1991. The CHC adaptive search algorithm: How to have safe search when engaging in

nontraditional genetic recombination, in Foundations of Genetic Algorithms, G. Rawlins, editor, Morgan

Kaufmann.
7Larry Eshelman and J. David Schaffer, 1991. Preventing premature convergence in genetic algorithms by

preventing incest, in Proceedings of the Fourth International Conference on Genetic Algorithms, R. Belew

and L. Booker, editors, Morgan Kaufmann.)
8Stephanie Forrest, 1985. Scaling fitnesses in the genetic algorithm. In Documentation for PRISONERS

DILEMMA and NORMS Programs that Use the Genetic Algorithm. Unpublished manuscript.
9Randy Haupt, and Sue Ellen Haupt, Practical Genetic Algorithms, John Wiley and Sons, Inc., 1998.
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the difference in probability of selection between chromosomes ranked k and k + 1

is the same, regardless of the absolute differences in fitness.

Tournament ranking is computationally more efficient than rank selection,

while preserving the moderate selection pressure of rank selection. In tournament

ranking, two chromosomes are chosen at random and with replacement from the

population. Let c be a constant chosen by the user to be between zero and one (e.g.,

0.67). A random number r, 0 ≤ r ≤ 1, is drawn. If r < c, then the fitter chromosome

is selected for parenthood; otherwise, the less-fit chromosome is selected.

27.5 MODIFICATIONS AND ENHANCEMENTS:
CROSSOVER

27.5.1 Multi-Point Crossover

The single-point crossover operator that we have outlined here suffers from what is

known as positional bias. That is, the performance of the GA depends, in part, on the

order that the variables occur in the chromosome. So, genes in loci 1 and 2 will often

be crossed over together, simply because of their proximity to each other, whereas

genes in loci 1 and 7 will rarely cross over together. Now, if this positioning reflects

natural relationships within the data and among the variables, then this is not such a

concern, but such a priori knowledge is relatively rare.

The solution is to perform multi-point crossover, as follows. First, randomly

select a set of crossover points, and split the parent chromosomes at those points.

Then, to form the children, recombine the segments by alternating between the par-

ents, as illustrated in Figure 27.3.

27.5.2 Uniform Crossover

Another alternative crossover operator is uniform crossover. In uniform crossover,

the first child is generated as follows. Each gene is randomly assigned to be that of

either one or the other parent, with 50% probability. The second child would then take

Parents

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Children

0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1

1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0

Figure 27.3 Multi-point crossover.
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the inverse of the first child. One advantage of uniform crossover is that the inherited

genes are independent of position. Uniform crossover is illustrated in Figure 27.4.

A modified version of uniform crossover would be to allow the probabilities to depend

on the fitness of the respective parents.

Parents

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Children

0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 0

1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1

Figure 27.4 Uniform crossover.

Eiben and Smith10 discuss the roles of crossover and mutation, and the cooper-

ation and competition between them with respect to the search space. They describe

crossover as explorative, discovering promising new regions in the search space by

making a large jump to a region between the two parent areas. And they describe

mutation as exploitative, optimizing present information within an already discov-

ered promising region, creating small random deviations and thereby not wandering

far from the parents. Crossover and mutation complement each other, because only

crossover can bring together information from both parents, and only mutation can

introduce completely new information.

27.6 GENETIC ALGORITHMS FOR REAL-VALUED
VARIABLES

The original framework for GAs was developed for binary-encoded data, because

the operations of crossover and mutation worked naturally and well with such data.

However, most data mining data come in the form of real numbers, often with many

decimals worth of precision.

Some analysts have tried quantizing the real-valued (continuous) data into

binary form. However, to re-express the real-valued data in binary terms will

necessarily result in a loss of information, due to the degradation in precision caused

by rounding to the nearest binary digit. To combat this loss in precision, each binary

chromosome would need to be made longer, adding digits that will inevitably impair

the speed of the algorithm.

10A. E. Eiben, and Jim Smith, 2003. Introduction to Evolutionary Computing, Springer, Berlin.
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Therefore, methods for applying GAs directly to real-valued data have been

investigated. Eiben and Smith suggest the following methods for performing the

crossover operation.

27.6.1 Single Arithmetic Crossover

Let the parents be ⟨x1, x2, · · · , xn⟩ and ⟨y1, y2, · · · , yn⟩. Pick the kth gene at ran-

dom. Then, let the first child be of the form ⟨x1, x2, · · · , 𝛼 ⋅ yk + (1 − 𝛼) ⋅ xk, · · · , xn⟩,
and the second child be of the form ⟨y1, y2, · · · , 𝛼 ⋅ xk + (1 − 𝛼) ⋅ yk, · · · , yn⟩, for

0 ≤ 𝛼 ≤ 1.

For example, let the parents be ⟨0.5, 1.0, 1.5, 2.0⟩ and ⟨0.2, 0.7, 0.2, 0.7⟩, let

𝛼 = 0.4, and select the third gene at random. Then, single arithmetic crossover would

produce the first child to be

⟨0.5, 1.0, (0.4) ⋅ (0.2) + (0.6) ⋅ (1.5), 2.0⟩ = ⟨0.5, 1.0, 0.98, 2.0⟩,
and the second child to be

⟨0.2, 0.7, (0.4) ⋅ (1.5) + (0.6) ⋅ (0.2), 0.7⟩ = ⟨0.2, 0.7, 0.72, 0.7⟩.

27.6.2 Simple Arithmetic Crossover

Let the parents be ⟨x1, x2, · · · , xn⟩ and ⟨y1, y2, · · · , yn⟩. Pick the kth gene at random,

and mix values for all genes at this point and beyond. That is, let the first child be of

the form ⟨x1, x2, · · · , 𝛼 ⋅ yk + (1 − 𝛼) ⋅ xk, · · · , 𝛼 ⋅ yn + (1 − 𝛼) ⋅ xn⟩, and the second

child be of the form ⟨y1, y2, · · · , 𝛼 ⋅ xk + (1 − 𝛼) ⋅ yk, · · · , 𝛼 ⋅ xn + (1 − 𝛼) ⋅ yn⟩, for

0 ≤ 𝛼 ≤ 1.

For example, let the parents be ⟨0.5, 1.0, 1.5, 2.0⟩ and ⟨0.2, 0.7, 0.2, 0.7⟩, let

𝛼 = 0.4, and select the third gene at random. Then, simple arithmetic crossover would

produce the first child to be

⟨0.5, 1.0, (0.4) ⋅ (0.2) + (0.6) ⋅ (1.5), (0.4) ⋅ (0.7) + (0.6) ⋅ (2.0)⟩
= ⟨0.5, 1.0, 0.98, 1.48⟩,

and the second child to be

⟨0.2, 0.7, (0.4) ⋅ (1.5) + (0.6) ⋅ (0.2), (0.4) ⋅ (2.0) + (0.6) ⋅ (0.7)⟩
= ⟨0.2, 0.7, 0.72, 1.22⟩

27.6.3 Whole Arithmetic Crossover

Let the parents be ⟨x1, x2, · · · , xn⟩ and ⟨y1, y2, · · · , yn⟩. Perform the above mixture

to the entire vector for each parent. The calculation of the child vectors is left as an

exercise. Note that, for each of these arithmetic crossover techniques, the affected

genes represent intermediate points between the parents’ values, with 𝛼 = 0.5 gener-

ating the mean of the parents’ values.
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27.6.4 Discrete Crossover

Here, each gene in the child chromosome is chosen with uniform probability to

be the gene of one or the other of the parents’ chromosomes. For example, let the

parents be ⟨0.5, 1.0, 1.5, 2.0⟩ and ⟨0.2, 0.7, 0.2, 0.7⟩, one possible child could be⟨0.2, 0.7, 1.5, 0.7⟩, with the third gene coming directly from the first parent and the

others coming from the second parent.

27.6.5 Normally Distributed Mutation

To avoid converging too quickly toward a local optimum, a normally distributed “ran-

dom shock” may be added to each variable. The distribution should be normal, with

a mean of zero, and a standard deviation of 𝜎, which controls the amount of change

(as most random shocks will lie within one 𝜎 of the original variable value). If the

resulting mutated variable lies outside the allowable range, then its value should be

reset so that it lies within the range. If all variables are mutated, then clearly pm = 1

in this case.

For example, suppose the mutation distribution is Normal(𝜇 = 0, 𝜎 = 0.1),
and that we wish to apply the mutation to the child chromosome from the discrete

crossover example, ⟨0.2, 0.7, 1.5, 0.7⟩. Assume that the four random shocks

generated from this distribution are 0.05, −0.17, −0.03, and 0.08. Then, the

child chromosome becomes ⟨0.2 + 0.05, 0.7 − 0.17, 1.5 − 0.03, 0.7 + 0.08⟩ =⟨0.25, 0.53, 1.47, 0.78⟩.
27.7 USING GENETIC ALGORITHMS TO TRAIN A
NEURAL NETWORK

A neural network consists of a layered, feed-forward, completely connected network

of artificial neurons, or nodes. Neural networks are used for classification or estima-

tion. See Mitchell,11 Fausett,12 Haykin,13 Reed and Marks,14 or Chapter 12 of this

book for details on neural network topology and operation. Figure 27.5 provides a

basic diagram of a simple neural network.

The feed-forward nature of the network restricts the network to a single direc-

tion of flow, and does not allow looping or cycling. The neural network is composed

of two or more layers, although most networks consist of three layers, an input layer, a

hidden layer, and an output layer. There may be more than one hidden layer, although

most networks contain only one, which is sufficient for most purposes. The neural net-

work is completely connected, meaning that every node in a given layer is connected

to every node in the next layer, although not to other nodes in the same layer. Each

11Tom Mitchell, 1997. Machine Learning, WCB-McGraw-Hill, Boston.
12Laurene Fausett, Fundamentals of Neural Networks, Prentice-Hall, New Jersey, 1994.
13Simon Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, Inc., New Jersey, 1990.
14Russell D. Reed and Robert J. Marks II, Neural Smithing: Supervised Learning in Feedforward Artificial
Neural Networks, MIT Press, Cambridge, 1999.
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Output layerHidden layerInput layer

Node 1

Node 2

Node 3
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W3A

W2B

W2A
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WAZ

WBZ

W0Z

W0B

Node B

Node A

Node Z

Figure 27.5 A simple neural network.

connection between nodes has a weight (e.g., W1A) associated with it. At initializa-

tion, these weights are randomly assigned to values between zero and one.

How does the neural network learn? Neural networks represent a supervised

learning method, requiring a large training set of complete records, including the

target variable. As each observation from the training set is processed through the

network, an output value is produced from the output node (assuming we have only

one output node). This output value is then compared to the actual value of the target

variable for this training set observation, and the error (actual-output) is calculated.

This prediction error is analogous to the residuals in regression models. To measure

how well the output predictions are fitting the actual target values, most neural net-

work models use the sum of squared errors:

SSE =
∑

records

∑
output nodes

(actual-output)2,

where the squared prediction errors are summed over all the output nodes and over

all the records in the training set.

The problem is therefore to construct a set of model weights that will minimize

this SSE. In this way, the weights are analogous to the parameters of a regression

model. The “true” values for the weights that will minimize SSE are unknown, and

our task is to estimate them, given the data. However, due to the nonlinear nature of

the sigmoid functions permeating the network, there exists no closed-form solution

for minimizing SSE, as there exists for least-squares regression. Most neural network

models therefore use backpropagation, a gradient-descent optimization method, to

help find the set of weights that will minimize SSE. Backpropagation takes the predic-

tion error (actual-output) for a particular record, and percolates the error back through

the network, assigning partitioned “responsibility” for the error to the various con-

nections. The weights on these connections are then adjusted to decrease the error,

using gradient descent.

However, as finding the best set of weights in a neural network is an optimiza-

tion task, GAs are wonderfully suited to do so. The drawbacks of backpropagation

include the tendency to become stuck at local minima (as it follows a single route

through the weight space) and the requirement to calculate derivative or gradient
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information for each weight. Also, Unnikrishnan et al.15 state that improper selec-

tion of initial weights in backpropagation will delay convergence. GAs, however,

perform a global search, lessening the chances of becoming caught in a local mini-

mum, although, of course, there can be no guarantees that the global minimum has

been obtained. Also, GAs require no derivative or gradient information to be calcu-

lated. However, neural networks using GAs for training the weights will run slower

than traditional neural networks using backpropagation.

GAs apply a much different search strategy than backpropagation. The

gradient-descent methodology in backpropagation moves from one solution vector

to another vector that is quite similar. The GA search methodology, however, can

shift much more radically, generating a child chromosome that may be completely

different than either parent. This behavior decreases the probability that GAs will

become stuck in local optima.

Huang, Dorsey, and Boose16 apply a neural network optimized with a GA

to forecast financial distress in life insurance companies. Unnikrishnan, Mahajan,

and Chu used GAs to optimize the weights in a neural network, which was used to

model a three-dimensional ultrasonic positioning system. They represented the net-

work weights in the form of chromosomes, similarly to Table 27.3 for the neural

network weights in Figure 27.5. However, their chromosome was 51 weights long,

reflecting their 5-4-4-3 topology of five input nodes, four nodes in each of two hidden

layers, and three output nodes. The authors cite the length of the chromosome as the

reason the model was outperformed both by a backpropagation neural network and a

traditional linear model.

TABLE 27.3 Chromosome representing weights from neural network in Figure 27.5

W1A W1B W2A W2B W3A W3B W0A W0B WAZ WBZ W0Z

David Montana and Lawrence Davis17 provide an example of using GAs to

optimize the weights in a neural network (adapted here from Mitchell). Their research

task was to classify “lofargrams” (underwater sonic spectrograms) as either interest-
ing or not interesting. Their neural network had a 4-7-10-1 topology, giving a total

of 126 weights in their chromosomes. The fitness function used was the usual neu-

ral network metric, SSE =
∑

records

∑
output nodes

(actual-output)2, except that the weights

being adjusted represented the genes in the chromosome.

For the crossover operator, they used a modified discrete crossover. Here, for

each non-input node in the child chromosome, a parent chromosome is selected at

15Nishant Unnikrishnan, Ajay Mahajan, and Tsuchin Chu, 2003. Intelligent system modeling of a

three-dimensional ultrasonic positioning system using neural networks and genetic algorithms, in Pro-
ceedings of the Institution for Mechanical Engineers, Vol 217, Part I: J. Systems and Control Engineering.
16Chin-Sheng Huang, Robert Dorsey, and Mary Ann Boose, 1994. Life Insurer Financial Distress Predic-

tion: A Neural Network Model, Journal of Insurance Regulation, Winter 94, Vol 13, Issue 2.
17David Montana and Lawrence Davis, 1989. Training feedforward networks using genetic algorithms. In

Proceeding of the International Joint Conference on Artificial Intelligence. Morgan Kaufmann.
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random, and the incoming links from the parent are copied to the child for that par-

ticular node. Thus, for each pair of parents, only one child is created. For the mutation

operator, they used a random shock similar to the normal distribution mutation shown

above. Because neural network weights are constrained to lie between −1 and 1, the

resulting weights after application of the mutation must be checked that they do not

stray outside this range.

The modified discrete crossover is illustrated in Table 27.4 and Figure 27.6.

In this example, the weights incoming to Node A are supplied by Parent 1, and the

weights incoming to nodes B and Z are supplied by parent 2 (shaded).

TABLE 27.4 Table of neural network weights indicating results of crossover

W1A W1B W2A W2B W3A W3B W0A W0B WAZ WBZ W0Z

Parent 1 0.1 −0.2 0.7 −0.6 0.4 0.9 −0.1 0.3 −0.5 0.8 −0.2

Parent 2 0.2 −0.4 0.5 −0.5 0.3 0.7 −0.2 0.1 −0.6 0.9 −0.3

Child 0.1 −0.4 0.7 −0.5 0.4 0.7 −0.1 0.1 −0.6 0.9 −0.3

The random shock mutation is illustrated in Table 27.5 and Figure 27.7. In this

example, the mutation was applied to the weights incoming to node B only, for the

child generated from the crossover operation. The new weights are not far from the

old weights. Montana and Davis’ GA-based neural network outperformed a back-

propagation neural network, despite a total of 126 weights in their chromosomes.

27.8 WEKA: HANDS-ON ANALYSIS USING GENETIC
ALGORITHMS

This exercise explores the use of WEKA’s Genetic Search class to optimize (choose)

a subset of inputs used to classify patients as having either benign or malignant

forms of breast cancer. The input file breast_cancer.arff used in our experiment is

adapted from the Wisconsin Breast Cancer Database. Breast_cancer.arff contains 683

instances after deleting 16 records containing one or more missing values. In addi-

tion, it contains nine numeric inputs (“sample code number” attribute deleted) and

a target attribute class that takes on values 2 (benign) and 4 (malignant). Table 27.6

shows the ARFF header and first 10 instances from breast_cancer.arff:
Next, we load the input file and become familiar with the class distribution.

1. Click Explorer from the WEKA GUI Chooser dialog.

2. On the Preprocess tab, press Open file and specify the path to the input file,

breast_cancer.arff.

3. Under Attributes (lower left), select the class attribute from the list.

The WEKA Preprocess tab displays the distribution for class, and indicates

that 65% (444/683) of the records have value 2 (benign), while the remaining 35%

(239/683) have value 4 (malignant), as shown in Figure 27.8.
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Figure 27.6 Illustrating crossover in neural network weights.

TABLE 27.5 Weights before and after mutation

W1A W1B W2A W2B W3A W3B W0A W0B WAZ WBZ W0Z

Before 0.1 −0.4 0.7 −0.5 0.4 0.7 −0.1 0.1 −0.6 0.9 −0.3

Shock None −0.05 None −0.07 None 0.02 None None None None none

After 0.1 −0.45 0.7 −0.57 0.4 0.72 −0.1 0.1 −0.6 0.9 −0.3
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Network after mutation of weights incoming to node B
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Figure 27.7 Illustrating mutation in neural network weights.

TABLE 27.6 Breast Cancer Input File breast_cancer.arff

@relation breast_cancer.arff
@attribute clump_thickness
@attribute uniform_cell_size
@attribute uniform_cell_shape
@attribute marg_adhesion
@attribute single_cell_size
@attribute bare_nuclei
@attribute bland_chromatin
@attribute normal_nucleoli
@attribute mitoses
@attribute class
@data
5,1,1,1,2,1,3,1,1,2
5,4,4,5,7,10,3,2,1,2
3,1,1,1,2,2,3,1,1,2
6,8,8,1,3,4,3,7,1,2
4,1,1,3,2,1,3,1,1,2
8,10,10,8,7,10,9,7,1,4
1,1,1,1,2,10,3,1,1,2
2,1,2,1,2,1,3,1,1,2
2,1,1,1,2,1,1,1,5,2
4,2,1,1,2,1,2,1,1,2
...

numeric

numeric

numeric

numeric

numeric
numeric
numeric
numeric
numeric
numeric
{2,4}
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Figure 27.8 WEKA Explorer: class distribution.

Next, let us establish a baseline and classify the records using naïve Bayes with

10-fold cross-validation, where all nine attributes are input to the classifier.

1. Select the Classify tab.

2. Under Classifier, press the Choose button.

3. Select Classifiers → Bayes → Naïve Bayes from the navigation hierarchy.

4. By default, under Test options, notice that WEKA specifies Cross-validation.

We will use this option for our experiment because we have a single data file.

5. Click Start.

The results in the Classifier output window show that naïve Bayes achieves

a very impressive 96.34% (658/683) classification accuracy. This obviously leaves

little room for improvement. Do you suppose all nine attributes are equally important

to the task of classification? Is there possibly a subset of the nine attributes, when

selected as input to naïve Bayes, which leads to improved (or comparable level of)

classification accuracy?

Before determining the answers to these questions, let us review WEKA’s

approach to attribute selection. It is not unusual for real-world data sets to contain

irrelevant, redundant, or noisy attributes, which ultimately contribute to degradation

in classification accuracy. In contrast, removing nonrelevant attributes often leads

to improved classification accuracy. WEKA’s supervised attribute selection filter

enables a combination of evaluation and search methods to be specified, where the

objective is to determine a useful subset of attributes as input to a learning scheme.

WEKA contains a Genetic Search class with default options that include a pop-

ulation size of n = 20 chromosomes, crossover probability pc = 0.6, and mutation
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probability pm = 0.033. Figure 27.9 shows the default options available in the Genetic

Search dialog.

Figure 27.9 Genetic Search dialog.

As specified, the Genetic Search algorithm creates an initial set of 20 chro-
mosomes. An individual chromosome in the initial population may consist of the
attribute subset

1 4 6 7 9

where each of the five genes represents an attribute index. For example, the first gene

in our example chromosome is the attribute clump_thickness, as represented by its

index position = 1. In our configuration, the WrapperSubsetEval evaluation method

serves as the fitness function f (x) and calculates a fitness value for each chromosome.

WrapperSubsetEval evaluates each of the attribute subsets (chromosomes) according

to a specified learning scheme. In the example below we will specify naïve Bayes.

This way, the usefulness of a chromosome is determined as a measure of the classi-

fication accuracy reported by naïve Bayes. In other words, the chromosomes leading

to higher classification accuracy are more relevant and receive a higher fitness score.

Now, let us apply WEKA’s Genetic Search class to our attribute set. To accom-

plish this task, we first have to specify the evaluator and search options for attribute

selection.

1. Select the Classify tab.

2. Click the Choose button.



27.8 WEKA: HANDS-ON ANALYSIS USING GENETIC ALGORITHMS 689

3. Select Classifiers → Meta → AttributeSelectedClassifier from the navigation

hierarchy.

4. Now, next to the Choose button, click on the text “AttributeSelectedClassifier

… ”

The AttributeSelectiedClassifier dialog appears as shown in Figure 27.10,

where the default Classifier, Evaluator, and Search methods are displayed. Next, we

will override these default options by specifying new classifier, evaluator, and search

methods.

Figure 27.10 AttributeSelectedClassifier dialog.

1. Next to evaluator, press the Choose button.

2. Select AttributeSelection→WrapperSubsetEval from the navigation hierarchy.

3. Now, click on the text “WrapperSubsetEval” next to the evaluator Choose

button. The WrapperSubsetEval dialog appears as shown in Figure 27.11. By

default, WEKA specifies the ZeroR classifier.

4. Press the Choose button, next to classifier.

5. Here, select Classifiers → Bayes → Naïve Bayes from the navigation hierarchy.

6. Click OK to close the WrapperSubsetEval dialog. The evaluation method for

AttributeSelection is now specified.

7. On the AttributeSelection dialog, press the Choose button next to search.

8. Select AttributeSelection → GeneticSearch from the navigation hierarchy.

9. Press OK to close the AttributeSelection dialog.

The evaluator and search methods for attribute selection have been specified.

Finally, we specify and execute the classifier.

10. Press the Choose button next to classifier.

11. Select Classifiers → Bayes → Naïve Bayes.

12. Press OK.
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13. Now, under Test options, specify Use training set

14. Click Start

WEKA displays modeling results in the Explorer Panel. In particular,

under Attributes, notice the list now shows seven predictor attributes, as shown

in Table 27.7. That is, the two attributes single_cell_size and mitoses have been

removed from the attribute list.

Naïve Bayes reports 96.93% (662/683) classification accuracy, which indicates

the second model outperforms the first model by almost 0.05% (96.93% vs 96.34%).

In this example, classification accuracy has increased where only seven of the nine

attributes are specified as input. Although these results do not show a dramatic

improvement in accuracy, this simple example has demonstrated how WEKA’s

Genetic Search algorithm can be included as part of an attribute selection approach.

By default, the Genetic Search method specifies default options report fre-
quency = 20 and maxgenerations = 20, which cause WEKA to report population

characteristics for the initial and final populations. For example, the initial population

characteristics for the 20 chromosomes are shown in Table 27.8.

Here, each subset is a chromosome and merit is the fitness score reported by

naïve Bayes, which equals the corresponding classification error rate. For example,

Figure 27.11 WrapperSubsetEval dialog.

TABLE 27.7 Attributes selected by the attribute selection method

Selected attributes: 1,2,3,4,6,7,8 : 7
clump_thickness
uniform_cell_size
uniform_cell_shape
marg_adhesion
bare_nuclei
bland_chromatin
normal_nucleoli
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TABLE 27.8 Initial population characteristics
reported by Genetic Search

Initial population

merit
0.053
0.04978
0.03807
0.05564
0.13177
0.03953
0.0448
0.09048
0.07028
0.04275
0.04187
0.04275
0.08492
0.0612
0.03865
0.03807
0.04275
0.05329
0.05271
0.04275

scaled
0.05777
0.06014
0.06873
0.05584
0
0.06765
0.06379
0.03028
0.0451
0.06529
0.06593
0.06529
0.03436
0.05176
0.0683
0.06873
0.06529
0.05756
0.05799
0.06529

subset
4 6 7 9
1 2 3 4 7 9
1 2 3 4 6 9
6 7 8
8
2 3 5 6 7 8
2 6 7
5 8
2
1 6 8 9
3 4 5 6 7 8
2 4 6 7 8
4 5
2 4 7
1 2 4 6 7 9
1 3 4 6 9
3 6 7 8 9
2 4 8
1 4 7 8
3 6 7 8 9

consider the chromosome {4, 6, 7, 9} reported in Table 27.8 with merit 0.053; this

value corresponds18 to the classification error rate reported by naïve Bayes using

fivefold cross-validation when {4, 6, 7, 9} are specified as input.

Also, each chromosome’s scaled fitness is reported in the scaled column, where

WEKA uses the linear scaling technique to scale the values. By definition, the raw fit-

ness and scaled fitness values have the linear relationship f ′ = a ⋅ f + b, where f ′ and

f are the scaled and raw fitness values, respectively. The constants a and b are chosen

where f ′avg = favg and f ′max = Cmult ⋅ f ′avg. The constant Cmult represents the expected

number of copies of the fittest individual in the population, and for small populations,

it is typically set19 to a value in the range of 1.2–2.0.

Therefore, by computing the average fitness values presented in Table 27.8, we

obtain favg = 0.055753 and f ′avg = 0.055755, which agrees with the rule by which the

constants a and b are chosen. Because the value for Cmult is not an option in WEKA,

the fitness values from the last two rows from Table 27.8 are selected to solve the

simultaneously equations for a and b, according to the relationship f ′ = a ⋅ f + b:

0.05799 = 0.05271a + b

0.06529 = 0.04275a + b

18Actually, this value may differ slightly due to the value for the WrapperSubsetEval threshold option.
19WEKA sets this value internally.
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Subtracting the second equation from the first, we obtain:

−0.0073 = 0.00996a

a = − 0.0073

0.00996
= −0.73293, b = 0.096623

We use the definition f ′max = Cmult ⋅ favg to determine Cmult =
f ′max
favg

= 0.06873

0.055753
=

1.23. Finally, observe that the fifth row in Table 27.8 has f ′ = 0. The raw fitness value

of 0.13177 corresponds to the largest classification error in the population produced

by chromosome {8}, and as a result, f ′ is mapped to zero to avoid the possibility of

producing negatively scaled fitnesses.

In this exercise, we have analyzed a simple classification problem where

Genetic Search was used to find an attribute subset that improved naïve Bayes

classification accuracy, as compared to using the full set of attributes. Although

this problem only has nine attributes, there are still 29 − 1 = 511 possible attribute

subsets that can be input to a classifier. Imagine building a classification model from

a set of 100 inputs. Here, there are 2100 − 1 = 1.27 × 1030 possible attribute subsets

from which to choose. In situations such as these, Genetic Search techniques may

prove helpful in determining useful attribute subsets.

Wisconsin Breast Cancer Database (January 8, 1991). Obtained from the Uni-

versity of Wisconsin Hospitals, Madison from Dr. William H. Wolberg.

THE R ZONE

# Genetic algorithms

# Requires package “GA”

library("GA")

# Let fitness be the maximum of the

# function

n <− function(x) { dnorm(x,

mean = 16, sd = 4) }

fit <− function(x) { n(x) }

ga1 <− ga(type="real-valued",

fitness=fit, min = 0, max = 31)

summary(ga1)

plot(ga1)

ga1@solution
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EXERCISES

CLARIFYING THE CONCEPTS

1. Match each of the following genetic algorithm terms with its definition or description.

Term Definition

a. Selection One of the candidate solutions to the problem.

b. Generation Scales the chromosome fitness by the standard deviation of

the fitnesses, thereby maintaining selection pressure at a

constant rate.

c. Crowding The operator that determines which chromosomes will

reproduce.

d. Crossover Genes in neighboring loci will often be crossed together,

affecting the performance of the genetic algorithm.

e. Chromosome The operator that introduces new information to the genetic

pool to protect against premature convergence.

f. Positional bias A feed-forward, completely connected, multilayer network.

g. Uniform crossover A cycle through the genetic algorithm.

h. Mutation One particularly fit chromosome generates too many clones

and close copies of itself, thereby reducing population

diversity.

i. Sigma scaling The selection condition requiring that the genetic algorithm

retains a certain number of the fittest chromosomes from

one generation to the next.

j. Gene The operator that performs recombination, creating two new

offspring by combining the parents’ genes in new ways.

k. Elitism Each gene is randomly assigned to be that of either one

parent or the other, with 50% probability.

l. Neural Network A single bit of the candidate solution.

2. Discuss why the selection operator should be careful to balance fitness with diversity.

Describe the dangers of an overemphasis on each.

3. Compare the strengths and weaknesses of using backpropagation and genetic algorithms

for optimization in neural networks.

http://www.R-project.org
http://www.jstatsoft.org/v53/i04
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WORKING WITH THE DATA

4. Continue the example in the text, where the fitness is determined by the Normal (16, 4) dis-

tribution. Proceed to the end of the third iteration. Suppress mutation, and perform crossover

only once, on the second iteration at locus four.

5. Calculate the child vectors for the whole arithmetic crossover example in the text. Use the

parents indicated in the section on simple arithmetic crossover, with 𝛼 = 0.5. Comment on

your results.

CHAPTER 6 HANDS-ON ANALYSIS

6. (Extra credit). Write a computer program for a simple genetic algorithm. Implement the

example discussed in the text, using the Normal (16, 4) fitness function. Let the crossover

rate be 0.6 and the mutation rate be 0.01. Start with the population of all integers 0–31.

Generate 25 runs and measure the generation at which the optimal decision of x = 16

is encountered. If you have time, vary the crossover and mutation rates and compare the

results.

7. Repeat the procedure using the breast_cancer.arff data set with WEKA by selecting an

attribute subset using Genetic Search. This time, however, specify naïve Bayes with use
kernel estimator = true for both attribute selection and 10-fold cross-validation. Now, con-

trast the classification results using the full set of attributes, as compared to the attribute

subset selected using Genetic Search. Does classification accuracy improve?
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IMPUTATION OF MISSING DATA

28.1 NEED FOR IMPUTATION OF MISSING DATA

In this world of big data, the problem of missing data is widespread. It is the rare

database that contains no missing values at all. How the analyst deals with the missing

data may change the outcome of the analysis, so it is important to learn methods for

handling missing data that will not bias the results.

Missing data may arise from any of several different causes. Survey data may be

missing because the responder refuses to answer a particular question, or simply skips

a question by accident. Experimental observations may be missed due to inclement

weather or equipment failure. Data may be lost through a noisy transmission, and

so on.

In Chapter 2, we learned three common methods for handling missing data,

which are as follows:

1. Replace the missing value with some constant, specified by the analyst.

2. Replace the missing value with the field mean (for numeric variables) or the

mode (for categorical variables).

3. Replace the missing values with a value generated at random from the observed

distribution of the variable.

We learned that there were problems with each of these methods, which could

generate inappropriate data values that would bias our results. For example, in

Chapter 2, a value of 400 cu. in. was generated for a vehicle whose cubic inches

value was missing. However, this value did not take into account that the vehicle is

Japanese, and there is no Japanese-made car in the database that has an engine size

of 400 cu. in.

We therefore need data imputation methods that take advantage of the knowl-

edge that the car is Japanese when calculating its missing cubic inches. In data impu-

tation, we ask “What would be the most likely value for this missing value, given

all the other attributes for a particular record?” For instance, an American car with

300 cu. in. and 150 hp would probably be expected to have more cylinders than a

Japanese car with 100 cu. in. and 90 hp. This is called imputation of missing data. In

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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this chapter, we shall examine methods for imputing missing values for (i) continuous

variables and (ii) categorical variables.

28.2 IMPUTATION OF MISSING DATA: CONTINUOUS
VARIABLES

In Chapter 9, we introduced multiple regression using the cereals data set. It may be

worthwhile to take a moment to review the characteristics of the data set by looking

back at Chapter 9. We noted that there were four missing data values, which are as

follows:

• Potassium content of Almond Delight

• Potassium content of Cream of Wheat

• Carbohydrates and sugars content of Quaker Oatmeal.

Before we use multiple regression to impute these missing values, we must first

prepare the data for multiple regression. In particular, the categorical variables must

be transformed into 0/1 dummy variables. We did so (not shown) for the variable type,

turning it into a flag variable to indicate whether or not the cereal was cold cereal. We

then derived a series of dummy variables for the variable manufacturer, with flags for

Kellogg’s, General Mills, Ralston, and so on.

We begin by using multiple regression to build a good regression model for esti-

mating potassium content. Note that we will be using the variable potassium as the

response, and not the original response variable, rating. The idea is to use the set of

predictors (apart from potassium) to estimate the potassium content for our Almond

Delight cereal. Thus, all the original predictors (minus potassium) represent the pre-

dictors, and potassium represents the response variable, for our regression model for

imputing potassium content. Do not include the original response variable rating as

a predictor for the imputation.

Because not all variables will be significant for predicting potassium, we apply

the stepwise variable selection method of multiple regression. In stepwise regres-

sion,1 the regression model begins with no predictors, then the most significant pre-

dictor is entered into the model, followed by the next most significant predictor.

At each stage, each predictor is tested whether it is still significant. The procedure

continues until all significant predictors have been entered into the model, and no fur-

ther predictors have been dropped. The resulting model is usually a good regression

model, although it is not guaranteed to be the global optimum.

Figure 28.1 shows the multiple regression results for the model chosen by the

stepwise variable selection procedure. The regression equation is:

Estimated potassium

= −73.11 + 10.137(Protein) + 23.515(Fiber) + 1.6444(Sugars)
+ 7.841(Shelf) + 70.61(Weight) − 22.1(Kellogg’s)

1See Chapter 9.



28.2 IMPUTATION OF MISSING DATA: CONTINUOUS VARIABLES 697

The regression equation is

74 cases used, 3 cases contain missing values

Predictor
Constant
Protein
Fiber

Source
Regression
Residual Error
Total

Sugars
Shelf
Weight
Kelloggs

S = 21.3976

Analysis of Variance

Predicted Values for New Observations

Values of Predictors for New Observations

R–Sq = 91.6% R–Sq (adj) = 90.9%

T
–3.94
3.44
18.52
2.24
2.44
3.37
–3.99

P
0.000
0.001
0.000
0.028
0.017
0.001
0.000

SE Coef
18.53
2.946
1.270
0.7334
3.208
20.95
5.534

Coef
–73.11
10.137
23.515
1.6444

DF
6
67
73

SS
336060
30676
366736

MS
56010
458

F
122.33

P
0.000

New Obs
1

Fit
77.97

SE Fit
4.41

95% CI
(69.16, 86.77)

95% PI
(34.36, 121.57)

New Obs
1
Protein

2.00
Fiber
1.00

Sugars
8.00

Shelf
3.00

Weight
1.00

Kelloggs
0.000000

7.841
70.61

–22.096

Potass =  – 73.1 + 10.1 Protein + 23.5 Fiber + 1.64 Sugars + 7.84 Shelf
   + 70.6 Weight – 22.1 Kelloggs

Figure 28.1 Multiple regression results for imputation of missing potassium values. (The

predicted values section of this output is for Almond Delight only.)

To estimate the potassium content for Almond Delight, we plug in Almond

Delight’s values for the predictors in the regression equation:

Estimated potassium for Almond Delight

= −73.11 + 10.137(2) + 23.515(1) + 1.6444(8) + 7.841(3) + 70.61(1)
− 22.1(0) = 77.9672

That is, the estimated potassium in Almond Delight is 77.9672 mg. This, then,

is our imputed value for Almond Delight’s missing potassium value: 77.9672 mg.

We may use the same regression equation to estimate the potassium content

for Cream of Wheat, plugging in Cream of Wheat’s values for the predictors in the
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regression equation:

Estimated potassium for Cream of Wheat

= −73.11 + 10.137(3) + 23.515(1) + 1.6444(0) + 7.841(2) + 70.61(1)
− 22.1(0) = 67.108

The imputed value for Cream of Wheat’s missing potassium value is 67.108 mg.

Next, we turn to imputing the missing values for the carbohydrates and sugars

content of Quaker Oatmeal. A challenge here is that two predictors have missing val-

ues for Quaker Oatmeal. For example, if we build our regression model to impute

carbohydrates, and the model requires information for sugars, what value do we

use for Quaker Oats sugars, as it is missing? Using the mean or other such ad hoc
substitute is unsavory, for the reasons mentioned earlier. Therefore, we will use the

following approach:

Step 1. Build a regression model to impute carbohydrates; do not include sugars

as a predictor.

Step 2. Construct a regression model to impute sugars, using the carbohydrates

value found in step 1.

Thus, the values from steps 1 and 2 will represent our imputed values for sugars

and carbohydrates. Note that we will include the earlier imputed values for potassium.

Step 1: The stepwise regression model for imputing carbohydrates, based on

all the predictors except sugars, is as follows (to save space, the computer output is

not shown):

Estimated carbohydrates

= 6.004 − 1.7741(Fat) + 0.06557(Calories) + 0.9297(Protein)
+ 0.013364(Sodium) − 0.7331(Fiber) + 4.406(Nabisco) + 2.7(Ralston)

(Note that sugars is not one of the predictors.) Then the imputed step 1 carbo-

hydrates for Quaker Oats is as follows:

Estimated carbohydrates for Quaker Oats

= 6.004 − 1.7741(2) + 0.06557(100) + 0.9297(5) + 0.013364(0)
− 0.7331(2.7) + 4.406(0) + 2.7(0) = 11.682 g

Step 2: We then replace the missing carbohydrates value for Quaker Oats with

11.682 in the data set. The stepwise regression model for imputing sugars is:

Estimated sugars

= 0.231 + 0.16307(Calories) − 1.5664(Fat) − 1.04574(Carbohydrates)
− 0.8997(Protein) + 1.329(Cups) + 7.934(Weight) − 0.34937(Fiber)
+ 1.342(Ralston)
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Estimated sugars for Quaker Oats

= 0.231 + 0.16307(100) − 1.5664(2) − 1.04574(11.682) − 0.8997(5)
+ 1.329(0.67) + 7.934(1) − 0.34937(2.7) + 1.342(0) = 4.572 g

We insert 4.572 for the missing sugars value for Quaker Oats in the data set, so

that there now remain no missing values in the data set.

Now, ambitious programmers may wish to (i) use the imputed 4.572 g sugars

value to impute a more precise value for carbohydrates, (ii) use that more precise

value for carbohydrates to go back and obtain a more precise value for sugars, and

(iii) repeat steps (i) and (ii) until convergence. However, the estimates obtained using

a single application of steps 1 and 2 above usually result in a useful approximation

of the missing values.

When there are several variables with many missing values, the above

step-by-step procedure may be onerous, without recourse to a recursive programming

language. In this case, perform the following:

Step 1: Impute the values of the variable with the fewest missing values. Use

only the variables with no missing values as predictors. If no such predictors

are available, use the set of predictors with the fewest missing values (apart

from the variable you are predicting, of course).

Step 2: Impute the values of the variable with the next fewest missing values,

using similar predictors as used in step 1.

Step 3: Repeat step 2 until all missing values have been imputed.

28.3 STANDARD ERROR OF THE IMPUTATION

Clients may wish to have an idea of the precision of an imputed value. When estimat-

ing or imputing anything, analysts should try to provide a measure of the precision

of their estimate or imputation. In this case, the standard error of the imputation2 is

used. The formula for the simple linear regression case is:

Standard error of the imputation = SEI = s ⋅

√
1 + 1

n
+

(xp − x)2

(n − 1)s2
x

where s is the standard error of the estimate for the regression, xp is the value

of the known predictor for the particular record, x represents the mean value of

the predictor across all records, and s2
x represents the variance of the predictor

values.

For multiple regression (as used here), the formula for SEI is more complex

and is best left to the software. Minitab reports SEI as “SE Fit.” In Figure 28.1, where

we were imputing Almond Delight’s missing potassium value, the standard error of

the imputation is SEI = SE Fit = 4.41 mg. This is interpreted as meaning that, in

2This is from the same formula used to find prediction intervals for the value of a randomly chosen y in

simple linear regression.
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repeated samples of Almond Delight cereal, the typical prediction error for imputing

potassium, using the predictors in Figure 28.1, is 1.04 mg.

28.4 IMPUTATION OF MISSING DATA: CATEGORICAL
VARIABLES

One may use any classification algorithm to impute the missing values of categor-

ical variables. We will illustrate using CART (classification and regression trees,

Chapter 8). The data file classifyrisk is a small data file containing 6 fields and 246

records. The categorical predictors are maritalstatus and mortgage; the continuous

predictors are income, age, and number of loans. The target is risk, a dichotomous

field with values good risk and bad loss. The data file classifyrisk_missing contains

a missing value for the marital status of record number 19.

To impute this missing value, we apply CART, with maritalstatus as the target

field, and the other predictors as the predictors for the CART model. Z-score stan-

dardization is carried out on the continuous variables. The resulting CART model is

shown in Figure 28.2.

Record 19 represents a customer who has the following field values: loans =
1, mortgage = y, age_Z = 1.450, income_Z = 1.498, thus representing a customer

who is older than average, with higher income than average, with a mortgage and

one other loan. The root node split is on loans; we follow the branch down “loans in

[0 1].” The next split checks whether income_Z is greater than 0.812. We follow the

branch down “income_Z > 0.812,” which ends at a leaf node containing 30 records,

Figure 28.2 CART model for imputing the missing value of maritalstatus.
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96.7% of which have a marital status of married. Thus, our imputed value for the

marital status of record 19 is married, with a confidence level of 96.7%.

28.5 HANDLING PATTERNS IN MISSINGNESS

The analyst should remain aware that imputation of missing data represents replace-

ment. The data value is now no longer missing; rather, its “missingness” has been

replaced with an imputed data value. However, there may be information in the pattern

of that missingness, information that will be wasted unless some indicator is provided

to the algorithm indicating that this data value had been missing. For example, sup-

pose a study is being made of the effect of a new fertility drug on premenopausal

women, and the variable age has some missing values. It is possible that there is a

correlation between the age of the subject and the likelihood that the subject declined

to give their age. Thus, it may happen that the missing values for age are more likely

to occur for greater values of age. Because greater age is associated with infertility,

the analyst must account for this possible correlation, by flagging which cases have

had their missing ages imputed.

One method to account for patterns in missingness is simply to construct a flag

variable, as follows:

age_missing =
{

1 if age value imputed

0 otherwise

Add age_missing to the model, and interpret its effect. For example, in a regres-

sion model, perhaps the age_missing dummy variable has a negative regression coef-

ficient, with a very small p-value, indicating significance. This would indicate that

indeed there is a pattern in the missingness, namely that the effect size of the fertility

drug for those cases whose age value was missing tended to be smaller (or more neg-

ative). The flag variable could also be used for classification models, such as CART

or C4.5.

Another method for dealing with missing data is to reduce the weight that the

case wields in the analysis. This does not account for the patterns in missingness, but

rather represents a compromise between no indication of missingness and completely

omitting the record. For example, suppose a data set has 10 predictors, and Record

001 has one predictor value missing. Then this missing value could be imputed, and

Record 001 assigned a weight, say, of 0.90. Then Record 002, with 2 of 10 field

values missing, would be assigned a weight of 0.80. The specific weights assigned

depend on the particular data domain and research question of interest. The algo-

rithms would then reduce the amount of influence the records with missing data have

on the analysis, proportional to how many fields are missing.

REFERENCE

The classic text on missing data is:

Little R, Rubin D. Statistical Analysis with Missing Data. second ed. Wiley; 2002.
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THE R ZONE

# Prepare Cereals data

# Read in Cereals dataset

cereal <− read.csv(file = "C:/… /cereals.txt",

stringsAsFactors=FALSE,

header=TRUE,

sep="\t")

cereal$Cold <− c(rep(0, length(cereal$Type)))

cereal$Manuf_N <− cereal$Manuf_Q <− cereal$Manuf_K <− cereal$Manuf_R <−
cereal$Manuf_G <− cereal$Manuf_P <− c(rep(0, length(cereal$Manuf)))

for (i in 1:length(cereal$Type)) {

if(cereal$Type[i] == "C") cereal$Cold[i] <− 1

if(cereal$Manuf[i] == "N") cereal$Manuf_N[i] <− 1

if(cereal$Manuf[i] == "Q") cereal$Manuf_Q[i] <− 1

if(cereal$Manuf[i] == "K") cereal$Manuf_K[i] <− 1

if(cereal$Manuf[i] == "R") cereal$Manuf_R[i] <− 1

if(cereal$Manuf[i] == "G") cereal$Manuf_G[i] <− 1

if(cereal$Manuf[i] == "P") cereal$Manuf_P[i] <− 1

}

# Build the regression model

reg1<− lm(Potass ∼ Calories +
Protein + Fat + Sodium +
Fiber + Carbo + Sugars +
Vitamins + Shelf +
Weight + Cups + Cold +
Manuf_P + Manuf_R +
Manuf_G + Manuf_K +
Manuf_Q + Manuf_N,

data = cereal)

step1 <− step(reg1,

direction = "both")

summary(step1)
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# Run the final regression model

# Include only predictors

# significant in the

# previous analysis

reg2<− lm(Potass ∼ Protein +
Fiber + Sugars + Shelf +
Weight + Manuf_K,

data = cereal)

summary(reg2)

# Use the model to estimate missing values

# Almond Delight is record 5

# Cream of Wheat is record 21

predict(reg2, newdata = cereal[5,])

predict(reg2, newdata = cereal[21,])

# Prepare ClassifyRisk data, and open the required libraries

risk <− read.csv(file = "C:/… /classifyrisk.txt",

stringsAsFactors=FALSE, header=TRUE, sep="\t")

risk$loans_n <− (risk$loans - min(risk$loans))/(max(risk$loans)-min(risk$loans))

# And so on for the continuous variables

library(rpart); library(rpart.plot)

# Make Record 19’s marital status missing, use to create a new dataset

risk[19,4]<−NA; criskna <− risk

# Apply CART to impute marital status

imp1 <− rpart(marital_status ∼
mortgage + loans_n + age_n +
income_n,

data = criskna, model = TRUE,

method = "class")

rpart.plot(imp1)

# Predict marital status of Record 19

predict(imp1, criskna[19,])

loans_n < 0.5

loans_n >=0.83

income_n < 0.22

mortgage < 1.5

income_n < 0.6

income_n >= 0.14

income_n >= 0.29

age_n >= 0.21

Other

Other SingleSingleSingle

Single

MarriedMarried

Single

Yes No
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EXERCISES

1. Why do we need to impute missing data?

2. When imputing a continuous variable, explain what we use for the set of predictors, and

for the target variable.

3. When imputing a missing value, do we include the original target variable as one of the

predictor variables for the data imputation model? Why or why not?

4. Describe what we should do if there are many variables with many missing values.

5. On your own, think of a data set where a potential pattern in missingness would represent

good information.

6. State two methods for handling patterns in missingness.

HANDS-ON ANALYSIS

Use the cereals data set for Exercises 7–12. Report the standard error of each imputation.

7. Impute the potassium content of Almond Delight using multiple regression.

8. Impute the potassium content of Cream of Wheat.

9. Impute the carbohydrates value of Quaker Oatmeal.

10. Impute the sugars value of Quaker Oatmeal.

11. Insert the value obtained in Exercise 10 for the sugars value of Quaker Oatmeal, and

impute the carbohydrates value of Quaker Oatmeal.

12. Compare the standard errors for the imputations obtained in Exercises 9 and 11. Explain

what you find.

13. Open the ClassifyRisk_Missing data set. Impute the missing value for marital status.

Use the ClassifyRisk_Missing2 data set for Exercises 14–15.

14. Impute all missing values in the data set. Explain the ordering that you are using.

15. Report the standard errors (for continuous values) or confidence levels (for categorical

values) for your imputations in Exercise 14.

http://CRAN.R-project.org/package=rpart.plot
http://www.R-project.org
http://CRAN.R-project.org/package=rpart


PART VIII

CASE STUDY: PREDICTING RESPONSE
TO DIRECT-MAIL MARKETING





C H A P T E R 29
CASE STUDY, PART 1: BUSINESS
UNDERSTANDING, DATA
PREPARATION, AND EDA

In Chapters 29–31 we shall bring together much of what we have learned in this

book in a detailed Case Study: Predicting Response to Direct-Mail Marketing. We

follow the here in Chapter 29, we (i) enunciate our objectives in the Business Under-

standing Phase, (ii) get a feel for the data set in Part 1 of the Data Understand-

ing Phase, prepare our data in the Data Preparation Phase, and extract some use-

ful information in Part 2 of the Data Understanding Phase: exploratory data anal-

ysis (EDA). Then, in Chapter 30, we learn about possible segments in the customer

database using clustering analysis and we investigate relationships among the predic-

tors using principal components analysis. Finally, in Chapter 31, we apply the rich

assortment of classification techniques at our disposal in the Modeling Phase, and

make recommendations on which models to move forward with in the Evaluation

Phase.

29.1 CROSS-INDUSTRY STANDARD PRACTICE FOR
DATA MINING

The Case Study in Chapters 29–31 will be carried out using the cross-industry stan-

dard process for data mining (CRISP-DM). According to CRISP-DM, a given data

mining project has a life cycle consisting of six phases, as illustrated in Figure 29.1.

The details of CRISP-DM are discussed in Chapter 1; here, we but recapitulate the

outline of the process.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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Business / Research
Understanding Phase

Deployment Phase

Evaluation Phase Modeling Phase

Data Preparation
Phase

Data Understanding
Phase

Figure 29.1 CRISP-DM is an iterative, adaptive process.

CRISP-DM: THE SIX PHASES

1. Business (or Research) Understanding Phase

2. Data Understanding Phase

3. Data Preparation Phase

4. Modeling Phase

5. Evaluation Phase

6. Deployment Phase

In practice, the data preparation phase often precedes or is interleaved with the

data understanding (EDA) phase, as one may wish to clean up the data before trying

to extract information from it. In this chapter, we approach these phases as follows:
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BUSINESS UNDERSTANDING, DATA PREPARATION, AND EDA:
OVERVIEW

1. Business Understanding Phase

2. Data Understanding Phase, Part 1: Getting a feel for the data set.

3. Data Preparation Phase

4. Data Understanding Phase, Part 2: Extracting some useful information from the data.

29.2 BUSINESS UNDERSTANDING PHASE

In the business understanding phase, managers and analysts need to be crystal clear

on communicating what the primary objectives of the project are. It often happens

that lack of communication/understanding of the primary objectives leads analysts to

fashion fine solutions to the wrong problems, like climbing to the top of the ladder,

only to find that it is leaning against the wrong wall. To avoid this, a statement of

the primary and secondary objectives of the analysis should be agreed upon, by both

managers and analysts.

In this detailed Case Study, we are acting as analysts for a retail clothing store

chain. The clothing_store data set1 represents actual data provided by a clothing store

chain in New England. Data were collected on 51 fields for 28,799 customers. More

information about the data set is provided in the Data Understanding Phase below.

Here follows the statement of the primary and secondary objectives of the analysis.

PRIMARY OBJECTIVE

Develop a classification model that will maximize profits for direct-mail marketing.

SECONDARY OBJECTIVE

Develop better understanding of our clientele through EDA, component profiles, and cluster

profiles.

For this Case Study, our data mining task is a classification problem. We are to

classify which customers will respond to a direct-mail marketing promotion, based

on information collected about the customers. However, it will not be sufficient just to

derive the classifier with the most accurate predictions. The analyst needs to consider

how the classification problem fits into the client’s business goals. As we said, for the

clothing store, the primary objective is to maximize profits. Therefore, the goal of our

classification model should also be to maximize profits, rather than simply to report

impressive values for model accuracy, sensitivity, and specificity. To maximize profit,

data-driven misclassification costs will be derived and applied.

1Available at the book web site: www.dataminingconsultant.com.

http://www.dataminingconsultant.com


710 CHAPTER 29 CASE STUDY, PART 1: BUSINESS UNDERSTANDING, DATA PREPARATION, AND EDA

The specification of data-driven misclassification costs may be considered to

belong to the business understanding phase. However, as we will not use the resulting

cost matrix until the modeling phase, the derivation of these misclassification costs

is postponed until the beginning of the modeling phase (see Chapter 30).

The secondary objective is to develop a better understanding of our customer

database using market segment profiles. Specifically, we shall seek to uncover inter-

esting clusters and principal components in our clientele, and, using profiles of these

clusters and components, learn more about the different types of customers we have.

29.3 DATA UNDERSTANDING PHASE, PART 1:
GETTING A FEEL FOR THE DATA SET

In the data understanding phase, we become more familiar with the data set using

EDA, graphical and descriptive statistical methods for learning about data. The Cloth-
ing_store_training_test data set contains information about 28,799 customers, on the

following 51 fields:

• Customer ID: unique, encrypted customer identification

• Zip code

• Number of purchase visits

• Total net sales

• Average amount spent per visit

• Amount spent at each of four different franchises (four variables)

• Amount spent in the past month, the past 3 months, and the past 6 months

• Amount spent the same period last year (SPLY)

• Gross margin percentage

• Number of marketing promotions on file

• Number of days the customer has been on file

• Number of days between purchases

• Markdown percentage on customer purchases

• Number of different product classes purchased

• Number of coupons used by the customer

• Total number of individual items purchased by the customer

• Number of stores the customer shopped at

• Number of promotions mailed in the past year

• Number of promotions responded to in the past year

• Promotion response rate for the past year

• Product uniformity (low score= diverse spending patterns)

• Lifetime average time between visits

• Microvision
®

Lifestyle Cluster Type
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• Percent of returns

• Flag: credit card user

• Flag: valid phone number on file

• Flag: web shopper

• Fifteen variables providing the proportions spent by the customer on specific

classes of clothing, including sweaters, knit tops, knit dresses, blouses, jackets,

career pants, casual pants, shirts, dresses, suits, outerwear, jewelry, fashion,

legwear, and the collectibles line. Also, a variable showing the brand of choice

(encrypted).

• Target variable: response to promotion

Assume that these data are based on a direct-mail marketing campaign con-

ducted last year. We shall use this information to develop classification models for

this year’s marketing campaign.

It is never a bad idea when beginning a new project to take a quick look at the

actual data values. Here, Figure 29.2 shows some of the data values for the first 20

records for the first handful of fields.

Figure 29.2 A quick look at the data.

The ID field uniquely identifies each customer (not transaction) in the data set.

Looking at the zip code field we immediately spot a problem. American zip codes

have five digits; why do these have only four digits? Actually, this is a common prob-

lem with zip codes located in New England, which have zero as their initial digit.

Somewhere along the line, the zip code field was set to a numeric variable, for which

initial zeroes are omitted. We need to replace these initial zeros; one way to perform

this is to derive a new zip code field with the following instruction:

if length(ZIP_CODE) = 4 then “0” >< ZIP_CODE else ZIP_CODE endif

where the “><” notation represents “concatenate.” For example, the zip code for

the first record in Figure 29.2, “1001,” should really be “01001,” the zip code for

Agawam, Massachusetts.

The brand field is using digits to represent a categorical field. This is a poten-

tial minefield that may confuse downstream modeling algorithms. The field should be

repopulated with letter values rather than numbers. Similarly, the credit card flag field
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uses 0/1 values, which certain algorithms may incorrectly try to apply operations to

that should be reserved for continuous values (e.g., principal components analysis).

Therefore, the analyst should be careful with fields like these, and may prefer to sub-

stitute F/T values for the 0/1 values. However, 0/1 values for a flag variable are useful

as indicator variable predictors in regression and logistic regression. No other major

problems leap out at us from Figure 29.2. Note that PSWEATERSraw represents a

proportion, but may have been expressed as a percentage instead.

Figure 29.3 shows us an overview of some of the continuous predictors, includ-

ing a histogram with an overlay of the response (dark= positive response), and some

summary statistics. We note immediately that some of the predictors are quite skewed,

and will benefit from transformations (discussed below). We may even get a hint of

some EDA-flavored results: Responders seem to favor greater days on file and lower

average days between purchases.

Figure 29.3 Overview of some of the continuous predictors.

Analysts should never fail to account for missing data. As we discussed in ear-

lier chapters, neglecting to account for missing data, or accounting for missing data in

an inappropriate manner, can have deleterious effects on model efficacy. Thankfully,

Figure 29.4 indicates that here are no missing values in our data.

Next, what is the overall proportion of responders to the direct-mail marketing

promotion? Figure 29.5 shows that only 4762 of the 28,799 customers, or 16.54%,

responded to last year’s marketing campaign (1 indicates response, 0 indicates non-

response.) As the proportion of responders is so small, we may decide to apply bal-

ancing to the data before modeling.

One of the variables, the Microvision Lifestyle Cluster Type, contains the mar-

ket segmentation category for each customer, as defined by Nielsen Claritas. There

are 50 segmentation categories, labeled 1–50; the distribution of the most prevalent

18 cluster types over the customer database is given in Figure 29.6.
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Figure 29.4 All fields and records are 100% complete: no missing data.

Figure 29.5 Most customers are nonresponders.

Figure 29.6 The 20 most prevalent Microvision
®

Lifestyle Cluster Types.

The six most common lifestyle cluster types in our data set are:

1. Cluster 10. Home Sweet Home. Families, medium-high income and education,

managers/professionals, technical/sales.

2. Cluster 1. Upper Crust. Metropolitan families, very high income and educa-

tion, homeowners, manager/professionals.
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3. Cluster 4. Mid-Life Success. Families, very high education, high income, man-

agers/professionals, technical/sales.

4. Cluster 16. Country Home Families. Large families, rural areas, medium edu-

cation, medium income, precision/crafts.

5. Cluster 8. Movers and Shakers. Singles, couples, students and recent gradu-

ates, high education and income, managers/professionals, technical/sales.

6. Cluster 15. Great Beginnings. Young, singles and couples, medium-high

education, medium income, some renters, managers/professionals, technical/

sales.

Overall, the clothing store seems to attract a prosperous clientele with fairly

high income and education. Cluster 1, Upper Crust, represents the wealthiest of the

50 cluster types, and is the second most prevalent category among our customers.

Unfortunately, however, the Microvision variable is more useful for customer descrip-

tion than for modeling, as its values do not help us discern between responders and

nonresponders (not shown.) Now, normally, our policy is to retain variables for the

modeling stage, even if they do not look significant at the EDA stage. However,

because the Microvision variable contains so many different values, its inclusion in

certain models (such as logistic regression) can degrade model performance. Thus,

we will omit this variable from our modeling.

29.4 DATA PREPARATION PHASE

Now that we have a feel for the data set, we turn to the important task of preparing the

data for analysis. There are several issues, starting with the unusual issue of negative

amounts spent.

29.4.1 Negative Amounts Spent?

For many of the amounts-spent fields and the proportions-spent fields, some of the

customers have negative values for the amount or proportion of money spent. See

Figure 29.7, where the minimum values for a selection of these variables are negative.

How can this be? Now, the data were collected within a particular time period, which

is unspecified, perhaps a month or a quarter. It is possible for a customer to have

bought some clothing in a prior period, and returned the purchased clothing in the

time period from which the data are collected. If this customer also did not make any

major purchases during the time period of interest, then the net sales for this customer

would be negative.

These negative amounts and proportions represent a problem in two ways. First,

if we are to apply a transformation, such as the natural log or square root transfor-

mation, then we would prefer to be dealing with nonnegative values. Second, if the

customers with negative amount spent are more likely than those with zero amount

spent to respond to the direct-mail solicitation, then our models may be confused by

this, incorrectly expecting the negatives to not respond.
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Figure 29.7 The Min values indicate negative amounts spent. How can this be? What should

we do about it?

Now, we have a range of options, for how to deal with these negative values.

• Option 1: Treat them as data-entry errors, and either delete the relevant records

or apply imputation of missing data.

• Option 2: Leave them as they are.

• Option 3: Change the negative values to zero values.

• Option 4: Take the absolute value of the negative values.

To help us decide how to handle the negative amounts spent problem, let us

compare the response rate of these negatives to two other types of customers, those

with zero amount spent, and those with positive amount spent. Figure 29.8 shows

that 21.57% of those with negative amount spent at the PS store responded positively,

compared to 22.19% of those with positive amount spent, and 11.98% of those with

zero amount spent. Thus, the customers with negative amount spent have a similar

response rate to those with a positive amount spent, both of which are nearly double

the response rate of those with zero amount spent. We therefore proceed to take the

absolute value of all fields with negative amounts spent or negative proportions spent.

Figure 29.8 Those with negative amount spent have a similar response rate to those with

positive amount spent.
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Moving to other variables, we turn to the customer ID. As this field is unique

to every customer, and is encrypted, it can contain no information that is helpful for

our task of predicting which customers are most likely to respond to the direct-mail

marketing promotion. It should therefore be omitted from any analytic models. How-

ever, the customer ID field should be retained, for housekeeping tasks such as sort-

ing. The zip code can potentially contain information useful in this task. Zip codes,

although ostensibly numeric, actually represent a categorization of the client database

by geographic locality. However, for the present problem, we set this field aside and

concentrate on the remaining variables.

29.4.2 Transformations to Achieve Normality or Symmetry

Most of the numeric fields are right-skewed. For example, Figure 29.9 shows the dis-

tribution of product uniformity, a variable which takes large values for customers who

purchase only a few different classes of clothes (e.g., blouses, legwear, pants), and

small values for customers who purchase many different classes of clothes. Later we

shall see that high product uniformity is associated with low probability of responding

to the promotion. Figure 29.9 is right-skewed, with most customers having a rela-

tively low product uniformity measure, while fewer customers have larger values.

The customers with large values for product uniformity tend to buy only one or two

classes of clothes. Note that there are spikes at 100 and at 50; these probably result

from how product uniformity is calculated (details not available). It is possible that

these spikes contain customers exhibiting specific behaviors, in which case the ana-

lyst could derive flag variables to investigate. However, as our time and space are

limited, we must move on.

Many data mining methods and models, such as principal components analysis

and logistic regression, function best when the variables are normally distributed, or,

failing that, at least when they are symmetric. Therefore, we apply transformations

0

0

500

1000

1500

2000

50 100

Product uniformity

C
o
u
n
t

150 200

Figure 29.9 Most of the numeric fields are right-skewed, such as product uniformity.
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to all of the numerical variables that require it, in order to induce approximate nor-

mality or symmetry. The analyst may choose from the transformations indicated in

Chapter 8, such as the natural log (ln) transformation, the square root transformation,

a Box–Cox transformation, or a power transformation from the ladder of reexpres-

sions. For our variables that contained only positive values, we applied the natural

log transformation. However, for the variables which contained zero values as well

as positive values, we applied the square root transformation, as ln(x) is undefined for

x = 0.

Figure 29.10 shows the distribution of product uniformity, after the natural log

transformation. Although perfect normality is not obtained, the result is nevertheless

much less skewed than the raw data distribution, allowing for smoother application

of several data mining methods and models. Sadly, the spikes remain.

−4 −2 0 2 4 6

0

500

1000

1500

2000

In product uniformity

C
o

u
n

t

Figure 29.10 Distribution of ln product uniformity is less skewed, although the spikes remain.

Recall that the data set includes 15 variables providing the percentages spent

by the customer on specific classes of clothing, including sweaters, knit tops, knit

dresses, blouses, and so on. Figure 29.11 shows the distribution of the percentage
spent on blouses. We see a spike at zero, along with the usual right-skewness, which

calls for a transformation. The square root transformation is applied, with results

shown in Figure 29.12. Note that the spike at zero remains, while the remainder of

the data appear nicely symmetric.

The dichotomous character of Figure 29.12 motivates us to derive a flag variable

for all blouse purchasers. Figure 29.13 shows the distribution of this flag variable,

with about 58% of customers having purchased a blouse at one time or another. Flag

variables were also constructed for the other 14 clothing percentage variables.

29.4.3 Standardization

When there are large differences in variability among the numerical variables, the

data analyst needs to apply standardization. The transformations already applied do
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Figure 29.11 Distribution of the percentage spent on blouses.
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Figure 29.12 Distribution of sqrt percentage spent on blouses.

Figure 29.13 Distribution of blouse purchasers flag variable.

help in part to reduce the difference in variability among the variables, but substantial

differences still exist. For example, the standard deviation for the variable sqrt spend-
ing in the last 6 months is 10.03, while the standard deviation for the variable sqrt #

coupons used is 0.73. To avoid the greater variability of the variable sqrt spending in
the last 6 months overwhelming the variable sqrt # coupons used, the numeric fields

should be normalized or standardized. Here, we choose to standardize the numeric

fields, so that they all have a mean of zero and a standard deviation of one. For each

variable, this is done by subtracting the mean of the variable, and dividing by the stan-

dard deviation, to arrive at the z-score. In this analysis, the resulting variable names
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are prefixed with a “Z” (e.g., z sqrt # coupons used). Other normalization techniques,

such as min–max normalization, may be substituted for z-score standardization if

desired.

29.4.4 Deriving New Variables

The creation of flag variables for blouse sales and the other item category sales

represents deriving new variables, in order to provide greater insight into customer

behavior, and hopefully to increase model performance. Further flag variables are

constructed as follows. Figure 29.14 shows the histogram of the variable z sqrt
spending last 1 month. Note the spike which represents the majority of customers

who have not spent any money at the store in the past month. For this reason, flag

(indicator) variables were constructed for spending last 1 month, as well as the

following variables:

• Spending at the AM store (one of the four franchises), to indicate which cus-

tomers spent money at this particular store.

• Spending at the PS store

• Spending at the AX store.

• Spending in the last 3 months.

• Spending in the last 6 months.

• Spending in the SPLY.

• Returns, to indicate which customers have ever returned merchandise.

• Response rate, to indicate which customers have ever responded to a marketing

promotion before.

• Markdown, to indicate which customers have purchased merchandise which

has been marked down.
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Figure 29.14 Histogram of Z sqrt spending last 1 month motivates us to create a flag variable

to indicate which customers spent money in the past month.
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• No flag is created for spending at the CC store, as all records in the database

indicate non-zero amounts spent.

The data preparation phase offers the data miner the opportunity to clarify rela-

tionships between variables, and to derive new variables that may be useful for the

analysis. For example, consider the following three variables:

• Amount spent (by customer) in the last month.

• Amount spent in the last 3 months.

• Amount spent in the last 6 months.

Clearly, the amount spent by the customer in the last month is also contained in

the other two variables, the amount spent in the last 3 months and the last 6 months.

Therefore, the amount spent in the last month is getting triple-counted. Now, the

analyst may not wish for this most recent amount to be so heavily weighted. For

example, in time-series models, the more recent measurements are the most heavily

weighted. In this case, however, we prefer not to triple-count the most recent month,

and must therefore derive two new variables, as shown in Table 29.1.

TABLE 29.1 New derived spending variables

Derived Variable Formula

Amount spent in previous

months 2 and 3

Amount spent in last 3 months

–amount spent in last 1 month

Amount spent in previous

months 4–6

Amount spent in last 6 months

–amount spent in last 3 months

By “amount spent in previous months 2 and 3,” we mean the amount spent in

the period 90 to 30 days previous. We shall thus use the following three variables:

• Amount spent in the last month.

• Amount spent in previous months 2 and 3.

• Amount spent in previous months 4, 5, and 6.

And we shall omit the following variables:

• Amount spent in the last 3 months, and

• Amount spent in the last 6 months.

Note that, even with these derived variables, the most recent month’s spending

may still be considered to be weighted more heavily than any of the other months’

spending. This is because the most recent month’s spending has its own variable,

while the previous 2 and 3 months spending have to share a variable, as do the

previous 4, 5, and 6 months spending. Of course, all derived variables should be

transformed as needed, and standardized.

The raw data set may have its own derived variables already defined. Consider

the following variables:

• Number of purchase visits.
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• Total net sales.

• Average amount spent per visit.

The average amount spent per visit represents the ratio:

Average = total net sales

number of purchase visits

As the relationship among these variables is functionally defined, it may turn out

that the derived variable is strongly correlated with the other variables. The analyst

should check this. For example, Figure 29.15 shows that there is strong correlation2

among the variables z ln total net sales, z ln ave spending per visit, and z ln total net
sales. This strong correlation shall bear watching; we shall return to this below. By

the way, the correlation coefficients between the raw variables should be the same as

the correlation coefficients obtained by the Z-scores of those variables.

Figure 29.15 Check to make sure the derived variable is not correlated with the original

variables.

29.5 DATA UNDERSTANDING PHASE, PART 2:
EXPLORATORY DATA ANALYSIS

Having wrapped up our data preparation, we turn again to the Data Understanding

Phase, this time to perform EDA. Recall that EDA allows the analyst to delve into

the data set, examine the interrelationships among the variables, identify interesting

subsets of observations, and develop an initial idea of possible associations among

the predictors, as well as between the predictors and the target variable. And all of

this is accomplished without worrying about fulfilling the assumptions required for

modeling methods such as regression.

2For a sample size of 28,799, any correlation coefficient larger in absolute value than about 0.012 would

be statistically significant at the 𝛼 = 0.05 level.
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29.5.1 Exploring the Relationships between the Predictors
and the Response

We shall return to the correlation issue later, but first we would like to investigate

the variable-by-variable association between the predictors and the target variable,

response to the marketing promotion. Ideally, the analyst should examine graphs and

statistics for every predictor variable, especially with respect to the relationship with

the response. However, the huge data sets prevalent in most data mining applications

make this a daunting task. Therefore, we would like to have some way to examine

the most useful predictors in an exploratory framework.

Of course, choosing the most useful variables is a modeling task, which lies

downstream of our present phase, the EDA-flavored data understanding phase. How-

ever, a very rough tool for choosing some useful variables to examine at this early

phase is correlation. That is, examine the correlation coefficients for each predictor

with the response, and select for further examination those variables which have the

largest absolute correlations. The analyst should of course be aware that this is simply

a rough EDA tool, and linear correlation with a 0–1 response variable is not appro-

priate for inference or modeling at this stage. Nevertheless, this method can be useful

for paring down the number of variables that would be helpful to examine at the EDA

stage. Table 29.2 lists the top three predictors with the highest absolute correlation

with the target variable, response.

We therefore examine the relationship between these selected predictors, and

the response variable. First, Figure 29.16 shows a histogram of Z ln Lifetime Average
Time Between Visits, with an overlay of Response (0= no response to the promo-

tion). It appears that records at the upper end of the distribution have lower response

rates. In order to make the interpretation of overlay results more clearly, we turn to a

normalized histogram, where each bin has the same height, shown in Figure 29.17.

Figure 29.17 makes it clear that the rate of response to the marketing promotion

decreases as the lifetime average time between visits increases. This makes sense, as

customers who visit the store more rarely will presumably be less likely to respond to

the promotion. Note that presenting the normalized histogram alone is not sufficient,

as it does not provide a feel for the original distribution of the variable. Thus, it is usu-

ally recommended to provide both the unnormalized and the normalized histograms.

Figure 29.18 shows the nonnormalized and normalized histograms for z ln pur-
chase visits, illustrating that, as the number of purchase visits increases, the response

rate increases as well. This is not surprising, as we might anticipate that the customers

who shop at our stores often, purchase many different items, spend a lot of money,

and buy a lot of different types of clothes, might be interested in responding to our

TABLE 29.2 Variables with largest absolute correlation with the target variable, response

Variable Correlation Coefficient Relationship

z ln Lifetime ave time between visits −0.43 Negative

z ln Purchase visits 0.40 Positive

z ln # Individual items purchased 0.37 Positive
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Figure 29.16 Histogram of z ln lifetime average time between visits with response overlay:

may be difficult to interpret.
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Figure 29.17 Normalized histogram of z ln lifetime average time between visits with response
overlay: easier to discern pattern.

marketing promotion. Figure 29.19 shows the relationship between z ln # individual
items purchased and the response variable. We see that, as the number of individual

items purchased increases, the response rate increases as well.

We might expect that the three variables from Table 29.2 will turn out, in one

form or another, to be among the best predictors of promotion response. This is further

investigated in the modeling phase.

Next consider Figure 29.20, which shows the normalized histogram of z sqrt
percentage spent on blouses, with an overlay of the response variable. Note from

Figure 29.20 that, apart from those who spend nothing on blouses (the left-most bin),
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Figure 29.18 As the number of purchase visits increases, the response rate increases as well.
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Figure 29.19 As the number of purchase visits increases, so does the response rate.

as the percentage spent on blouses increases, the response rate decreases. This behav-

ior is not restricted to blouses, and is prevalent among all the clothing percentage

variables (not shown). What this seems to indicate is that, customers who concen-

trate on a particular type of clothing, buying only one or two types of clothing (e.g.,

blouses), tend to have a lower response rate.

The raw data file contains a variable that measures product uniformity, and,

based on the behavior observed in Figure 29.20, we would expect the relationship

between product uniformity and response to be negative. This is indeed the case, as

shown by the normalized histogram of z ln product uniformity in Figure 29.21. The

highest response rate is shown by the customers with the lowest uniformity, that is,

the highest diversity of purchasing habits, in other words, customers who purchase

many different types of clothing.

Next, we turn to an examination of the relationship between the response and

the many flag variables in the data set. Figure 29.22 provides a directed web graph

of the relationship between the response (upper right) and the following indicator

variables (counterclockwise from the response): credit card holder, spending months

4, 5, and 6, spending months 2 and 3, spending last 1 month, spending SPLY, returns,

response rate, markdown, web buyer, and valid phone number on file. Web graphs
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Figure 29.20 z sqrt blouses, with response overlay.
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Figure 29.21 As customers concentrate on only one type of clothing, the response rate goes

down.

are exploratory tools for determining which categorical variables may be of interest

for further study.

In this graph, only the true values for the various flags are indicated. The dark-

ness and solidity of the line connecting the flag variable with the response is a measure

of the association of that variable with the response. In particular, these connec-

tions represent percentages of the “true” predictor flag values associated with the

“true” value of the response. Therefore, more solid connections represent a greater

association with responding to the promotion. Among the most solid connections in

Figure 29.22 are the following:

• Web buyer

• Credit card holder

• Spending last 1 month

• Spending SPLY
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Figure 29.22 Directed web graph of relationship between the response and several flag

variables.

We therefore examine the normalized distribution of each of these indicator

variables, with the response overlay, as shown in Figure 29.23 (positive responses

are darker). The counts (and percentages) shown in Figure 29.23 indicate the fre-

quencies (and relative frequencies) of the predictor flag values, and do not represent

the proportions shown graphically. To examine these proportions, we turn to the set

of contingency tables in Figure 29.24.

Web buyer flag Credit card flag

Spending last one month flag Spending SPLY flag

Figure 29.23 Higher response rates are associated with (a) web buyers, (b) credit card holders,

(c) customers who made a purchase within the past month, and (d) customers who made a

purchase in the same period last year.

Consider the highlighted cells in Figure 29.24, which indicate the proportions

of customers who have responded to the promotion, conditioned on their flag values.

Web buyers (those who have made purchases via the company’s web shopping option)
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Web buyer flag Credit card flag

Spending last one month flag Spending SPLY flag

Figure 29.24 The statistics in these matrices describe the graphics from Figure 29.23.

are nearly three times as likely to respond compared to those who have not made

a purchase via the Web (44.852% vs 15.247%). Credit card holders are also about

three times as likely as noncredit card holders (28.066% vs 9.376%) to respond to the

promotion. Customers who have made a purchase in the last month are nearly three

times as likely to respond to the promotion (33.642% vs 11.981%). Finally, those who

made a purchase in the SPLY are twice more likely to respond than those who did

not make a purchase during the SPLY (27.312% vs 13.141%). We would therefore

expect these flag variables to play some nontrivial role in the model building phase

downstream.

29.5.2 Investigating the Correlation Structure
among the Predictors

Recall that, depending on the objective of our analysis, we should be aware of the

dangers of multicollinearity among the predictor variables. We therefore investigate

the pairwise correlation coefficients among the predictors, and note those correlations

that are the strongest. Table 29.3 contains a listing of the pairwise correlations that

are the strongest in absolute value among the predictors.

Figure 29.25 shows a scatter plot of z ln total net sales versus z ln # individual
items purchased, with a response overlay. The strong positive correlation is evident in

TABLE 29.3 Strongest absolute pairwise correlations among the predictors

Predictor Predictor Correlation

z ln Purchase visits z ln # Different product classes 0.80

z ln Purchase visits z ln # Individual items purchased 0.86

z ln # Promotions on file z ln # Promotions mailed in last year 0.89

z ln Total net sales z ln # Different product classes 0.86

z ln Total net sales z ln # Individual items purchased 0.91

z ln Days between purchase z ln Lifetime ave time between visits 0.85

z ln # Different product classes z ln # Individual items purchased 0.93
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Figure 29.25 Scatter plot of a positive relationship: z ln total net sales versus z ln # individual
items purchased, with response overlay.

that, as the number of items purchased increases, the total net sales tends to increase.

Of course, such a relationship makes sense, as purchasing more items would presum-

ably tend to result in spending more money. Also, at the high end of both variables

(the upper right), responders tend to outnumber nonresponders, while at the lower

end (the lower left), the opposite is true.

For an example of a negative relationship, we may turn to Figure 29.26, the

scatter plot of z gross margin percentage versus z markdown, with response overlay.

The correlation between these variables is −0.77, and so they did not make the list

in Table 29.3. In the scatter plot, it is clear that, as markdown increases, the gross

margin percentage tends to decrease.
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Figure 29.26 Scatter plot of a negative relationship: z gross margin % versus z markdown.

If the number of predictors is large, however, evaluating individual scatter

plot may become tedious. This is because, for k predictors, there are kC2 possible
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two-dimensional scatter plots. For example, for 10 predictors, there are 45 possible

scatter plots. It can be more convenient, therefore, to use matrix plots, which provide

several scatter plots at one time. Figure 29.27 is an example of a matrix plot for

the predictors z ln days between purchases, z ln lifetime ave time betw visits, and z
ln # individual items purchased, with an overlay of response. The plots along the

diagonal are histograms of the respective predictors. Note the positive relationship

between z ln days between purchases and z ln lifetime ave time betw visits (plot in

the middle of the left-hand column), which makes sense as customers who have

shorter times between visits to the store are likely to have shorter times between

purchases at the store. These customers tend toward the lower left of the plot, and

indicate a greater response rate than the other customers. Also one may consider

the negative relationship between z ln days between purchases and z ln # individual
items purchased (plot in the lower left). It makes sense that, as customers wait longer

between purchases, they will tend to make a lower overall number of individual

items purchased. Also, there is a hint in the upper left of this last graph of a greater
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Figure 29.27 Matrix plot of three predictors, showing positive and negative relationships.
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response rate, as these are the customers with smaller days between purchases, and

higher number of individual items purchased.

A convenient method for examining the relationship between categorical vari-

ables and response is a contingency table, (or cross-tabulation), using a function of

the response instead of raw cell counts. For example, suppose we are interested in the

relationship between response to the promotion and two types of customers: those

who have purchased sweaters and those who have made a purchase within the last

month. Figure 29.28 contains such a cross-tabulation, with the cells representing the

mean value of the target variable (response). As the target represents a dichotomous

variable, the means therefore represent proportions.

Figure 29.28 Cross-tabulation of spending within the last month versus sweater purchase,

with cell values representing promotion response percentages.

Thus, in the cross-tabulation, we see that the customers who have neither

bought sweaters nor made a purchase in the last month have only a 0.06 probability

of responding to the direct-mail marketing promotion. However, customers who

have both bought a sweater and made a purchase in the last month have a 0.36

probability of responding positively to the promotion.

29.5.3 Importance of De-Transforming for Interpretation

We provide an example to illustrate how analysts presenting results to clients and

managers should take care to de-transform their statistical results. Figure 29.29 con-

tains a cross-tabulation of web buyers versus credit card users, with the cells contain-

ing the mean of z ln purchase visits for the customers in each cell. Note that customers

with positive values for both flag variables have the highest means, and customers

with negative values for both have the lowest means. This is good information, but

limited. We cannot tell from this information, the actual mean number of purchase

visits for each cell. In order to find this information, we need to de-transform, which

means to take the inverse of the original transformation.

Figure 29.29 Cross-tabulation of web buyers versus credit card users, with cells containing

z ln purchase visits.
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De-transforming a z value:

1. Find the mean x and standard deviation s used to perform the standardization.

2. Apply the following inverse Z transformation to obtain the original value:

original value = (z value) ⋅ s + x.

De-transforming a ln value:

1. Apply the following inverse ln transformation to obtain the original value: eln value =
exp(ln value).

Thus, to find the mean number of purchase visits for those customers who are

both web buyers and credit card users, we need to (i) first apply the inverse Z trans-

formation, and then (ii) apply the inverse ln transformation. The mean number of

purchase visits for all customers is x = 1.14 with standard deviation of s = 0.93 visits.

Apply the inverse Z transformation gives us

Original value = (z value) ⋅ s + x = (1.17) ⋅ 0.93 + 1.14 = 2.2281

Then, applying the inverse ln transformation, we get:

eln value = e2.2281 = 9.28

Thus, the mean number of purchase visits for web buyers who are also credit card

users is 9.28 visits. However, the mean number of purchase visits who are neither

web buyers not credit card users is

exp((z value) ⋅ s + x) = exp((−0.35) ⋅ 0.93 + 1.14) = exp(0.8145) = 2.26

Thus, customers who are both web buyers and credit card holders have more than

three times as many purchase visits as customers who are neither web buyers nor

credit card holders. These are results that are understandable and actionable by clients

and managers.

Here in Chapter 29, we have illustrated how to use EDA to learn more about

our customer clientele, which represents part of the secondary objective of our Case

Study. Of course, much more could be done along these lines, but space limitations

restrict us to the examples above. Next, in Chapter 30, we learn more about our cus-

tomers through the use of principal components analysis and clustering analysis.



C H A P T E R 30
CASE STUDY, PART 2:
CLUSTERING AND PRINCIPAL
COMPONENTS ANALYSIS

Chapters 29–32 present a Case Study of Predicting Response to Direct-Mail
Marketing. In Chapter 29, we opened our Case Study with a look at the primary and

secondary objectives of the project, which are reprised here.

• Primary objective: Develop a classification model that will maximize profits

for direct-mail marketing.

• Secondary objective: Develop better understanding of our clientele through

exploratory data analysis (EDA), component profiles, and cluster profiles.

The EDA performed in Chapter 29 allowed us to learn some interesting cus-

tomer behaviors. Here in this chapter, we learn more about our customers through the

use of principal components analysis (PCA) and clustering analysis. In Chapter 31,

we tackle our primary objective of developing a profitable classification model.

30.1 PARTITIONING THE DATA

The analyses we perform in Chapters 29–31 require cross-validation. We therefore

partition the data set into a Case Study Training Data Set and a Case Study Test Data
Set. The data miner decides the proportional size of the training and test sets, with

typical sizes usually ranging from 50% training/50% test to 90% training/10% test.

In this Case Study, we choose a partition of approximately 75% training and 25%

test.

30.1.1 Validating the Partition

In Chapter 6, we discussed methods for validating that our partition of the data set is

random, using some simple tests of hypothesis. However, such methods may become

tedious when testing for dozens of predictors. Equivalent computational methods

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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exist for performing these tests on a large set of predictors. Figure 30.1 shows the

results of F-tests (equivalent to t-tests in this case) performed on some of the con-

tinuous variables in our Case Study. (In Modeler, use the append node to put the

training and test data sets together, then use the means node to examine for differ-

ence in means, based on the source input.) The null hypothesis is that there is no

difference in means; the Importance field equals 1− p-value. None of the fields was

found to be significant. Remember, that we might expect on average about 1 out of

20 tests to be significant, even if there is no difference in means.

Figure 30.1 No significant difference in means for continuous variables.

Investigation of some noncontinuous variables (not shown) indicates no sys-

tematic deviations from randomness. We thus conclude that the partition is sound,

and proceed with our analysis.

30.2 DEVELOPING THE PRINCIPAL COMPONENTS

PCA is useful when using models such as multiple regression or logistic regression,

which become unstable when the predictors are highly correlated. However, PCA is

also useful for uncovering natural affinities among groups of predictors, which may be

of interest to the client. In other words, PCA is useful both for downstream modeling,

and for its component profiles.

Figure 30.2 shows the variables input to our PCA. Note that all variables are

continuous, and so do not include the flag or nominal variables, because PCA requires

continuous predictors. Also, of course, the response variable is not included.



734 CHAPTER 30 CASE STUDY, PART 2: CLUSTERING AND PRINCIPAL COMPONENTS ANALYSIS

Figure 30.2 Predictors input to PCA.

PCA is applied to the training data set using these inputs, with mini-

mum eigenvalue= 1.0, and using varimax rotation. The rotated results shown in

Figure 30.3 show that 13 components were extracted, for a total variance explained of

68.591%.

Unfortunately, it turns out that the communalities for several of the predictors

are rather low (<0.5, output not shown), given in Table 30.1. Low communalities

mean that these variables share little variability in common with the set of other

predictors. Thus, it makes sense to remove them as inputs from the PCA, and

try again. PCA is again applied to the training data set, this time without the set

of eight predictors from Table 30.1, using the same settings as previously. This

time, Figure 30.4 shows that only 11 components are extracted, for a total variance

explained of 75.115%.

TABLE 30.1 Set of predictors with low communality, that
is, which do not share much variability with the remaining
predictors

z sqrt knit tops z sqrt dresses

z sqrt jewelry z sqrt fashion

z sqrt legwear z sqrt spending AX

z sqrt spending SPLY z sqrt spending last one month
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Figure 30.3 Results from PCA to all continuous predictors.

Unfortunately, at this point, z sqrt spending AM exhibits relatively low commu-

nality (0.470) with the remaining predictors, a behavior reflected in both the training

and test sets (not shown). This variable is therefore set aside, and PCA analysis is

applied to the reduced set of predictors (omitting the eight in Table 30.1 and z sqrt
spending AM). The results for the training set are shown in Figure 30.5. Eliminat-

ing another predictor from the PCA has again increased the cumulative variance

explained, although this may be, in part, because omitting this variable has reduced

the overall amount of variability to explain.

Before we move forward with this PCA solution, what is to become of the

predictors that were omitted from the PCA model? As they have little correlation

with the other predictors, they are to move on to the modeling stage without being

subsumed into the principal components. PCA analysis of these nine predictors shows

that, even among themselves, there is little correlation (Figure 30.6, for the training

set). Further, only two components were extracted from this set of eight predictors,

with less than 30% of the variance explained (not shown). Thus, these nine variables

are free to move on to the modeling stage without the need for PCA. However, they

will not contribute to the knowledge of our customer database that we will uncover

using profiles of the principal components.

We therefore proceed with the PCA of all continuous predictors, except those

in Figure 30.6.
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Figure 30.4 Eliminating low communality predictors reduced number of components and

increased variance explained.

Figure 30.5 Eliminating another predictor from the PCA has again increased the variance

explained.
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Figure 30.6 Little variance in common among the predictors not partaking in the PCA.

30.3 VALIDATING THE PRINCIPAL COMPONENTS

Just as with any modeling procedure, the analyst should validate the PCA, using

cross-validation. Figure 30.7 contains the rotated component matrix for the train-

ing data set, showing which variables belong to which component. Values smaller

than 0.5 are suppressed, to enhance interpretability. Compare with Figure 30.8, which

shows the rotated component matrix for the test data set. The components are broadly

similar between the training and test sets, with some minor differences. For example,

the test set shows that z sqrt spending PS belongs to Component 1, while the training

set disagrees. However, the test set component weight is only 0.502, barely above the

0.5 cutoff for suppression. So, we read this as good news for Component 1, because

the training and test sets agree on all variables except this z sqrt spending PS, which

may considered of dubious membership to Component 1.

Other minor differences between the training and test sets include the follow-

ing. The component weights are not equal, but this is to be expected due to random

noise. Components 3 and 4 are mischievously switched by the test data set, but retain

their essence. However, broadly speaking, there is good agreement between the com-

ponents extracted from the training and test data sets. We conclude therefore that our

PCA is validated.

30.4 PROFILING THE PRINCIPAL COMPONENTS

Apart from their use to mitigate multicollinearity for downstream modeling, principal

components are most useful for learning about how the variables interact. In fact, the

analyst should always provide descriptive profiles of the principal components, both

as a reality check for the analyst, as well as to enhance the client’s understanding.
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Figure 30.7 Rotated component matrix (training data set), showing which variables belong

to which component.

The analyst should ask, “Do these principal components (which are mathematical

entities, after all) correspond to identifiable real-world commonsense behaviors?” If

there is a problem with interpretability, then this may indicate some computational or

procedural error upstream. If the principal components do correspond to real-world
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Figure 30.8 Rotated component matrix for the test data set.

behaviors, then this acts as further validation of their “reality,” as well as providing

useful information for the client.

To profile the components, we will work with the rotated component matrix

generated by training set (Figure 30.7), which leveraged more records than the test

set. Note that Component 1 is a large and complex component, consisting of many
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predictors, with both positive and negative component weights. This is often the case

in PCA, with the first component often representing a general type of phenomenon

such as “size,” or “sales.” In fact, without the varimax rotation, the first component

would have been even larger. Table 30.2 indicates the positive and negative weighted

predictors in Component 1.

TABLE 30.2 Predictors with positive and negative weights in Component 1
(“z ln” and “z sqrt” suppressed for clarity)

Positive Component Weight Negative Component Weight

# Individual items purchased Days between purchases

Purchase visits Lifetime average time between visits

Total net sales Days since purchase

# Different product classes Product uniformity

Spending months 4 5 6

# Coupons used

Stores

Promo response rate

Spending months 2 3

# Promos responded

Spending at CC store

We would describe Component 1 as measuring “Sales Volume and Frequency.”

This component measures sales volume and frequency in many ways, which are as

follows:

• How many items are purchased?

• How often does the customer visit?

• How long does the customer go between purchases?

• What is the total amount spent?

• How many different types of item are bought?

• How consistent is the spending over time?

• How many different stores has the customer shopped at?

• How often does the customer respond to promotions?

All of these questions converge on what we have entitled Component 1: Sales
Volume and Frequency. It is not surprising that these variables rise and fall together,

and that they are thereby highly correlated.
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WARNING: COMPONENTS ARE NOT CLUSTERS

It is important to note that principal components (unlike clusters) do not refer specifically to

groups of similar customers (clusters), but rather to groups of similarly behaving predictors.

For example, Component 1 does not consist of customers who have high sales volume.

Rather, Component 1 represents a set of variables that “vary together,” and are thereby

correlated. Later, we will look at sets of customers, which are clusters, not components.

It would surprise no one if Component 1 was strongly predictive of response

to the promotion. Figure 30.9a represents a histogram of the component values

across all records in the training set, with an overlay of response (darker= positive).

Figure 30.9b contains the normalized histogram. Thus, customers with high compo-

nent values are associated with positive response. These customers have large values

for the variables in the positive weight column in Table 30.2, and small values for

the variables in the negative weight column. Conversely, customers with low values

for Component 1 are associated with negative response.

Here follow brief profiles of the remaining 10 components.

• Component 2: Promotion Proclivity. This component consists of five pre-

dictors, all except one related to past promotion activity: Promotion response

rate, Promotions mailed, Total number of promotions on file, and Number of

promotions responded to. The fifth predictor measures how long the customer

has been on file. All predictors have positive weights, meaning they are all

positively correlated.

• Component 3: Career Shopping. This component consists of three related

types of clothing: Career pants, Jackets, and Collectibles (defined as mostly

suits and career wear). These positively correlated predictors measure career

clothing purchases.

• Component 4: Margin versus Markdown. This component consists of two

negatively correlated predictors: Gross margin percentage and Markdown
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Figure 30.9 Component 1 values are highly predictive of response. (a) Histogram and (b)

normalized histogram.
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percentage. It makes sense that, as markdown increases, the margin will

decrease. This component neatly captures this behavior.

• Component 5: Spending versus Returns. This component consists also con-

sists of two negatively correlated variables: Average spending per visit and

Percent returns. Evidently, those who have a high percentage of returns tend

to have a low average spending amount per visit.

• Component 6: PS Store versus CC Store. Evidently these stores appeal to

different groups of shoppers. If someone spends a lot at PS stores, they will

tend not to spend much at CC stores, and vice versa.

• Component 7: Blouses versus Sweaters. It appears that shoppers tend not to

buy blouses and sweaters together. The more spent on blouses, the less spent

on sweaters, and vice versa.

• Component 8: Dresses. This is a singleton component containing only

a single predictor: Dresses. In fact, each of the last four components is

singleton. Note from Figure 30.3 that the eigenvalues for these components

are each 1.2 or less, meaning that they explain about one predictor’s worth of

variability.

• Component 9: Suits. Singleton component: Suits. Perhaps surprising that it is

not included in the Career Shopping component.

• Component 10: Shirts. Singleton component: Shirts.

• Component 11: Outerwear. Singleton component: Outerwear.

The question might arise: As the last four components are each singletons, why

not just omit them, and extract only seven components? The answer is that the “single-

ton” label is a bit misleading. Each component contains loadings for each predictor;

we have simply suppressed the small ones, in order to enhance interpretability. So,

omitting these last four components would have effects beyond just these four pre-

dictors. Better to retain all 11 components.

30.5 CHOOSING THE OPTIMAL NUMBER OF
CLUSTERS USING BIRCH CLUSTERING

Next, we turn to clustering. While PCA seeks to uncover groups of predictors with

similar behavior, cluster analysis seeks to uncover groups of records with similar

characteristics. One challenge for analysts performing cluster analysis is to select

the optimal value of k, the number of clusters in the data. Here we illustrate two

methods for selecting the optimal value of k, (i) using balanced iterative reducing

and clustering using hierarchies (BIRCH) clustering on different sortings of the data

and (ii) cycling through candidate values of k using k-means clustering.

In Chapter 21, we learned that one need not specify the optimal value of k when

performing BIRCH clustering. The algorithm will itself choose the optimal value of k.

Unfortunately, because it is tree-based, BIRCH clustering is sensitive to the order of

the records scanned by the algorithm. In other words, it can report different clustering

solutions for different sortings (orderings) of the data.
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We shall then proceed as follows.

CHOOSING K USING BIRCH CLUSTERING

1. Sort the data several different ways.

2. Apply BIRCH clustering independently to each different sorting. Note the value of

k chosen for each clustering model.

3. Approach a consensus as to the value of k most favored by the data.

We select five as the number of different sortings of the training data set. The

Modeler stream flow is shown in Figure 30.10. First, four new sort variables are

derived, Sort2 – Sort5 (Sort1 is considered to be the original data ordering). Each

of these derived variables assigns a random real number between 0.0 and 1.0 to each

record. The records are then separately sorted by each sort variable. Then, BIRCH

clustering is performed on each of the five data orderings, the original plus the four

random sortings. Table 30.3 shows the value of k favored by BIRCH for each sort-

ing. The clear winner for the optimal number of clusters using BIRCH clustering is

k= 2.

Sort2

Sort2

Type

Sort3

Sort3

Sort4

Sort4

Sort5 Sort5

BIRCH Sort1

BIRCH Sort2

BIRCH Sort3

BIRCH Sort4

BIRCH Sort5

Figure 30.10 IBM/SPSS Modeler stream excerpt showing process for choosing k using

BIRCH clustering.
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TABLE 30.3 Value of k favored by BIRCH clustering for each sorting

Sort1 Sort2 Sort3 Sort4 Sort5

2 2 2 2 2

30.6 CHOOSING THE OPTIMAL NUMBER OF
CLUSTERS USING k-MEANS CLUSTERING

An alternate, and probably more widespread, method for selecting the optimal value

for k is the following.

CYCLING METHOD FOR CHOOSING K

1. Select a clustering method, such as k-means. Select a range of plausible values for

k, denoted as klow through khigh.

2. Starting with klow, cycle through the values of k, applying the clustering method at

each value of k, until khigh is reached.

3. For each value of k, measure the goodness of the clustering model, using statistics

such as the pseudo-F statistic, or the mean silhouette.

4. Select the clustering model with the best performance, based on the evaluation statis-

tics of step 3.

Here, we apply k-means clustering with k= 2, 3, and 4. The Modeler results

are shown in Figure 30.11. The mean silhouette value for k= 2 is greater than that

for the other values of k. Therefore, both methods concur that the optimal number of

clusters in the data is k= 2.

Figure 30.11 Mean silhouette is greatest for k= 2.
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30.7 APPLICATION OF k-MEANS CLUSTERING

We thus proceed to apply k-means clustering to the set of predictors in the training

data set, including all the continuous variables from Figure 30.2, along with all the

flag variables and nominal variables. The principal components are not included as

inputs to the clustering algorithm. Of course, the response should not be included

as input to any modeling algorithm. Graphical summaries of the resulting two clus-

ters are provided in Figure 30.12. Not all predictors were helpful in discriminating

between the clusters; these are omitted from Figure 30.12.

30.8 VALIDATING THE CLUSTERS

We use cross-validation to validate our clusters. We apply k-means clustering to the

test data set, using the same set of predictors used for the training data set. The graph-

ical summary results are shown in Figure 30.13. The results are broadly similar to

what we uncovered using the training data set. There are two clusters, the larger of

which represents a large set of casual shoppers, while the smaller cluster represents

the faithful customers (see the cluster profiles below). There are some differences,

such as ordering of the variables, but, on the whole, the clusters are validated.

30.9 PROFILING THE CLUSTERS

We can use the information in Figure 30.12 to construct descriptive profiles of the

clusters, which are as follows.

Cluster 1: Casual Shoppers Cluster 1 is the larger cluster, containing 58.6%

of the customers. Cluster 1 contains lower proportions of positive values

for all flag variables listed in Figure 30.12. This indicates for example that

Cluster 1 contains lower incidence of credit card purchases, lower response

to previous promotions, lower spending in previous time periods, and lower

proportions of purchases in most clothing classes. Cluster 1 contains newer

customers (days on file), who nevertheless wait longer between purchases.

The casual shoppers tend to focus on a small number of product classes,

and to purchase only a few different items. They have fewer than average

purchase visits, visit fewer different stores, and have lower total net sales.

Their promotion response rate is lower than average, as well as the number

of coupons used.

Cluster 2: Faithful Customers Cluster 2 is the smaller cluster, containing

41.4% of the customers, and represents the polar opposite of Cluster 1 in

most respects. Cluster 2 contains higher proportions of positive values for

all the listed flag variables. This indicates, for example, that Cluster 1 con-

tains greater use of credit cards, higher response to previous promotions,

higher spending in previous time periods, and higher proportions of pur-

chases in most clothing classes. The faithful Cluster 2 customers have been



746 CHAPTER 30 CASE STUDY, PART 2: CLUSTERING AND PRINCIPAL COMPONENTS ANALYSIS

Credit card flag Credit card flag

Flag blousesFlag blouses

Flag career pants Flag career pants

Flag casual pantsFlag casual pants

Flag dresses Flag dresses

Flag fashion Flag fashion

Flag jacketsFlag jackets

Flag jewelry flag jewelry

Flag knit dressesFlag knit dresses

Flag knit tops

Flag legwear Flag legwear

Flag markdown Flag markdown

Flag returns Flag returns z In days between

purchases

z In days between

purchases

z sqrt tot promos on

file

z sqrt tot promos on

file

z sqrt spending SPLY z sqrt spending SPLY

z sqrt spending PSz sqrt spending PS

z sqrt spending 

months 4 5 6

z sqrt spending 

months 4 5 6

z sqrt spending 

months 2 3

z sqrt spending 

months 2 3

z sqrt spending last

one month

z sqrt spending last

one month

z sqrt spending CCz sqrt spending CC

z sqrt spending AXz sqrt spending AX

z sqrt promo resp rate z sqrt promo resp rate

z sqrt percent returnsz sqrt percent returns

z sqrt # promos

responded

z sqrt # promos

responded

z sqrt # coupons used z sqrt # coupons used

z promotions mailedz promotions mailed

z In total net salesz In total net sales

z In storesz In stores

z In purchase visitsz In purchase visits

z In product uniformity z In product uniformity

z In lifetime ave time

betw visits

z In lifetime ave time

betw visits

z In # individual items

purchased

z In # individual items

purchased

z In # different product

classes

z days since

purchase

z days since

purchase

z days on filez days on file

Flag sweaters Flag sweaters

Flag spending SPLYFlag spending SPLY

Flag spending PS

Flag spending months

4 5 6

Flag spending months

2 3

Flag spending months

2 3

Flag spending last

three months

Flag spending last

three months

Flag spending last six

 months

Flag spending last six

 months

Flag spending last 

one month

Flag spending AX Flag spending AX

Flag shirtsFlag shirts

Flag spending last 

one month

Flag spending months

4 5 6

Flag spending PS

z In # different product

classes

Flag promo resp rate

past year

Flag promo resp rate

past year

Flag knit tops

Cluster -1 Cluster -2

58.6%

(12651)

41.4%

(8935)

Figure 30.12 Graphical summaries of predictors, by cluster, for the training data.
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Flag shirts Flag shirts
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(4281)
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Figure 30.13 Graphical summaries of predictors, by cluster, for the test data set.

shopping with us for a long time, while having smaller durations between

purchases. Cluster 2 customers shop for a wide variety of goods, and pur-

chase a higher than average number of different items. They have higher

than average purchase visits, visit more stores, and have higher total net

sales. Their promotion response rate is higher than average, as well as the

number of coupons used.

Without question, these clusters reflect different real-world categories of shop-

pers, thereby underscoring their validity. One can imagine the store clerks learning

some of the faithful customers’ names by sight, while not recognizing many of the

casual shoppers. We might anticipate that the faithful customers cluster will have a
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much stronger response to the direct-mail marketing promotion than the casual shop-

pers. In fact, this is the case, as is shown by the highlighted section of the contingency

table of cluster membership versus response in Figure 30.14.

Figure 30.14 Faithful customers are more than four times as likely to respond to the direct–

mail marketing promotion as casual shoppers.

To summarize, we have extracted principal components and clusters that have

provided some insight into customer behaviors, as well as uncovered groups of pre-

dictors that behave similarly. These have helped us fulfill our secondary objective of

developing better understanding of our clientele. In Chapter 31, we construct classifi-

cation models that will help us to address our primary objective: maximizing profits.



C H A P T E R 31
CASE STUDY, PART 3: MODELING
AND EVALUATION FOR
PERFORMANCE AND
INTERPRETABILITY

31.1 DO YOU PREFER THE BEST MODEL
PERFORMANCE, OR A COMBINATION OF
PERFORMANCE AND INTERPRETABILITY?

This chapter and Chapter 32 address our primary objective with the Case Study of

Predicting Response to Direct-Mail Marketing: that of developing a classification

model that will maximize profits. However, recall that multicollinearity among the

predictors can lead to instability in certain models, such as multiple regression or

logistic regression. Unstable models lack interpretability, because we cannot know

with confidence, for example, that a particular logistic regression coefficient is pos-

itive or negative. The use of correlated predictors for decision trees is problematic

as well. For example, imagine a decision tree applied to a data set with correlated

predictors x2 and x3. Suppose the root node split is made on the uncorrelated variable

x1. Then the left side of the tree may make splits based on x2, while the right side of

the tree makes splits based on x3. Decision rules based on this tree will not capture

the similarity of x2 and x3. Thus, we need to be wary of using correlated variables for

classification.

As we have seen, the remedy for multicollinearity is to apply principal com-

ponents analysis (PCA) to the set of correlated predictors. This solves the multi-

collinearity problem, but, as we shall see, somewhat degrades the performance of

the classification model. The principal components capture less than 100% of the

variability in the predictors, which represent a net loss of information. Therefore, the

principal components usually do not perform as well at classification when compared

to the original set of predictors. And, crucially, multicollinearity does not significantly

affect point estimates of the target variable.

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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Thus, the analyst, together with the client, must consider the following

question:

“Are we looking for the best possible classification performance, such as the maximum

profit for our classification model, with no interest at all in interpreting any aspects of the

model, or, are we looking for a model with somewhat reduced performance but retaining

complete interpretability?”

• If the primary objective of the business or research problem pertains solely to

classification, with no interest in the interpretability of the model characteris-

tics (e.g., coefficients), then substitution of the principal components for the

collection of correlated predictors is not strictly required. In fact, these models

usually outperform analogous PCA-based models. We investigate these types

of classification models in Chapter 32.

• However, if the primary (or secondary) objective of the analysis is to assess or

interpret the effect of the individual predictors on the response, or to develop a

profile of likely responders based on their predictor characteristics, then substi-

tution of the principal components for the collection of correlated predictors is

strongly recommended. We examine these types of classification models here

in this chapter.

31.2 MODELING AND EVALUATION OVERVIEW

An overview of our modeling and evaluation strategy for this chapter and Chapter 32

is given by the following:

MODELING AND EVALUATION OVERVIEW

1. Develop the cost-benefit table (cost matrix) using data-driven misclassification costs.

2. Provide a listing of the inputs to all models.

3. Establish the baseline model performance in terms of expected profit per customer

contacted, in order to calibrate the performance of candidate models.

4. Use the built-in misclassification costs to apply the following classification algo-

rithms to the training data set:

a. Classification and regression trees (CART)

b. C5.0 decision tree algorithm.

5. Apply rebalancing as a surrogate for misclassification costs for the following meth-

ods without built-in misclassification costs:

a. Neural networks

b. Logistic regression.
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6. Combine the predictions from the four classification models using model voting.

7. Evaluate each of the above models using the test data set and the cost-benefit table

to determine the most profitable model.

8. (For this chapter only): Explain and interpret the most profitable model.

Because our strategy calls for applying many models that need to be evaluated

and compared, we hence move fluidly back and forth between the modeling phase

and the evaluation phase.

31.3 COST-BENEFIT ANALYSIS USING DATA-DRIVEN
COSTS

We use the methods learned in Chapter 16 to derive our cost matrix. We are trying to

predict whether or not our customers will respond to the direct-mail promotion. Now,

supposing they do respond, how much can we expect them to spend? A reasonable

estimate would be the average amount spent per visit for all 28,799 customers, which

is $113.59 (Figure 31.1). (The median is another reasonable estimate, which we do

not use in this Case Study. By the way, why is the mean larger than the median?

Hint: Check out the maximum: Imagine spending an average of $1919.88 per visit to

a clothing store.) Assume that 25% of this $113.59, or $28.40, represents the mean

profit. Recall that this equals a “cost” of –$28.40. Also, assume that the cost of the

mailing is $2.00.

Finally, we review the meaning of the cells of our contingency table, given in

Table 31.1.

• TN = True negative. This represents a customer who we predicted would not

respond, and would not in fact have responded.

• TP = True positive. This represents a customer who we predicted would

respond, and would in fact have responded to the promotion.

• FN = False negative. This represents a customer who we predicted would not

respond, but would in fact have responded to the promotion.

• FP = False positive. This represents a customer who we predicted would

respond, but would not in fact have responded.

We are now ready to calculate our costs.

Figure 31.1 Summary statistics for Average amount spent per visit.
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TABLE 31.1 Generic contingency table for direct-mail response classification problem

Predicted Category

Actual category 𝟎 = Non-response 𝟏 = Positive response

𝟎 Non-response TN = Count of true negatives FP = Count of false positives

𝟏 Positive response FN = Count of false negatives TP = Count of true positives

31.3.1 Calculating Direct Costs

• True negative. We did not contact this customer, and so did not incur the $2.00

mailing cost. Thus, the cost for this customer is $0.00.

• True positive. We did contact this customer, and so incurred the $2.00 mailing

cost. Further, this customer would have responded positively to the promotion,

providing us with an average profit of $28.40. Thus, the cost for this customer

is $2.00–$28.40 = −$26.40.

• False negative. We did not contact this customer, and so did not incur the $2.00

mailing cost. Thus, the cost for this customer is $0.00.

• False positive. We did contact this customer, and so incurred the $2.00 mailing

cost. But the customer lined his parakeet cage with our flyer and would not have

responded to our promotion. Thus, the direct cost for this customer is $2.00.

These costs are summarized in the cost matrix in Table 31.2. Note that the costs

are completely data-driven.

Software packages such as IBM/SPSS Modeler require the cost matrix to be

in a form where there are zero costs for the correct decisions. Thus, we subtract

CostTP = −$26.40 from each cell in the bottom row, giving us the adjusted cost matrix

in Table 31.3.

For interpretability, it is advisable now to divide each of the remaining nonzero

adjusted costs by one of the remaining nonzero adjusted costs, so that one of the

nonzero adjusted costs equals 1. This is so that the analyst may explain to managers

TABLE 31.2 Data-driven cost matrix for the Case Study

Predicted Category

𝟎 𝟏

Actual category 𝟎 CostTN = $0 CostFP = $2

𝟏 CostFN = $0 CostTP = −$26.40

TABLE 31.3 Adjusted cost matrix

Predicted Category

𝟎 𝟏

Actual category 𝟎 𝟎 CostFP, Adj = $2

𝟏 CostFN, Adj = $26.40 0
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or clients the relative cost of each classification error. For example, suppose we divide

CostFP, Adj and CostFN, Adj each by CostFP, Adj = 4. This gives us Cost∗FP, Adj = $1

and Cost∗FN, Adj = $13.20. Thus, we may say that the cost of not contacting a cus-

tomer who would actually have responded is 13.2 times greater than the cost of

contacting a customer who would not actually have responded.

For decision purposes, Table 31.3 is equivalent to Table 31.2. That is, either cost

matrix will yield the same decisions. However, Table 31.3 will not provide accurate

estimates of the overall model cost when evaluating the classification models. Use

Table 31.2 for this purpose.

31.4 VARIABLES TO BE INPUT TO THE MODELS

The analyst should always provide the client or end-user with a comprehensive listing

of the inputs to the models. These inputs should include derived variables, trans-

formed variables, or raw variables, as well as principal components and cluster mem-

bership, where appropriate. Figure 31.2 contains a listing of all the variables input to

the classification models analyzed in this section (performance and interpretability)

of the Case Study.

Note that all of the continuous variables have been both transformed and

standardized, that many flag variables have been derived. In fact, only a handful

of variables remain untouched by the data preparation phase, including the flag

variables Web Buyer and Credit Card Holder.

Figure 31.2 Input variables for classification models (performance and interpretability

section).
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31.5 ESTABLISHING THE BASELINE MODEL
PERFORMANCE

How will we know when our models are performing well? Is 80% classification accu-

racy good enough? 90%? 95%? In order to be able to calibrate the performance of

our candidate models, we need to establish benchmarks against which these mod-

els can be compared. These benchmarks often come in the form of baseline model

performance for some simple models. Two of these simple models are as follows:

• The “Don’t send a marketing promotion to anyone” model.

• The “Send a marketing promotion to everyone” model.

Clearly, the company does not need to employ data miners to use either of these

two models. Therefore, if the performance of the models reported by the data miner,

after arduous analysis, is lower than the performance of either of the above baseline

models, then the data miner better try again. In other words, the models reported by

the data miner absolutely need to outperform these baseline models, hopefully, by a

margin large enough to justify the project.

From Figure 31.3, we see that there are 6027 customers in the test data set who

do not respond to the promotion, and 1161 who do respond. The contingency/costs

table (adapted from Table 31.2) for the “Don’t send to anyone” model is shown in

Table 31.4.

• The final model cost for the “Don’t send to anyone” model is of course $0.

• The per-customer cost is $0.

Figure 31.3 Distribution of Response for the test data set.

So, we would not make any money by not sending a promotion to anyone,

which is no surprise. Next, the contingency/costs table for the “Send to everyone”

model is shown in Table 31.5.

• The final model cost for the “Send to everyone” model is $12, 054 −
$30, 650.40 = −$18, 596.40.

• The per-customer cost is−$2.59, where we recall that negative cost equals gain.

TABLE 31.4 Contingency/costs table for the “Don’t send to anyone”
model

Predicted Category

𝟎 𝟏

Actual category 𝟎 6027 ⋅ ($0) = $0 0 ⋅ ($2) = $0

𝟏 1161 ⋅ ($0) = $0 0 ⋅ (−$26.40) = $0
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TABLE 31.5 Contingency/costs table for the “Send to everyone” model

Predicted Category

𝟎 𝟏

Actual category 𝟎 0 ⋅ (−$2) = $0 6027 ⋅ ($2) = $12054

𝟏 0 ⋅ ($26.40) = $0 1161 ⋅ (−$26.40) = −$30, 650.40

So, we would gain an average of $2.59 per customer by sending a promotion to

everyone. The revenue from the minority of customers responding would outweigh

the mailing costs of sending to everyone.

Now, consider had we ignored misclassification costs, and chosen the model

with the highest accuracy. The overall accuracy of the “Don’t send to anyone” model

is 6027/7188 = 0.8385, which is much higher than the overall accuracy of the “Send

to everyone” model, which is 1161/7188 = 0.1615. Thus, had we erroneously ignored

the misclassification costs, we would have chosen the “Don’t send to anyone” model,

based on higher accuracy. This egregious error would have cost our company tens of

thousands of dollars. We know better. The “Don’t send to anyone” model must be

considered a complete failure, and shall no longer be discussed. However, the “Send

to everyone” model is actually making money for the company. Therefore, it is this

“Send to everyone” model that we shall define as our baseline model, and the profit

of $2.59 per customer is defined as the benchmark profit that any candidate model

should outperform.

31.6 MODELS THAT USE MISCLASSIFICATION COSTS

Misclassification costs may explicitly be specified using Modeler’s CART and C5.0

decision tree models, but may not using neural networks and logistic regression. So,

at this point, we perform classification using the two algorithms where we can spec-

ify our misclassification costs: CART and C5.0. A CART model was trained on the

training data set, and evaluated on the test data set. The contingency/costs table for

the CART model is shown in Table 31.6, where the misclassification costs for the

CART model were specified as $1 for false positive, and $13.20 for false negative.

• Total cost for the CART model is −$20, 944.

• Per-customer cost for the CART model is −$2.91.

So, the CART model beats the “Send to everyone” model by −$2.91 + 2.59 =
$0.32 per customer.

TABLE 31.6 Contingency/costs table for the CART model with
misclassification costs

Predicted Category

𝟎 𝟏

Actual category 𝟎 3299 ⋅ ($0) = $0 2728 ⋅ ($2) = $5456

𝟏 161 ⋅ ($0) = $0 1000 ⋅ (−$26.40) = −$26, 400
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Next, a C5.0 decision tree model was run, with the misclassification costs given

as $1 for false positive, and $13.20 for false negative. A C5.0 model was trained on

the training set and evaluated on the test set. The contingency/costs table for the C5.0

model is shown in Table 31.7.

• Total cost for the C5.0 model is −$22, 682.40.

• Per-customer cost for the C5.0 model is −$3.16.

TABLE 31.7 Contingency/costs table for the C5.0 model with misclassification
costs

Predicted Category

𝟎 𝟏

Actual category 𝟎 2637 ⋅ ($0) = $0 3390 ⋅ ($2) = $6780

𝟏 45 ⋅ ($0) = $0 1188 ⋅ (−$26.40) = −$29, 462.40

So, the C5.0 did even better than the CART model, beating the “Send to every-

one” model by −$3.16 + 2.59 = $0.57 per customer.

31.7 MODELS THAT NEED REBALANCING
AS A SURROGATE FOR MISCLASSIFICATION COSTS

In Chapter 16, we learned how to apply rebalancing as a surrogate for misclassi-

fication costs, where such costs cannot be expressly specified by the algorithm. In

our Case Study, CostFN, Adj > CostFP, Adj, so that we multiply the number of records

with positive responses in the training data by b, before applying the classification

algorithm, where b is the resampling ratio, b = CostFN, Adj∕CostFP, Adj = 52.8∕4 =
13.2∕1 = 13.2. We therefore multiply the number of records with positive responses

(Response = 1) in the training data set by 13.2. This is accomplished by resampling

the records with positive responses with replacement.

A neural network model was trained on the rebalanced training data set, and

evaluated on the test data set, with the contingency/costs table shown in Table 31.8.

• Total cost for the neural network model is −$22, 205.2.

• Per-customer cost for the neural network model is −$3.09.

TABLE 31.8 Contingency/costs table for the neural network model applied to the
rebalanced data set

Predicted Category

𝟎 𝟏

Actual category 𝟎 2768 ⋅ ($0) = $0 3259 ⋅ ($2) = $6518

𝟏 73 ⋅ ($0) = $0 1088 ⋅ (−$26.40) = −$28, 723.20

So, the neural network model did better than the CART model, but not as well

as the C5.0 model, and beat the “Send to everyone” model by −$3.09 + 2.59 = $0.50

per customer.
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Finally, a logistic regression model was trained on the rebalanced training data

set, and evaluated on the test data set, with the contingency/costs table shown in

Table 31.9.

• Total cost for the logistic regression model is −$21, 866.40.

• Per-customer cost for the logistic regression model is −$3.04.

TABLE 31.9 Contingency/costs table for the logistic regression model applied to
the rebalanced data set

Predicted Category

𝟎 𝟏

Actual category 𝟎 2757 ⋅ ($0) = $0 3270 ⋅ ($2) = $6540

𝟏 85 ⋅ ($0) = $0 1076 ⋅ (−$26.40) = −$28, 406.40

So, the logistic regression model did better than the CART model, but not as

well as the C5.0 model or the neural network model, and beat the “Send to everyone”

model by −$3.04 + 2.59 = $0.45 per customer.

31.8 COMBINING MODELS USING VOTING
AND PROPENSITY AVERAGING

Again, we combine models using model voting and propensity averaging. These

methods were applied here, with mixed success. The single sufficient voting model

predicts positive response if any of our four classification models (CART, C5.0, neural

networks, logistic regression) predicts positive response. Similarly, twofold suffi-

cient, threefold sufficient, and positive unanimity models were developed. The results

are provided in Table 31.10. The threefold sufficient model performed best among the

voting models, but still did not outperform the C5.0 singleton model.

Propensity averaging was also applied, with similar results. The propensities of

positive response for the four classification models were averaged, and a histogram

of the resulting mean propensity is shown in Figure 31.4. The analyst should try to

determine a cutoff value where there are a high proportion of positive responses to

the right, and a high proportion of negative responses to the left. It turns out that the

optimal1 cutoff was found to be mean propensity = 0.357, as shown in Table 31.10.

This model predicts a positive response if the mean propensity to respond positively

among the four models is 0.357 or greater. This model did well, but again did not

outperform the original C5.0 model.

The reader is invited to try further model enhancements, if desired, such as the

use of segmentation modeling, and boosting and bagging.

1Of course, to find the optimal cutoff, an exhaustive search is necessary of all possible cutoff points, which

requires programming or scripting.
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TABLE 31.10 Results from combining models using voting and propensity
averaging (best performance in bold)

Model Total Model Profit Profit per Customer

“Send to All” model $18,596.40 $2.59

CART model $20,944.00 $2.91

C5.0 model $𝟐𝟐,𝟔𝟖𝟐.𝟒𝟎 $𝟑.𝟏𝟔
Neural network $22,205.20 $3.09

Logistic regression $21, 866.40 $3.04

Single sufficient $21,408.40 $2.98

Twofold sufficient $22,411.60 $3.12

Threefold sufficient $22,555.20 $3.14

Positive unanimity $21,322.80 $2.97

Mean propensity 0.356 $22,553.60 $3.14

Mean propensity 0.357 $22,573.60 $3.14

Mean propensity 0.358 $22,508.40 $3.13

For clarity, profit rather than cost is listed, where profit = –cost. For completeness, the results from the

singleton models are included as well.
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Figure 31.4 Mean propensity, with response overlay.

31.9 INTERPRETING THE MOST PROFITABLE MODEL

Recall that in this chapter, we are interested in both model performance and model

interpretability. It is time to explain and interpret our most profitable model, the

original C5.0 decision tree. Figure 31.5 contains the C5.0 decision tree, which is to

read from left to right, with the root node split on the left.
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Figure 31.5 Our most profitable model, among the models chosen for performance and inter-

pretability: the C5.0 decision tree.

Our root node split is on the clusters that we uncovered in Chapter 30. Recall

that Cluster 1 contains Casual Shoppers, while Cluster 2 consists of Faithful Cus-
tomers. We found that the Faithful Customers had a response proportion more than

four times higher than the Casual Shoppers, so it is not surprising that our classifica-

tion decision tree has found the clusters to have good discriminatory power between
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responders and non-responders. This is reflected in the decision tree: for Cluster 1,

the mode is 0 (response = 0), while for Cluster 2, the mode is 1. As you look at

Figure 31.5, keep in mind that all the nodes and information in the top half of the

graph pertain to the Casual Shoppers, while all the nodes and information in the bot-

tom half pertain to the Faithful Customers. The “+” symbols shown at certain splits

indicate that there are further splits in the decision tree. But we did not have enough

space to render the full decision tree on the page.

Let us begin by discussing the Casual Shoppers. The next split is on principal

component 7, Blouses versus Sweaters, with the tiny minority of 101 casual shoppers

who have bought lots of (PC 7 > 2.76) blouses (but not sweaters) being predicted not

to respond. The next split is something to take note of: among the casual shoppers,

web buyers are predicted to respond positively. Even though only 23.7% of these

customers are actual responders, the 13.2 – 1 misclassification cost ratio makes it

easier for the model to predict these customers as responders, rather than suffer the

severe false negative cost. However, there are only a small number of these (211).

Continuing with the vast majority of casual shoppers, we find the next split is on

principal component 1, Sales Volume and Frequency. Note that this is the first split to

partition off more than a couple of hundred records. This is because the first principal

component is very large and quite predictive of response, as we saw in Chapter 30.

In fact, PC 1 is the first split for our faithful customers. Unsurprisingly, the 4214

casual shoppers who have very low values for PC 1 (PC 1 ≤ −0.89) have a mode

of non-response, while the remaining 8125 casual shoppers have a mode of positive

response. For those with low values of PC 1, the next important split is on PC 2,

Promotion Proclivity, where, unsurprisingly, the 802 casual shoppers who have very

high values for PC 2 have a mode of positive response, while the remaining casual

shoppers have a mode of non-response. For those with medium and high values of PC

1 (PC 1 > −0.89), the next split is again on PC 1, fine-tuning the remaining records.

For the 7734 records that have PC values between −0.89 and 0.68, the next split is on

PC 2, where high values have a mode of response and medium and low values have

a mode of non-response.

Next, we turn to our Faithful Customers. The first split is on PC 1, Sales Vol-
ume and Frequency, with high values predicted to respond positively without further

splits. Note the simplicity of this result: In this complicated data set, all we need to

know to predict that a customer will respond positively is (i) that he or she belongs

to the Faithful Customers cluster, and (ii) that he or she has high Sales Volume and
Frequency. This is a result that is simple, powerful, and crystal clear. Continuing,

we find that the next split is also on PC 1, underscoring the importance of this large

principal component. For faithful customers with PC 1 values of 0.26 or less, the

next split is for web buyer, where only 69 positively responding records are split off.

Next comes the markdown flag; that is, whether a customer bought an item that was

marked down. But this split only partitions off 29 records. The next split is on prin-

cipal component 5, Spending versus Returns. There are further splits here that would

give us information on these 2017 records, but there was not enough room to show

the splits here. For those with PC 1 values between 0.26 and 1.11, the next split is

on web buyer, which, for the 239 web buyers, predicts positive response. Next comes
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principal component 5, Spending versus Returns: for low values, the prediction is

positive response. For medium and high values of PC 5, there is a further split on

PC 2, Promotion Proclivity.

In Chapter 32, we consider models that sacrifice interpretability for better

performance.



C H A P T E R 32
CASE STUDY, PART 4: MODELING
AND EVALUATION FOR HIGH
PERFORMANCE ONLY

In this chapter, we are trading model interpretability for performance. We will take

advantage of the fact that multicollinearity does not affect the model predictions, and

not worry about substituting principal components for correlated predictors. In this

way, as the set of original predictors contain more information than the set of principal

components, we hope to develop models that will outperform those of Chapter 31,

even while sacrificing interpretability.

32.1 VARIABLES TO BE INPUT TO THE MODELS

The models in this chapter will benefit from a greater number of input variables,

including many of the continuous variables that were subsumed into the principal

components in Chapter 31. The listing of the variables is provided in Figure 32.1.

Note that cluster membership remains an input, even though the principal components

do not.

32.2 MODELS THAT USE MISCLASSIFICATION COSTS

We begin using the two algorithms where we can specify our misclassification costs:

classification and regression trees (CART) and C5.0. A CART model was trained on

the training data set, and evaluated on the test data set. The contingency/costs table

for the CART model is shown in Table 32.1, where the misclassification costs were

specified as $1 for false positive, and $13.20 for false negative.

• Total cost for the CART model is −$23366.

• Per customer cost for the CART model is −$3.25.

So, the “CART performance model” beats the “Send to everyone” model by

−$3.25 + 2.59 = $0.64 per customer. Further, the CART performance model beat the

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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Figure 32.1 Listing of inputs to the models in this chapter.

TABLE 32.1 Contingency/costs table for the “performance CART model” with
misclassification costs

Predicted Category

𝟎 𝟏

Actual category 𝟎 3322 ⋅ ($0) = $0 2705 ⋅ ($2) = $5410

𝟏 71 ⋅ ($0) = $0 1090 ⋅ (−$26.40) = −$28776

CART model from Chapter 31 by−$3.25 to−$2.91 = $0.34. The performance model

did indeed outperform the earlier CART model using the principal components, at

least in terms of estimated model cost.

Next, a “performance C5.0 decision tree model” was run, with the misclas-

sification costs given as $1 for false positive, and $13.20 for false negative. The

contingency/costs table for the C5.0 model is shown in Table 32.2.

• Total cost for the C5.0 model is −$24294.40.

• Per customer cost for the C5.0 model is −$3.38.

So, the performance C5.0 model beat the “Send to everyone” model by

−$3.38 + 2.59 = $0.79 per customer. This performance C5.0 model did better than

the C5.0 model from Chapter 31 that used the principal components, by −$3.38 to

−$3.16 = $0.22.
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TABLE 32.2 Contingency/costs table for the C5.0 model with misclassification
costs

Predicted Category

𝟎 𝟏

Actual category 𝟎 3509 ⋅ ($0) = $0 2518 ⋅ ($2) = $5036

𝟏 50 ⋅ ($0) = $0 1111 ⋅ (−$26.40) = −$29330.40

32.3 MODELS THAT NEED REBALANCING AS A
SURROGATE FOR MISCLASSIFICATION COSTS

Next, in order to use rebalancing as a surrogate for misclassification costs for our

neural networks and logistic regression models, we multiplied the number of records

with positive responses in the training data set by the resampling ratio b = 13.2.

A “performance neural network model” was trained on the rebalanced training

data set, and evaluated on the test data set, with the contingency/costs table shown in

Table 32.3.

• Total cost for the neural network model is −$24887.20.

• Per customer cost for the neural network model is −$3.46.

So, the neural network model beat the “Send to everyone” model by −$3.46 +
2.59 = $0.87 per customer. This performance neural network model scored better

than the neural network model from Chapter 31 that used the principal components,

by −$3.46 to −$3.09 = $0.37 per customer.

Finally, a “performance logistic regression model” was trained on the rebal-

anced training data set, and evaluated on the test data set, with the contingency/costs

table shown in Table 32.4.

• Total cost for the logistic regression model is −$23361.20.

• Per customer cost for the logistic regression model is −$3.25.

So, this logistic regression model beat the “Send to everyone” model

by −$3.25 − 2.59 = $0.66 per customer. The performance logistic regression

model also did better than the logistic regression model from Chapter 31 by

−$3.25 + $3.04 = $0.21.

TABLE 32.3 Contingency/costs table for the performance neural network model
applied to the rebalanced data set

Predicted Category

𝟎 𝟏

Actual category 𝟎 4109 ⋅ ($0) = $0 1918 ⋅ ($2) = $3836

𝟏 73 ⋅ ($0) = $0 1088 ⋅ (−$26.40) = −$28723.20
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TABLE 32.4 Contingency/costs table for the performance logistic regression
model applied to the rebalanced data set

Predicted Category

𝟎 𝟏

Actual category 𝟎 3346 ⋅ ($0) = $0 2681 ⋅ ($2) = $5362

𝟏 73 ⋅ ($0) = $0 1088 ⋅ (−$26.40) = −$28723.20

32.4 COMBINING MODELS USING VOTING AND
PROPENSITY AVERAGING

In Chapter 26, we learned how to combine models using model voting and propensity

averaging. All of the “performance voting” combination models outperformed their

counterparts from Chapter 31, but did not outperform the singleton performance neu-

ral network model above. Again, the threefold sufficient voting model had the best

results among the voting models (Table 32.5). Propensity averaging was also applied,

with similar results. The propensities of positive response for the four performance

classification models were averaged, and a histogram of the resulting mean propen-

sity is shown in Figure 32.2. A non-exhaustive search settled on the optimal cutoff

to be mean propensity = 0.375, as shown in Table 32.5. This model predicts a pos-

itive response if the mean propensity to respond positively among the four models

is 0.375 or greater. This model did well, but again did not outperform the singleton

performance neural network model.

Again, the reader is invited to try further model enhancements, if desired, such

as the use of segmentation modeling, and boosting and bagging.

TABLE 32.5 Results from combining performance models using voting and propensity
averaging (best performance highlighted)

Model Total Model Profit Profit per Customer

“Send to All” model $18 596.40 $2.59

CART model $23366.00 $3.25

C5.0 model $24294.40 $3.38

Neural network $𝟐𝟒𝟖𝟖𝟕.𝟐𝟎 $𝟑.𝟒𝟔
Logistic regression $23361.20 $3.25

Single sufficient $23 653.60 $3.29

Twofold sufficient $24 136.40 $3.35

Threefold sufficient $24 223.60 $3.37

Positive unanimity 23,895.2 $3.32

Mean propensity 0.374 $24 224.80 $3.37

Mean propensity 0.375 $24 236.80 $3.37

Mean propensity 0.376 $24 198.00 $3.37

For clarity, profit rather than cost is listed, where profit = –cost. For completeness, the results from the singleton models

are included as well.
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Figure 32.2 Mean propensity, with response overlay.

32.5 LESSONS LEARNED

Clearly, the “performance” models in this chapter outperform the models in Chapter

31, which use the principal components. The average improvement in profit across the

models in Table 32.5 over their counterparts in Chapter 31 is about 7 − 12%. Allowing

the models to use the actual predictors rather than the principal components led to this

increase in profitability. In other words, more information leads to better models.

The downside of the performance models is lack of interpretability. It is sym-

bolic here that the most profitable performance model is the neural network model,

which is well-known for its lack of interpretability in any case. Where the neural net-

work shines is when there are nonlinear associations in the data, which other types of

models have difficulty in sifting through. This evidently is the situation in our clothing

store data.

32.6 CONCLUSIONS

So, in the end, have we addressed our primary and secondary objectives?

• Primary Objective: Develop a classification model that will maximize profits

for direct mail marketing.

• Secondary Objective: Develop better understanding of our clientele through

EDA, component profiles, and cluster profiles.

In Chapters 29, 30, and 31, we developed a much better understanding of our

clientele, using exploratory data analysis, component profiles, cluster profiles, and

interpretation of the best performing model in Chapter 31. In Chapters 31 and 32, we

have developed a set of models that will make a good bit of money for our clothing
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store company, to the tune of $3.46 per customer, an increase of $0.87 per cus-

tomer over the “Send to everyone” model the company was probably using before

the lessons learned from the Case Study a 25% increase in profits. In thus fulfill-

ing the primary and secondary objectives for this Case Study, the predictive analyst

has rendered valuable service, by leveraging existing data to enhance knowledge and

profitability.



A P P E N D I X

DATA SUMMARIZATION
AND VISUALIZATION

Here we present a very brief review of methods for summarizing and visualizing data.

For deeper coverage, see Discovering Statistics, Second Edition, by Daniel Larose

(W.H. Freeman, second edition, 2013).

PART 1: SUMMARIZATION 1: BUILDING BLOCKS OF
DATA ANALYSIS

• Descriptive statistics refers to methods for summarizing and organizing the

information in a data set.

Consider Table A.1, which we will use to illustrate some statistical

concepts.

• The entities for which information is collected are called the elements. In

Table A.1, the elements are the 10 applicants. Elements are also called cases
or subjects.

• A variable is a characteristic of an element, which takes on different values

for different elements. The variables in Table A.1 are marital status, mortgage,

income, rank, year, and risk. Variables are also called attributes.

• The set of variable values for a particular element is an observation. Observa-

tions are also called records. The observation for Applicant 2 is:

Applicant Marital Status Mortgage Income ($) Rank Year Risk

2 Married Y 32,000 7 2010 Good

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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TABLE A.1 Characteristics of 10 loan applicants

Applicant

Marital

Status Mortgage Income ($) Rank Year

Risk

1 Single Y 38,000 2 2009 Good

2 Married Y 32,000 7 2010 Good

3 Other N 25,000 9 2011 Good

4 Other N 36,000 3 2009 Good

5 Other Y 33,000 4 2010 Good

6 Other N 24,000 10 2008 Bad

7 Married Y 25,100 8 2010 Good

8 Married Y 48,000 1 2007 Good

9 Married Y 32,100 6 2009 Bad

10 Married Y 32,200 5 2010 Good

• Variables can be either qualitative or quantitative.

∘ A qualitative variable enables the elements to be classified or categorized

according to some characteristic. The qualitative variables in Table A.1 are

marital status, mortgage, rank, and risk. Qualitative variables are also called

categorical variables.

∘ A quantitative variable takes numeric values and allows arithmetic to be

meaningfully performed on it. The quantitative variables in Table A.1 are

income and year. Quantitative variables are also called numerical variables.

• Data may be classified according to four levels of measurement: nominal, ordi-
nal, interval, and ratio. Nominal and ordinal data are categorical; interval and

ratio data are numerical.

∘ Nominal data refer to names, labels, or categories. There is no natural order-

ing, nor may arithmetic be carried out on nominal data. The nominal vari-

ables in Table A.1 are marital status, mortgage, and risk.

∘ Ordinal data can be rendered into a particular order. However, arithmetic

cannot be meaningfully carried out on ordinal data. The ordinal variable in

Table A.1 is income rank.

∘ Interval data consist of quantitative data defined on an interval without a

natural 0. Addition and subtraction may be performed on interval data. The

interval variable in Table A.1 is year. (Note that there is no “year 0.” The

calendar goes from 1 BC to AD 1.)

∘ Ratio data are quantitative data for which addition, subtraction, multiplica-

tion, and division may be performed. A natural 0 exists for ratio data. The

interval variable in Table A.1 is income.

• A numerical variable that can take either a finite or a countable number of values

is a discrete variable, for which each value can be graphed as a separate point,

with space between each point. The discrete variable in Table A.1 is year.
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• A numerical variable that can take infinitely many values is a continuous vari-
able, whose possible values form an interval on the number line, with no space

between the points. The continuous variable in Table A.1 is income.

• A population is the set of all elements of interest for a particular problem. A

parameter is a characteristic of a population. For example, the population is the

set of all American voters, and the parameter is the proportion of the population

who supports a $1 per ton tax on carbon.

∘ The value of a parameter is usually unknown, but it is a constant.

• A sample consists of a subset of the population. A characteristic of a sample is

called a statistic. For example, the sample is the set of American voters in your

classroom, and the statistic is the proportion of the sample who supports a $1

per ton tax on carbon.

∘ The value of a statistic is usually known, but it changes from sample to

sample.

• A census is the collection of information from every element in the popula-

tion. For example, the census here would be to find from every American voter

whether they support a $1 per ton tax on carbon. Such a census is impractical,

so we turn to statistical inference.

• Statistical inference refers to methods for estimating or drawing conclusions

about population characteristics based on the characteristics of a sample of that

population. For example, suppose 50% of the voters in your classroom support

the tax; using statistical inference we would infer that 50% of all American

voters support the tax. Obviously, there are problems with this. The sample

is neither random nor representative. The estimate does not have a confidence

level, and so on.

• When we take a sample for which each element has an equal chance of being

selected, we have a random sample.

• A predictor variable is a variable whose value is used to help predict the value

of the response variable. The predictor variables in Table A.1 are all variables,

except risk.

• A response variable is a variable of interest whose value is presumably deter-

mined at least in part by the set of predictor variables. The response variable in

Table A.1 is risk.

PART 2: VISUALIZATION: GRAPHS AND TABLES
FOR SUMMARIZING AND ORGANIZING DATA

2.1 Categorical Variables

• The frequency (or count) of a category is the number of data values in each cat-

egory. The relative frequency of a particular category for a categorical variable

equals its frequency divided by the number of cases.
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• A (relative) frequency distribution for a categorical variable consists of all the

categories that the variable assumes, together with the (relative) frequencies for

each value. The frequencies sum to the number of cases; the relative frequencies

sum to 1.

• For example, Table A.2 contains the frequency distribution and relative fre-

quency distribution for the variable marital status for the data from Table A.1.

TABLE A.2 Frequency distribution and relative frequency distribution

Category of Marital Status Frequency Relative Frequency

Married 5 0.5

Other 4 0.4

Single 1 0.1

Total 10 1.0

• A bar chart is a graph used to represent the frequencies or relative frequencies

for a categorical variable. Note that the bars do not touch.

∘ A Pareto chart is a bar chart, where the bars are arranged in decreasing order.

Figure A.1 is an example of a Pareto chart.

• A pie chart is a circle divided into slices, with the size of each slice proportional

to the relative frequency of the category associated with that slice. Figure A.2

shows a pie chart of marital status.

2.2 Quantitative Variables

• Quantitative data are grouped into classes. The lower (upper) class limit of a

class equals the smallest (largest) value within that class. The class width is the

difference between successive lower class limits.
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Figure A.1 Bar chart for marital status.
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Other
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Figure A.2 Pie chart of marital status.

• For quantitative data, a (relative) frequency distribution divides the data into

nonoverlapping classes of equal class width. Table A.3 shows the frequency dis-

tribution and relative frequency distribution of the continuous variable income
from Table A.1.

TABLE A.3 Frequency distribution and relative frequency distribution of income

Class of Income Frequency Relative Frequency

$24,000–$29,999 3 0.3

$30,000–$35,999 4 0.4

$36,000–$41,999 2 0.2

$42,000–$48,999 1 0.1

Total 10 1.0

• A cumulative (relative) frequency distribution shows the total number (relative

frequency) of data values less than or equal to the upper class limit (Table A.4).

TABLE A.4 Cumulative frequency distribution and cumulative relative frequency
distribution of income

Class of Income Cumulative Frequency Cumulative Relative Frequency

$24,000–$29,999 3 0.3

$30,000–$35,999 7 0.7

$36,000–$41,999 9 0.9

$42,000–$48,999 10 1.0

• A distribution of a variable is a graph, table, or formula that specifies the values

and frequencies of the variable for all elements in the data set. For example,

Table A.3 represents the distribution of the variable income.
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• A histogram is a graphical representation of a (relative) frequency distribution

for a quantitative variable (Figure A.3). Note that histograms represent a simple

version of data smoothing and can thus vary in shape depending on the num-

ber and width of the classes. Therefore, histograms should be interpreted with

caution. See Discovering Statistics, Second Edition by Daniel Larose (W.H.

Freeman), Section 2.4, for an example of a data set presented as both sym-

metric and right-skewed by altering the number and width of the histogram

classes.
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Figure A.3 Histogram of income.

• A stem-and-leaf display shows the shape of the data distribution while retain-

ing the original data values in the display, either exactly or approximately. The

leaf units are defined to equal a power of 10, and the stem units are 10 times

the leaf units. Then each leaf represents a data value, through a stem-and-leaf

combination. For example, in Figure A.4, the leaf units (right-hand column)

are 1000’s and the stem units (left-hand column) are 10,000’s. So “2 4” rep-

resents 2 × 10, 000 + 4 × 1000 = $24, 000, while “2 55” represents two equal

incomes of $25,000 (one of which is exact, while the other is approximate:

$25,100). Note that Figure A.4, turned 90∘ to the left, presents the shape of the

data distribution.
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Figure A.4 Stem-and-leaf display of income.
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• In a dotplot, each dot represents one or more data values, set above the number

line (Figure A.5).

Income

48,00044,00040,00036,00032,00028,00024,000

Figure A.5 Dotplot of income.

• A distribution is symmetric if there exists an axis of symmetry (a line) that splits

the distribution into two halves that are approximately mirror images of each

other (Figure A.6a).

• Right-skewed data has a longer tail on the right than the left (Figure A.6b).

Left-skewed data has a longer tail on the left than the right (Figure A.6c).

Bell-shaped curve is symmetric Left-skewed distributionRight-skewed distribution

(a) (b) (c)

Figure A.6 Symmetric and skewed distributions.

PART 3: SUMMARIZATION 2: MEASURES OF CENTER,
VARIABILITY, AND POSITION

• The summation notation
∑

x means to add up all the data values x. The sample

size is n and the population size is N.

• Measures of center indicate where on the number line the central part of the

data is located. The measures of center we will learn are the mean, the median,

the mode, and the midrange.

∘ The mean is the arithmetic average of a data set. To calculate the mean, add

up the values and divide by the number of values. The mean income from

Table A.1 is:

38, 000 + 32, 000 + · · · + 32, 200

10
= 325, 400

10
= $32, 540

∘ The sample mean is the arithmetic average of a sample, and is denoted x
(x-bar).

∘ The population mean is the arithmetic average of a population, and is denoted

𝜇 (“mew,” the Greek letter for m).
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∘ The median is the middle data value, when there are odd numbers of data

values and the data have been sorted into ascending order. If there are even

numbers, the median is the mean of the two middle data values. When the

income data is sorted into ascending order, the two middle values are $32,100

and $32,200, the mean of which is the median income, $32,150.

∘ The mode is the data value that occurs with the greatest frequency. Both

quantitative and categorical variables can have modes, but only quantitative

variables can have means or medians. Each income value occurs only once,

so there is no mode. The mode for year is 2010, with a frequency of 4.

∘ The midrange is the average of the maximum and minimum values in a data

set. The midrange income is

Midrange(income) = (max(income) + min(income))
2

= 48, 000 + 24, 000

2
= $36, 000

• Skewness and measures of center. The following are tendencies, and not strict

rules:

∘ For symmetric data, the mean and the median are approximately equal.

∘ For right-skewed data, the mean is greater than the median.

∘ For left-skewed data, the median is greater than the mean.

• Measures of variability quantify the amount of variation, spread, or dispersion
present in the data. The measures of variability we will learn are the range, the

variance, the standard deviation, and, later, the interquartile range (IQR).

∘ The range of a variable equals the difference between the maximum

and minimum values. The range of income is: range = max(income) −
min(income) = 48, 000 − 24, 000 = $24, 000.

∘ A deviation is the signed difference between a data value, and the mean value.

For Applicant 1, the deviation in income equals x − x = 38, 000 − 32, 540 =
5460. For any conceivable data set, the mean deviation always equals 0,

because the sum of the deviations equals 0.

∘ The population variance is the mean of the squared deviations, denoted as

𝜎2 (sigma-squared):

𝜎2 =
∑

(x − 𝜇)2

N
∘ The population standard deviation is the square root of the population vari-

ance: 𝜎 =
√
𝜎2.

∘ The sample variance is approximately the mean of the squared deviations,

with n replaced by n–1 in the denominator in order to make it an unbiased
estimator of 𝜎2. (An unbiased estimator is a statistic whose expected value

equals its target parameter.)
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s2 =
∑

(x − x)2

n − 1

∘ The sample standard deviation is the square root of the sample variance:

s =
√

s2.

∘ The variance is expressed in units squared, an interpretation that may be

opaque to nonspecialists. For this reason, the standard deviation, which

is expressed in the original units, is preferred when reporting results.

For example, the sample variance of income is s2 = 51, 860, 444 dollars
squared, the meaning of which may be unclear to clients. Better to report

the sample standard deviation s = $7201.

∘ The sample standard deviation s is interpreted as the size of the typical devi-
ation, that is, the size of the typical difference between data values and the

mean data value. For example, incomes typically deviate from their mean by

$7201.

• Measures of position indicate the relative position of a particular data value in

the data distribution. The measures of position we cover here are the percentile,

the percentile rank, the Z-score, and the quartiles.

∘ The pth percentile of a data set is the data value such that p percent of the

values in the data set are at or below this value. The 50th percentile is the

median. For example, the median income is $32,150, and 50% of the data

values lie at or below this value.

∘ The percentile rank of a data value equals the percentage of values in the

data set that are at or below that value. For example, the percentile rank of

Applicant 1’s income of $38,000 is 90%, as that is the percentage of incomes

equal to or less than $38,000.

∘ The Z-score for a particular data value represents how many standard

deviations above or below the mean the data value lies. For a sample, the

Z-score is:

Z-score = x − x
s

For Applicant 6, the Z-score is

24, 000 − 32, 540

7201
≈ −1.2

The income of Applicant 6 lies 1.2 standard deviations below the mean.

∘ We may also find data values, given a Z-score. Suppose no loans will be given

to those with incomes more than 2 standard deviations below the mean. Then,

Z-score = −2, and the corresponding minimum income is:

Income = Z-score ⋅ s + x = (−2)(7201) + 32, 540 = $18, 138

No loans will be provided to applicants with incomes below $18,138.

∘ If the data distribution is normal, then the Empirical Rule states that:

• about 68% of the data lies within 1 standard deviation of the mean;
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• about 95% of the data lies within 2 standard deviations of the mean;

• about 99.7% of the data lies within 3 standard deviations of the mean.

∘ The first quartile (Q1) is the 25th percentile of a data set; the second quartile
(Q2) is the 50th percentile (median); and the third quartile (Q3) is the 75th

percentile.

∘ The IQR is a measure of variability that is not sensitive to the presence of

outliers. IQR = Q3 − Q1.

∘ In the IQR method for detecting outliers, a data value x is an outlier if either

• x ≤ Q1 − 1.5(IQR), or

• x ≥ Q3 + 1.5(IQR).
• The five-number summary of a data set consists of the minimum, Q1, the

median, Q3, and the maximum.

• The boxplot is a graph based on the five-number summary, useful for recog-

nizing symmetry and skewness. Suppose for a particular data set (not from

Table A.1) we have min = 15, Q1 = 29, median = 36, Q3 = 42, and Max = 47.

Then the boxplot is shown in Figure A.7.

Max = 47Q3 = 42Q1 = 29Min =15

Median = 36

IQR = 42−29 = 13

5040302010

WhiskerWhisker

Middle half

Figure A.7 Boxplot of left-skewed data.

∘ The box covers the “middle half” of the data from Q1 to Q3.

∘ The left whisker extends down to the minimum value which is not an outlier.

∘ The right whisker extends up to the maximum value that is not an outlier.

∘ When the left whisker is longer than the right whisker, then the distribution

is left skewed and vice versa.

∘ When the whiskers are about equal in length, the distribution is symmetric.

The distribution in Figure A.7 shows evidence of being left-skewed.

PART 4: SUMMARIZATION AND VISUALIZATION
OF BIVARIATE RELATIONSHIPS

• A bivariate relationship is the relationship between two variables.

• The relationship between two categorical variables is summarized using a

contingency table, which is a cross-tabulation of the two variables, and contains

a cell for every combination of variable values (i.e., for every contingency).
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TABLE A.5 Contingency table for mortgage versus risk

Mortgage

Yes No Total

Risk Good 6 2 8

Bad 1 1 2

Total 7 3 10

Table A.5 is the contingency table for the variables mortgage and risk. The

total column contains the marginal distribution for risk, that is, the frequency

distribution for this variable alone. Similarly, the total row represents the

marginal distribution for mortgage.

• Much can be learned from a contingency table. The baseline proportion of bad
risk is 2/10 = 20%. However, the proportion of bad risk for applicants without

a mortgage is 1/3 = 33%, which is higher than the baseline; and the proportion

of bad risk for applicants with a mortgage is only 1/7 = 1%, which is lower

than the baseline. Thus, whether or not the applicant has a mortgage is useful

for predicting risk.

• A clustered bar chart is a graphical representation of a contingency table.

Figure A.8 shows the clustered bar chart for risk, clustered by mortgage. Note

that the disparity between the two groups is immediately obvious.

• To summarize the relationship between a quantitative variable and a categorical

variable, we calculate summary statistics for the quantitative variable for each

level of the categorical variable. For example, Minitab provided the following

summary statistics for income, for records with bad risk and for records with

good risk. All summary measures are larger for good risk. Is the difference

significant? We need to perform a hypothesis test to find out (Chapter 4).
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Figure A.8 Clustered bar chart for risk, clustered by mortgage.
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• To visualize the relationship between a quantitative variable and a categorical

variable, we may use an individual value plot, which is essentially a set of

vertical dotplots, one for each category in the categorical variable. Figure A.9

shows the individual value plot for income versus risk, showing that incomes

for good risk tend to be larger.

• A scatter plot is used to visualize the relationship between two quantitative vari-

ables, x and y. Each (x, y) point is graphed on a Cartesian plane, with the x axis

on the horizontal and the y axis on the vertical. Figure A.10 shows eight scat-

ter plots, showing some possible types of relationships between the variables,

along with the value of the correlation coefficient r.

• The correlation coefficient r quantifies the strength and direction of the linear

relationship between two quantitative variables. The correlation coefficient is

defined as

r =
∑
(x − x) (y − y)
(n − 1)sxsy

where sx and sy represent the standard deviation of the x-variable and the

y-variable, respectively. −1 ≤ r ≤ 1.

∘ In data mining, where there are a large number of records (over 1000), even

small values of r, such as −0.1 ≤ r ≤ 0.1 may be statistically significant.

∘ If r is positive and significant, we say that x and y are positively correlated.

An increase in x is associated with an increase in y.

∘ If r is negative and significant, we say that x and y are negatively correlated.

An increase in x is associated with a decrease in y.
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Figure A.9 Individual value plot of income versus risk.
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Perfect positive linear relationship, R = 1 Strong positive linear relationship, R = 0.9 Moderate positive linear relationship, R = 0.5

Perfect negative linear relationship, R = –1 Strong negative linear relationship, R = –0.9

No apparent linear relationship, R = 0 Nonlinear relationship but no linear relationship, R = 0

Moderate negative linear relationship, R = –0.5

Figure A.10 Some possible relationships between x and y.
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sum of squares, 155, 155

artificial neuron model, 338, 339, 342

association rules

a priori property (see a priori algorithm)

affinity analysis, 603

antecedent and consequent, 603, 605–6

business and research, 603

categorical data, 611–12, 612
confidence and support, 603, 606

Data Mining and Predictive Analytics, First Edition. Daniel T. Larose and Chantal D. Larose.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

frequent itemsets, 606

J-measure, 613–14

lift ratio, 615–16

market basket analysis, 603–5, 605
patterns and models, 617–18, 618
R code, 618

strong rules, 606

supervised/unsupervised learning, 616–17

worst case scenario, 614, 614–15, 615
attribute-relation file format (ARFF) file,

432, 433

back-propagation algorithm

cross validation termination, 348–9

downstream node, 347–8

error propagation, 346–7

learning rate, 349–50, 350
momentum term, 350–352, 351
squared prediction error, 344

upstream node, 347–8

bagging model

algorithm for, 641

bootstrap samples, 641–3, 642
vs. CART model, 647–8, 648
prediction method, 642–3, 643
R code, 649

stable/unstable classification, 640, 640
balanced iterative reducing and clustering

using hierarchies (BIRCH) clustering

bank loans data set

cost matrix, 576, 576
data sorting, 577–9, 578, 579
No Interest model, 572, 574, 575, 576
With Interest model, 572, 573, 575,

575, 576

781
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CF/CF tree

Additivity Theorem, 562

algorithm, 560

building process, 562–3

clustering sub-clusters, 564–5, 570

definition, 561

one-dimensional toy data set, 565–9,

566–9
radius, 564

tree structure, 562, 563
Modeler’s two-step algorithm, 571, 572
optimal number of clusters, 742–4, 743,

744
pseudo-F statistic method, 571, 571
R code, 579–80

two-step clustering, 560

baseline model

Captain Kirk’s situation, 167

regression model, 168

Bayesian approach see also Naı̈ve Bayes

classifier

balancing data set, 422–3

drawbacks, 416

frequentist/classical approach, 414

likelihood function, 416

MAP method (see maximum a posteriori

(MAP))

marginal distribution, 415

MCMC methods, 416

posterior distribution, 415

posterior odds ratio, 420–422

prior distribution, 414–15

R code, 444–7

Bayesian belief networks (BBNs)

clothing purchase, 436–8, 437
conditional probability, 440

directed acyclic graph, 436

joint probability distribution, 440

prior probabilities, 439

WEKA

Explorer Panel, 441, 442
positive and negative classification, 443

prior probabilities, 442, 443
test set predictions, 442–4, 443

bias–variance trade-off, 164, 164–5, 165
boosting model

ADABoost algorithm

final boosted classifier, 646, 647
initial base classifier, 644, 645
original dataset, 644, 644

second base classifier, 644, 645
third base classifier, 646, 646

vs. CART model, 647–8, 648
R code, 649

C4.5 algorithm

adult data set, 333–4, 335
candidate splits, 326–7, 327
capital gains, 334–5

categorical variables, 333

decision node A, 330–331, 330–331
entropy reduction, 326–8

initial split, 329–30, 330
marital status, 333–4

numerical variables, 333

savings split, 328, 331, 332
threshold partition, 328–9, 329
training data set, 320, 326

churn data set

account length, 383–4, 384
adult data set, 387

age predictor, 388, 388–90, 389
area code field, 72–3, 72–3
balanced data set, 422–3

categorical variables

clustered bar chart, 59, 60, 61
comparative pie chart, 59–60, 60, 61,

62

directed web graph, 63, 64, 65

International Plan, 57–9, 58, 59
marginal distribution, 58–9, 59
non-churners, 56, 58
row percentages, 60, 61
software packages, 56–7

two-way interaction, 63, 63, 64
voice mail plan, 62–3, 63, 63

clustering analysis

CART decision trees, 632, 633
churn proportion, 630, 632, 632
contingency tables, 630, 632
international plan people, 630, 633

no-plan majority, 630, 632–3

voice mail plan people, 630, 633

conditional independence, 424–6, 425
continuous predictor (see continuous

predictor)

correlation coefficient

account length, 80, 81
matrix plot, 79, 79
Minitab regression tool, 80, 80
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optimal solution, 80

p-values, 79–80, 80
thresholds, 78

customer service calls, 70–71, 71–2
data preparation

contingency table, 75, 75
HighDayEveMins_Flag variable, 76–7,

77
voice mail messages, 75–6, 76
z-score standardization, 77–8, 78

day minutes, 70–71, 71–2
dichotomous predictor (see dichotomous

predictor)

education-num variable, 390–392, 391,
391–2

field values, 55–6, 56
flag variables, 535

hours-per-week, 392–4, 393, 393– 4

income overlay, 387–8, 388, 388
International Plan, 384–6, 535, 535, 537,

537
maximum a posteriori

complement probabilities, 418, 419
conditional probability, 417

International Plan, 417, 420

joint conditional probabilities, 419, 419
marginal and conditional probabilities,

418, 418
posterior probabilities, 418, 418
Voice Mail Plan, 417, 420

multivariate graphics, 69–70, 70–71
numerical predictors

binning methods, 72–5, 73–5, 74
churn proportion, 65–6, 66
churners vs. non-churners, 65, 66
customer service call, 65, 65–7

International Calls, 68, 68
normalized and non-normalized

histogram, 66–8, 66–8
t-test, 68–9, 69

numerical variables, 535

polychotomous predictor (see
polychotomous predictor)

posterior odds ratio, 420–422

vs. variables, 535

visualization, 56, 57
voice mail plan, 384–7

VoiceMail Plan adopters, 535, 536, 538,

538
classification and regression trees (CART)

adult data set, 333–4, 335
bank loans, 481, 481
candidate splits, 321, 321
capital gains, 334–5

categorical variables, 333

classification error, 318, 323–4, 327

components, 321, 322
contingency table, 495, 495, 500, 501
cost matrix, 500, 501
data-driven misclassification costs,

481–2, 481–2
decision node A, 323, 323, 324
decision node B, 323–4, 324, 325
decision tree output, 556, 556–7

estimated revenue increase, 503

evaluation measures, 459, 501–2, 502
initial split, 322, 322
lift chart, 510, 511
marital status, 333–4

maximum value, 321–2, 322
numerical variables, 333

optimal split, 320

scaled cost matrix, 500, 501
training data set, 320, 320–321

cluster feature (CF)

Additivity Theorem, 562

building process, 562–3

clustering sub-clusters, 564–5, 570

definition, 561

one-dimensional toy data set, 565–9,

566–9
radius, 564

tree structure, 562, 563
cluster validation

cross-validation

loans data sets, 594–7, 595, 596
methodology, 594

prediction strength, 594

R code, 598–9

loans data sets, 594–7, 595, 596
methodology, 594

prediction strength, 594

pseudo-F statistic method

clustering model, 591

distribution, 592

Iris data set, 592–3

R code, 598

SSB and SSE, 590

R code, 598–9

silhouette method
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cluster validation (Continued)

cohesion/separation, 583, 583–4

Iris data set, 585–9, 585–9, 587, 588
mean silhouette, 584–5, 585
positive/negative values, 583–4

R code, 597–8

clustering analysis

CART decision trees, 632, 633
churn proportion, 630, 632, 632
contingency tables, 630, 632
definition, 523

hierarchical clustering

agglomerative clustering, 525

complete-linkage clustering, 527–9,

528
divisive clustering methods, 525

single-linkage clustering, 526–7, 527
international plan people, 630, 633

k-means clustering algorithm

data points, 530, 530
definition, 529

MSE, 529

processing steps, 530–533, 531,
531–3, 533

pseudo-F statistic method, 530

SAS Enterpriser Miner (see churn data

set)

statistics behavior, 533–4

no-plan majority, 630, 632–3

R code, 538–9

voice mail plan people, 630, 633

confidence interval

customer service call, 135–6, 135–6
lower bound, 136

margin of error, 136–7

population proportion, 137–8

subgroup analyses, 135

t−interval, 134–5

upper bound, 136

continuous predictor

categorical predictor, 375, 377

confidence intervals, 377

day minute usage, 373, 373–5, 374
deviance, 375, 375–6

p-value, 375, 376

test statistics, 148–9, 149, 157

unit-increase interpretation, 376–7

Cook’s distance, 193–5, 195–6
correlation coefficient, 779

account length, 80, 81

matrix plot, 79, 79
Minitab regression tool, 80, 80
optimal solution, 80

p-values, 79–80, 80
PCA, 94–5

thresholds, 78

cost-benefit analysis, 462, 462–3

CART model

contingency table, 495, 495, 500, 501
cost matrix, 500, 501
estimated revenue increase, 503

evaluation measures, 501–2, 502
scaled cost matrix, 500, 501

cost matrix, 474–6, 476
decision invariance

binary classifier, 471–2, 472
scaling, 476–8, 477, 478

direct cost, 478

k-nary classification

accuracy, 504

contingency table, 503, 504
Loans data sets, 504–7, 505–7
overall error rate, 504

predicted/actual categories, 503, 503
sensitivity, 503, 504

Loans data set

adjusted cost matrix, 481, 481
assumptions, 480

CART model, 481, 481–2, 482
direct cost matrix, 480, 480
simplified cost matrix, 481, 481
strategies, 479

opportunity cost, 478

positive classification

adjusted cost matrix, 473, 473
C5.0 models, 474, 475

R code, 485–7, 507–8

rebalancing cost

CART model, 484

confidence and positive confidence, 485

definition, 483

network models, 483, 484
trinary classification

accuracy, 494, 498

assumptions, 498–9

contingency table, 491, 492
cost calculation, 499

cost matrix, 500, 500
false negative, 494, 497

false positive, 494, 497
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number of customers, 495–6

number of records, 491–2

overall error rate, 494, 498

predicted/actual categories, 491, 492,
494, 495

principal and interest, 498

true negative, 493–4, 497

true positive, 493–4, 497

cross-industry standard process for data

mining (CRISP-DM)

adaptive process, 6–7, 7, 707–8, 708
business understanding phase, 709–10

business/research phase, 7

clustering analysis

BIRCH clustering algorithm, 742–4,

743, 744
cluster profiles, 745–8, 746, 748
cross-validation, 745, 747
k-means clustering, 744, 744–5, 746

data phase, 7–8

data preparation phase

deriving flag variable, 719, 719–21,

720, 721
negative amounts, 714–16, 715
product uniformity, 716–17, 716–18
standardization, 717–19

data understanding phase

absolute pairwise correlation, 727,
727–30

continuous predictors, 712, 712
dataset, fields, 710–711

de-transformation, 730–731

lifestyle cluster types, 713, 713–14

missing values, 712, 713
predictors and response, 722–7

zip code fields, 711

deployment phase, 8

evaluation phase, 8

modeling and evaluation strategy

baseline model, 754, 754, 754–5, 755
cost-benefit analysis, 750, 751–3, 752
high performance model, 762–6

input variables, 753, 753
misclassification cost, 755–6, 756
model voting, 757–8, 758
processing steps, 750–751

profitable classification model, 758–61,

759
propensity averaging, 757–8, 758, 758
rebalanced data set, 756, 756–7, 757

modeling phase, 8

principal components analysis

data set partitioning, 732–3, 733
input variables, 733–4, 734
low communality predictors, 734, 734,

736
principal component profiles, 737–42

rotated component matrix, 737, 738,
739

cross-validation, 161–3

customer service calls (CSC) see
polychotomous predictor

data balancing, 166

data cleaning

age field, 22

American zip code, 21

data set, 21, 21
income field, 21–2

marital status field, 22

measures of center

customer service calls, 28, 28
measures of location, 27–8

measures of spread, 29

price/earning ratio, 28–9, 29
standard deviation, 28, 29

missing data

data imputation method, 25

field values, 22–3, 23
frequency distribution, 25–6, 26
random values, 24–5, 25
replacement values, 23–4, 24
variable brand, 24–5

outliers, 26, 26–7, 27
poverty, 22

R code, 45–7

transaction amount field, 22

data imputation method, 25

data preparation

contingency table, 75, 75
HighDayEveMins_Flag variable, 76–7,

77
voice mail messages, 75

z-score standardization, 77–8, 78
data summarization

bivariate relationship, 777–80

boxplot, 777, 777
discrete variable, 769–70

levels of measurement, 769

measures of center, 774–5
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data summarization (Continued)

measures of position, 776–7

measures of variability, 775–6

qualitative/quantitative variable, 769

data transformation

binning methods, 41–2, 42
categorical variables

reclassification, 42

region_num variable, 40

survey_response variable, 40–41

correlated variables, 44

decimal scaling, 32

donation_dollar field, 43–4

duplicate records, 44–5

flag variables, 39–40

ID fields, 45

index field, 43

min–max normalization, 30, 30–31

R code, 47–50

unary variables, 43

Z-score standardization

inverse_sqrt (weight) transformation,

36–7, 37
natural log transformation, 35–6, 36
negative standardization, 31

normal probability plot, 36, 38
normal Z distribution, 32, 32–3

outliers, 38–9

positive standardization, 31–2

skewness, 33–5, 33–5
square root transformation, 35, 35
weighted data, 30, 31–3, 33

data visualization

bar chart, 771, 771
bivariate relationship, 777–80

cumulative frequency distribution, 772,

772
dotplot, 774, 774
frequency distribution, 771, 772, 772
histogram, 773, 773
pie chart, 771, 772
skewness, 774, 774, 775

stem-and-leaf display, 773, 773
data-driven misclassification costs see

cost-benefit analysis

decision tree

C4.5 algorithm, information-gain

adult data set, 333–4, 335
candidate splits, 326–7, 327
capital gains, 334–5

categorical variables, 333

decision node A, 330–331, 330–331
entropy reduction, 326–8

initial split, 329–30, 330
marital status, 333–4

numerical variables, 333

savings split, 328, 331, 332
threshold partition, 328–9, 329
training data set, 320, 326

CART (see Classification and regression

trees (CART))

credit risk, 317–18, 318
decision rules, 331, 332, 332
diverse attributes, 318, 318–19

R code, 335–7

requirements, 319

dichotomous predictor

reference cell coding, 368–9

voice mail plan, 366–8, 367–8
dimension-reduction method

applications, 93

factor analysis (see factor analysis)

houses data set

median income, 9, 96–8

predictor variables, 96, 97
multicollinearity, 92

PCA (see principal components analysis

(PCA))

R code, 119–23

user-defined composites

definition, 118

houses data set, 118–19

measurement error, 118

summated scales, 117

direct cost matrix, 480, 480
distance function

age variable, 306–7

Euclidean distance, 305–6, 306
min–max normalization, 305–7, 306
properties, 305

Z-score standardization, 305–7, 306

EDA see exploratory data analysis (EDA)

ensemble methods

bagging model

algorithm for, 641

bootstrap samples, 641–3, 642
vs. CART model, 647–8, 648
prediction method, 642–3, 643
R code, 649
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stable/unstable classification, 640, 640
bias-variance trade-off, 640

boosting model

adaptive boosting (see ADABoost

algorithm)

algorithm for, 644

vs. CART model, 647–8, 648
R code, 649

model voting

alternative models, 654–5, 655
contingency tables, 657, 659–60
evaluative measures, 657, 660
majority classification, 653–4, 654
processing steps, 655–6, 657
R code, 666

working test data set, 656, 658
prediction error, 639, 639, 649

propensity averaging

evaluative measures, 663, 664
histogram model, 663, 663
m base classifiers, 661

processing steps, 661, 662
exploratory data analysis (EDA), 451–2

churn data set (see churn data set)

data understanding phase

absolute pairwise correlation, 727,
727–30

de-transformation, 730–731

predictors and response, 722–7

vs. hypothesis testing, 54

R code, 82–8

segmentation modeling

capital gains/losses, 627, 627
contingency tables, 628, 628
overall error rate, 628–9

factor analysis model

adult data set

Bartlett’s test, 112

correlation matrix, 111–12, 112
factor loadings, 113, 113–14, 114
KMO statistics, 112–13, 113
principal axis, 112, 113

factor rotation

oblique rotation method, 117

orthogonal rotation, 113, 116–17

percentage of variance, 115–16, 116
rotated vectors, 114–15, 116
unrotated vectors, 114, 115
varimax rotation, 114, 115

flag variables, 39–40, 149–50, 157

GAs see genetic algorithms (GAs)

gas mileage prediction

backward elimination, 273, 274
best subsets method, 274–5, 275
forward selection method, 271–3, 272
Mallows’ Cp statistics

predictors, 275–6, 276
regression assumptions, 276–8, 277–8,

277 –8
stepwise selection regression, 272, 273

target variable MPG, 270–271, 270–271
generalized rule induction (GRI) method,

612–14

genetic algorithms (GAs)

crossover operator

definition, 672

multi-point crossover, 678, 678
real-valued data, 679–81

uniform crossover, 678–9, 679
framework, 672–3

mutation operator, 672

neural networks

backpropagation, 682–3

feed-forward nature, 681

learning method, 682

modified discrete crossover, 683–4,

684, 685
random shock mutation, 684, 685, 686
sum of squared errors, 682

topology and operation, 682
R code, 692

selection operator

Boltzmann selection, 677

crowding phenomenon, 676

definition, 672

elitism, 677

fitness sharing, 676

rank selection, 677–8

sigma scaling, 677

tournament ranking, 678

terminologies, 671

WEKA

AttributeSelectiedClassifier, 689,
689–90, 690

class distribution, 684, 687
initial population characteristics, 690,

691
Preprocess tab, 684, 687
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genetic algorithms (GAs) (Continued)

WrapperSubsetEval evaluation method,

688, 689, 690
gradient-descent method, 345, 345–6

graphical evaluation

gains charts, 510–512, 512
lift chart, 510–511, 511, 511
profits charts, 512–14, 513–15
R code, 516–17

response charts, 511, 512
return-on-investment charts, 514, 516

hierarchical clustering

agglomerative clustering, 525

complete-linkage clustering, 527–9, 528
divisive clustering methods, 525

single-linkage clustering, 526–7, 527
hypothesis testing

confidence interval, 141, 141–3, 142, 143
criminal trial, outcomes, 138, 138–9

null hypothesis, 140–141, 141
p-value, 139, 139–40

population proportion, 143, 143–4

standard error, 139

treatment, 139

indicator variable

cereals, y-intercepts, 252–3, 253
estimated nutritional rating, 253–4, 254
p-values, 255–6, 256
parallel planes, 251–2, 252
reference category, 250

regression coefficient values, 250,
250–251, 251

relative estimation error, 255, 255
shelf effect, 249, 249–50

instance-based learning

issues, 304

sodium/potassium ratio, 302–3, 303
training data points, 302–3, 303
voting, 304, 304

k-means clustering algorithm

data points, 530, 530
definition, 529

MSE, 529

processing steps, 530–533, 531, 531–3,
533

pseudo-F statistic method, 530

SAS Enterpriser Miner (see churn data

set)

statistics behavior, 533–4

k-nary classification

accuracy, 504

contingency table, 503, 504
Loans data sets, 504–7, 505–7
overall error rate, 504

predicted/actual categories, 503, 503
sensitivity, 503, 504

k-nearest neighbor (KNN) algorithm

classification

data set, 301–2, 302
income bracket, 301–2

ClassifyRisk data set, 312, 312
combination function

simple unweighted voting, 303, 304,
307–8

weighted voting, 303, 304, 308–9, 309
cross-validation approach, 309–10

database, 303, 310

distance function

age variable, 306–7

Euclidean distance, 305–6, 306
min–max normalization, 305–7, 306
properties, 305

Z-score standardization, 305–7, 306
instance-based learning

issues, 304

sodium/potassium ratio, 302–3, 303
training data points, 302–3, 303
voting, 304, 304

locally weighted averaging, 310–311, 311
modeler’s results, 312, 312
outliers/unusual observations, 311–12

R code, 312–15

Kaiser–Meyer–Olkin (KMO) statistics,

112–13, 113
Kohonen networks

age and income data set, 545, 545–9, 549
algorithm, 544–5

CART decision tree model, 556, 556–7

cluster profiles, 554–6, 556
flag variables, 550

International Plan adopters, 551, 551
mean analysis, 552–3, 554
numerical variables, 550

R code, 557–8

SOM

architecture, 542, 543
characteristic processes, 544
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goal, 542

networks connection, 542–3

topology, 548, 548
validation, 549

variables distribution, 552, 553
VoiceMail Plan adoption, 551–2, 552

logistic regression model

conditional mean, 359

disease vs. age, 358–9, 359, 359
linear regression model, 360

logit transformation, 360

maximum-likelihood estimation

confidence interval, 364

interpretation, 361–2

likelihood ratio test, 362, 362–3

log-likelihood estimators, 361

mean square regression, 362

negative response, 360–361

parameters, 360

positive response, 360–361

saturated model, 362

Wald test, parameters, 363–4

odds ratio (see odds ratio (OR))

R code, 403–8

sigmoidal curve, 359–60

training data set

education variable, 397–8

marital status, 394–7, 395, 396
WEKA

explorer panel, 400, 400
RATING field, 399

regression coefficients, 400–401, 401
test set prediction, 401–2, 402
training file, 398–9, 399

market basket analysis, 603–5, 605
Markov chain Monte Carlo (MCMC)

methods, 416

maximum a posteriori (MAP), churn data set

complement probabilities, 418, 419
conditional probability, 417

International Plan, 417, 420

joint conditional probabilities, 419, 419
marginal and conditional probabilities,

418, 418
posterior probabilities, 418, 418
Voice Mail Plan, 417, 420

McKinsey Global Institute (MGI) report

association task, 16–17

classification

income bracket, 12–13, 13
sodium/potassium ratio, 13–14, 14

clustering, 15, 15–16

continuous quality monitoring, 9

CRISP-DM

adaptive process, 6–7, 7
business/research phase, 7

data phase, 7–8

deployment phase, 8

evaluation phase, 8

modeling phase, 8

estimation model, 11–12, 12
factors, 5

Forbes magazine, 4

HMO, 4

patterns and trends, 10–11

prediction, 12

problem solving, human process, 6

profitable results, 10

R code, 17–18

software packages, 9

tools, 9

mean absolute error (MAE), 454

mean square error (MSE), 452, 453
mean square treatment (MSTR), 155

missing data imputation

CART model, 700, 700–701

data weighting, 701

flag variable, 701

multiple regression model, 696–9, 697
R code, 702–3

SEI formula, 699–700

model evaluation techniques

classification task

accuracy, 456

building and data model, 466

C5.0 model, 454

contingency table, 455, 455
cost/benefit analysis, 462, 462–3

error rate, 457

false negative, 459

false-negative rate, 458

false-positive, 459

false-positive rate, 458

financial lending firm, 455

gains chart, 463–6, 465
income classification, 466–7, 467
lift charts, 463–6, 464, 465
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model evaluation techniques (Continued)

misclassification cost adjustment,

460–461, 461
true negative, 457–9

true positive, 457–9

description task, 451–2

estimation and prediction tasks

MAE, 454

MSE, 452, 453
standard error of the estimate, 452, 453

R code, 467–8

model voting process

alternative models, 654–5, 655
contingency tables, 657, 659–60
evaluative measures, 657, 660
majority classification, 653–4, 654
processing steps, 655–6, 657
R code, 666

working test data set, 656, 658
multicollinearity

correlation coefficients, 260–261, 261
fiber variable, 264–5, 265
matrix plot, 261, 261
potassium variable, 258–9, 264–5, 265
stability coefficient, 259–60, 260
user-defined composite, 263–4, 264
variable coefficients, 259–60, 260
variance inflation factor, 261–3, 263

multinomial data

chi-square test, 152–3, 153
expected frequency, 151, 151
observed frequency, 150, 150–151

R code, 158

test statistics, 151, 152
multiple regression model

ANOVA table, 240, 240–241

coefficient of determination, R2, 241,
241–2, 253, 256, 256–7, 261

confidence interval

mean value, y, 239, 248

particular coefficient, 𝛽 i, 239, 247–8

estimation error, 239–40, 240
indicator variable

cereals, y-intercepts, 252–3, 253
estimated nutritional rating, 253–4, 254
p-values, 255–6, 256
parallel planes, 251–2, 252
reference category, 250

regression coefficient values, 250,
250–251, 251

relative estimation error, 255, 255
shelf effect, 249, 249–50

inference

F-test, 240, 245, 245–7

t-test, 239, 243–5

multicollinearity

correlation coefficients, 260–261, 261
fiber variable, 264–5, 265
matrix plot, 261, 261
potassium variable, 258–9, 264–5, 265
stability coefficient, 259–60, 260
user-defined composite, 263–4, 264
variable coefficients, 259–60, 260
variance inflation factor, 261–3, 263

nutritional rating vs. sugars, 237, 238, 239
population, 242–3

prediction interval, 239, 248

predictor variables, 237–8

principal components

Box–Cox transformation, 279, 282,
283–4

component values, 279–80, 280
unrotated and rotated component

weights, 279, 282
varimax-rotated solution, 279, 281

R code, 284–92

regression plane/hyperplane, 238

slope coefficients, 238, 238
Spoon Size Shredded Wheat, 239

SSR, 257–8, 258, 259
three-dimensional scatter plot, 236, 236
variable selection method (see variable

selection method)

Naı̈ve Bayes classifier see also Bayesian

approach

conditional independence, 424–6, 425
posterior odds ratio, 426–8

predictor variables, 429–32, 430
WEKA

ARFF, 432, 433
conditional probabilities, 434, 435
Explorer Panel, 432, 434
load training file, 432

test set predictions, 434–6, 435
zero-frequency cells, 428

neural network model

adult data set, 352, 353
artificial neuron model, 338, 339
back-propagation algorithm
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cross validation termination, 348–9

downstream node, 347–8

error propagation, 346–7

learning rate, 349–50, 350
momentum term, 350–352, 351
squared prediction error, 344

upstream node, 347–8

combination function, 342–3

data preprocessing, 354–5

estimation and prediction, 341

gradient-descent method, 345, 345–6

hidden layer, 341–2, 342
input and output encoding

categorical variables, 339–40

dichotomous classification, 340,
340–341

drawback, 338–9

min–max normalization, 339

thresholds, 340

input layer, 342

output layer, 342, 342
prediction accuracy, 353–4, 354
R code, 355–6

real neuron, 338, 339
sensitivity analysis, 352, 354
sigmoid function, 343–4, 344

neural networks

backpropagation, 682–3

feed-forward nature, 681

learning method, 682

modified discrete crossover, 683–4, 684,
685

random shock mutation, 684, 685, 686
sum of squared errors, 682

topology and operation, 682

odds ratio (OR)

assumptions

capnet variable, 379–81, 380
churn overlay, 377–9, 378, 378–9
customer service calls, 377–9, 378,

378–9
continuous predictor (see continuous

predictor)

dichotomous predictor (see dichotomous

predictor)

estrogen replacement therapy, 365

interpretation, 364–5

polychotomous predictor (see
polychotomous predictor)

relative risk, 365

response variable, 365

zero-count cell, 381, 381–3

overfitting

complexity model, 163, 163–4

provisional model, 163, 163

partitioning variable, 166–7, 169

PCA see Principal components analysis

(PCA)

polychotomous predictor

confidence interval, 370, 372–3

estimated probability, 369, 370, 370–371

medium customer service call, 369,
370–371

reference cell encoding, 369, 369–70

standard error, 372

Wald test, 371–2

principal components analysis (PCA)

communality, 101, 103, 108–10

component matrix, 98–9, 101
component size, 106

component weights, 107–8, 108
coordinate system, 94

correlation coefficient, 94–5

correlation matrix, 98, 100
covariance matrix, 94

data set partitioning, 732–3, 733
eigenvalues, 95–6, 102

eigenvectors, 95–6

geographical component, 99, 100, 106

housing median age, 105, 106–7, 107
input variables, 733–4, 734
linear combination, 93–4

low communality predictors, 734, 734,
736

matrix plot, 98, 99
median income, 105, 106–7, 107
multiple regression analysis, 98

orthogonal vectors, 101–2

principal component profiles, 737–42

rotated component matrix, 737, 738, 739
scree plot, 103–5, 104, 105
standard deviation matrix, 94

validation, 110, 110
variance proportion, 99, 101, 101, 103

profits charts, 512–14, 513–15
propensity averaging process

evaluative measures, 663, 664
histogram model, 663, 663



792 INDEX

propensity averaging process (Continued)

m base classifiers, 661

processing steps, 661, 662
pseudo-F statistic method

clustering model, 591

distribution, 592

Iris data set, 592–3

R code, 598

SSB and SSE, 590

regression modeling

ANOVA table, 186, 186, 187
baseline model, 168

Box–Cox transformation, 220

cereals data set, 171–2, 172
coefficient of determination, r2

data points, 179–80, 180
distance and time estimation, 179, 179
estimation error, 180, 181

maximum value, 182

minimum value, 182

predicted score column, 179, 179
prediction error, 178–9

predictor and response variables, 182

predictor information, 179

residual error, 178–9

sample variance, 180

standard deviation, 180

sum of squares regression, 181–2

sum of squares total, 180–181, 181
Cook’s distance, 193–5, 195–6
correlation coefficient, r

confidence interval, 208, 208–10, 209
linear correlation, 186

negative correlation, 185

positive correlation, 185

quantitative variables, 184

dangers of extrapolation

chocolate frosted sugar bombs, 177

observed and unobserved points, 177

policy recommendations, 178

prediction error, 177–8

predictor variable, 177

end-user

confidence interval, 210

prediction interval, 211–13, 214
field values, 172

high leverage point

characteristics, 191

distance vs. time, 189, 190

hard-core orienteer, 189–91, 191
mild outlier, 192–3, 193
observation, 192–3

regression results, 191–2, 192
standard error, 192, 193

inference, 203–4

least-squares estimation

error term 𝜀, 174

estimated nutritional rating, 176–7

nutritional rating vs. sugar content,

172–3

prediction error, 173

statistics, 175–6, 176
sum of squared errors, 174–5

y-intercept b0, 176–7

linearity transformation

bulging rule, 215, 216, 217

log transformation, 218, 218
point value vs. letter frequency, 215,

216, 217

response variable, 213–14

ScrabbleⓇ, 214–15, 215
square root transformation, 217, 217
standardized residual, 218, 218, 219,

219
normal probability plot

Anderson–Darling (AD) statistics,

199–200, 200

assumptions, 201–3, 202
chi-square distribution, 198–9, 199
distance vs. time, 200, 216
horizontal zero line, 200–201, 201
normal distribution, 198, 200, 200
p-value, 199–200, 200

Rorschach effect, 202

uniform distribution, 198–9, 199
outliers

Minitab, 187, 188

nutritional rating vs. sugars, 186, 188
positive and negative values, 188–9

standardized residuals, 188

population regression equation

assumptions, 197

bivariate observation, 195–6

constant variance, 197, 197–8

true regression line, 197, 197–8

R code, 220–226

regression equation, 172–3

standard error

mean square error, 183
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standard deviation, response variable,

179, 183–4

sum of squares regression, 184

sum of squares total, 184

time and distance calculation, 184

t-test
assumptions, 204, 204
confidence interval, 206–7, 207
null hypothesis, 205

nutritional rating vs. sugar content,

205–6, 206
p-value method, 205–6

sampling distribution, 205

response charts, 511, 512
return-on-investment (ROI) charts, 514, 516

scatter plot, 710, 779

segmentation modeling

clustering analysis

CART decision trees, 632, 633
churn proportion, 630, 632, 632
contingency tables, 630, 632
international plan people, 630, 633

no-plan majority, 630, 632–3

voice mail plan people, 630, 633

exploratory analysis

capital gains/losses, 627, 627
contingency tables, 628, 628
overall error rate, 628–9

performance enhancement, 625

processing steps, 626, 626
R code, 634–5

SEI see standard error of the imputation

(SEI)

self-organizing map (SOM)

architecture, 542, 543
characteristic processes, 544

goal, 542

networks connection, 542–3

sigmoid function, 343–4, 344
silhouette method

cohesion/separation, 583, 583–4

Iris data set, 585–9, 585–9, 587, 588
mean silhouette, 584–5, 585
positive/negative values, 583–4

R code, 597–8

simplified cost matrix, 481, 481
squashing function, 344, 344
standard error of the imputation (SEI), 699

statistical inference

confidence interval

customer service call, 135–6, 135–6
lower bound, 136

margin of error, 136–7

population proportion, 137–8

subgroup analyses, 135

t−interval, 134–5

upper bound, 136

crystal ball gazers, 133

definition, 770

hypothesis testing (see hypothesis testing)

point estimation, 133–4

population parameters, 132–3

R code, 144–5

sample proportion, 132–3

sampling error, 134

statistical methods, 161

stem-and-leaf display, 773, 773
sum of squares between (SSB), 590

sum of squares error (SSE), 582–3, 590

sum of squares regression (SSR), multiple

regression model, 257–8, 258, 259
supervised methods, 160–161

target variable, 166–7, 169

unsupervised methods, 160–161

user-defined composites

definition, 118

houses data set, 118–19

measurement error, 118

summated scales, 117

variable selection method

all-possible-regression, 269–70

backward elimination, 268

best subsets method, 269

forward selection, 268

gas mileage data set (see gas mileage

prediction)

partial F-test, 266–7, 267
stepwise regression, 268–9

Waikato Environment for Knowledge

Analysis (WEKA)

Bayesian belief networks

Explorer Panel, 441, 442
positive and negative classification, 443

prior probabilities, 442, 443
test set predictions, 442–4, 443
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Waikato Environment for Knowledge

Analysis (WEKA) (Continued)

explorer panel, 400, 400
genetic search algorithm

AttributeSelectiedClassifier, 689,
689–90, 690

class distribution, 684, 687
initial population characteristics, 690,

691
Preprocess tab, 684, 687
WrapperSubsetEval, 688, 689, 690

Naı̈ve Bayes

ARFF, 432, 433
conditional probabilities, 434, 435
Explorer Panel, 432, 434
load training file, 432

test set predictions, 434–6, 435
RATING field, 399

regression coefficients, 400–401, 401
test set prediction, 401–2, 402
training file, 398–9, 399



WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover������������
	Contents���������������
	Preface��������������
	Acknowledgments����������������������
	Part I Data Preparation������������������������������
	Chapter 1 An Introduction to Data Mining and Predictive Analytics������������������������������������������������������������������������
	1.1 What is Data Mining? What is Predictive Analytics?�������������������������������������������������������������
	1.2 Wanted: Data Miners������������������������������
	1.3 The Need for Human Direction of Data Mining������������������������������������������������������
	1.4 The Cross-Industry Standard Process for Data Mining: CRISP-DM������������������������������������������������������������������������
	1.4.1 CRISP-DM: The Six Phases�������������������������������������

	1.5 Fallacies of Data Mining�����������������������������������
	1.6 What Tasks Can Data Mining Accomplish������������������������������������������������
	1.6.1 Description������������������������
	1.6.2 Estimation�����������������������
	1.6.3 Prediction�����������������������
	1.6.4 Classification���������������������������
	1.6.5 Clustering�����������������������
	1.6.6 Association������������������������

	The R Zone�����������������
	R References�������������������
	Exercises����������������

	Chapter 2 Data Preprocessing�����������������������������������
	2.1 Why do We Need to Preprocess the Data?�������������������������������������������������
	2.2 Data Cleaning������������������������
	2.3 Handling Missing Data��������������������������������
	2.4 Identifying Misclassifications�����������������������������������������
	2.5 Graphical Methods for Identifying Outliers�����������������������������������������������������
	2.6 Measures of Center and Spread����������������������������������������
	2.7 Data Transformation������������������������������
	2.8 Min-Max Normalization��������������������������������
	2.9 Z-Score Standardization����������������������������������
	2.10 Decimal Scaling���������������������������
	2.11 Transformations to Achieve Normality������������������������������������������������
	2.12 Numerical Methods for Identifying Outliers������������������������������������������������������
	2.13 Flag Variables��������������������������
	2.14 Transforming Categorical Variables into Numerical Variables�����������������������������������������������������������������������
	2.15 Binning Numerical Variables���������������������������������������
	2.16 Reclassifying Categorical Variables�����������������������������������������������
	2.17 Adding an Index Field���������������������������������
	2.18 Removing Variables that are not Useful��������������������������������������������������
	2.19 Variables that Should Probably not be Removed���������������������������������������������������������
	2.20 Removal of Duplicate Records����������������������������������������
	2.21 A Word About ID Fields����������������������������������
	The R Zone�����������������
	R Reference������������������
	Exercises����������������

	Chapter 3 Exploratory Data Analysis������������������������������������������
	3.1 Hypothesis Testing Versus Exploratory Data Analysis��������������������������������������������������������������
	3.2 Getting to Know the Data Set���������������������������������������
	3.3 Exploring Categorical Variables������������������������������������������
	3.4 Exploring Numeric Variables��������������������������������������
	3.5 Exploring Multivariate Relationships�����������������������������������������������
	3.6 Selecting Interesting Subsets of the Data for Further Investigation������������������������������������������������������������������������������
	3.7 Using EDA to Uncover Anomalous Fields������������������������������������������������
	3.8 Binning Based on Predictive Value��������������������������������������������
	3.9 Deriving New Variables: Flag Variables�������������������������������������������������
	3.10 Deriving New Variables: Numerical Variables�������������������������������������������������������
	3.11 Using EDA to Investigate Correlated Predictor Variables�������������������������������������������������������������������
	3.12 Summary of Our EDA������������������������������
	The R Zone�����������������
	R References�������������������
	Exercises����������������

	Chapter 4 Dimension-Reduction Methods��������������������������������������������
	4.1 Need for Dimension-Reduction in Data Mining������������������������������������������������������
	4.2 Principal Components Analysis����������������������������������������
	4.3 Applying PCA to the Houses Data Set����������������������������������������������
	4.4 How Many Components Should We Extract?�������������������������������������������������
	4.4.1 The Eigenvalue Criterion�������������������������������������
	4.4.2 The Proportion of Variance Explained Criterion�����������������������������������������������������������
	4.4.3 The Minimum Communality Criterion����������������������������������������������
	4.4.4 The Scree Plot Criterion�������������������������������������

	4.5 Profiling the Principal Components���������������������������������������������
	4.6 Communalities������������������������
	4.6.1 Minimum Communality Criterion������������������������������������������

	4.7 Validation of the Principal Components�������������������������������������������������
	4.8 Factor Analysis��������������������������
	4.9 Applying Factor Analysis to the Adult Data Set���������������������������������������������������������
	4.10 Factor Rotation���������������������������
	4.11 User-Defined Composites�����������������������������������
	4.12 An Example of a User-Defined Composite��������������������������������������������������
	The R Zone�����������������
	R References�������������������
	Exercises����������������


	Part II Statistical Analysis�����������������������������������
	Chapter 5 Univariate Statistical Analysis������������������������������������������������
	5.1 Data Mining Tasks in Discovering Knowledge in Data�������������������������������������������������������������
	5.2 Statistical Approaches to Estimation and Prediction��������������������������������������������������������������
	5.3 Statistical Inference��������������������������������
	5.4 How Confident are We in Our Estimates?�������������������������������������������������
	5.5 Confidence Interval Estimation of the Mean�����������������������������������������������������
	5.6 How to Reduce the Margin of Error��������������������������������������������
	5.7 Confidence Interval Estimation of the Proportion�����������������������������������������������������������
	5.8 Hypothesis Testing for the Mean������������������������������������������
	5.9 Assessing the Strength of Evidence Against the Null Hypothesis�������������������������������������������������������������������������
	5.10 Using Confidence Intervals to Perform Hypothesis Tests������������������������������������������������������������������
	5.11 Hypothesis Testing for the Proportion�������������������������������������������������
	Reference����������������
	The R Zone�����������������
	R Reference������������������
	Exercises����������������

	Chapter 6 Multivariate Statistics����������������������������������������
	6.1 Two-Sample t-Test for Difference in Means����������������������������������������������������
	6.2 Two-Sample Z-Test for Difference in Proportions����������������������������������������������������������
	6.3 Test for the Homogeneity of Proportions��������������������������������������������������
	6.4 Chi-Square Test for Goodness of Fit of Multinomial Data������������������������������������������������������������������
	6.5 Analysis of Variance�������������������������������
	Reference����������������
	The R Zone�����������������
	R Reference������������������
	Exercises����������������

	Chapter 7 Preparing to Model the Data��������������������������������������������
	7.1 Supervised Versus Unsupervised Methods�������������������������������������������������
	7.2 Statistical Methodology and Data Mining Methodology��������������������������������������������������������������
	7.3 Cross-Validation���������������������������
	7.4 Overfitting����������������������
	7.5 Bias-Variance Trade-Off����������������������������������
	7.6 Balancing the Training Data Set������������������������������������������
	7.7 Establishing Baseline Performance��������������������������������������������
	The R Zone�����������������
	R Reference������������������
	Exercises����������������

	Chapter 8 Simple Linear Regression�����������������������������������������
	8.1 An Example of Simple Linear Regression�������������������������������������������������
	8.1.1 The Least-Squares Estimates����������������������������������������

	8.2 Dangers of Extrapolation�����������������������������������
	8.3 How Useful is the Regression? The Coefficient of Determination, r2�����������������������������������������������������������������������������
	8.4 Standard Error of the Estimate, s��������������������������������������������
	8.5 Correlation Coefficient r������������������������������������
	8.6 Anova Table for Simple Linear Regression���������������������������������������������������
	8.7 Outliers, High Leverage Points, and Influential Observations�����������������������������������������������������������������������
	8.8 Population Regression Equation�����������������������������������������
	8.9 Verifying the Regression Assumptions�����������������������������������������������
	8.10 Inference in Regression�����������������������������������
	8.11 t-Test for the Relationship Between x and y�������������������������������������������������������
	8.12 Confidence Interval for the Slope of the Regression Line��������������������������������������������������������������������
	8.13 Confidence Interval for the Correlation Coefficient ρ
	8.14 Confidence Interval for the Mean Value of y Given x���������������������������������������������������������������
	8.15 Prediction Interval for a Randomly Chosen Value of y Given x������������������������������������������������������������������������
	8.16 Transformations to Achieve Linearity������������������������������������������������
	8.17 Box-Cox Transformations�����������������������������������
	The R Zone�����������������
	R References�������������������
	Exercises����������������

	Chapter 9 Multiple Regression and Model Building�������������������������������������������������������
	9.1 An Example of Multiple Regression��������������������������������������������
	9.2 The Population Multiple Regression Equation������������������������������������������������������
	9.3 Inference in Multiple Regression�������������������������������������������
	9.3.1 The t-Test for the Relationship Between y and xi�������������������������������������������������������������
	9.3.2 t-Test for Relationship Between Nutritional Rating and Sugars��������������������������������������������������������������������������
	9.3.3 t-Test for Relationship Between Nutritional Rating and Fiber Content���������������������������������������������������������������������������������
	9.3.4 The F-Test for the Significance of the Overall Regression Model����������������������������������������������������������������������������
	9.3.5 F-Test for Relationship between Nutritional Rating and {Sugar and Fiber}, Taken Together�����������������������������������������������������������������������������������������������������
	9.3.6 The Confidence Interval for a Particular Coefficient, βi
	9.3.7 The Confidence Interval for the Mean Value of y, Given x1, x2, ..., xm
	9.3.8 The Prediction Interval for a Randomly Chosen Value of y, Given x1, x2, ..., xm

	9.4 Regression with Categorical Predictors, Using Indicator Variables����������������������������������������������������������������������������
	9.5 Adjusting R2: Penalizing Models for Including Predictors that are not Useful���������������������������������������������������������������������������������������
	9.6 Sequential Sums of Squares�������������������������������������
	9.7 Multicollinearity����������������������������
	9.8 Variable Selection Methods�������������������������������������
	9.8.1 The Partial F-Test�������������������������������
	9.8.2 The Forward Selection Procedure��������������������������������������������
	9.8.3 The Backward Elimination Procedure�����������������������������������������������
	9.8.4 The Stepwise Procedure�����������������������������������
	9.8.5 The Best Subsets Procedure���������������������������������������
	9.8.6 The All-Possible-Subsets Procedure�����������������������������������������������

	9.9 Gas Mileage Data Set�������������������������������
	9.10 An Application of Variable Selection Methods��������������������������������������������������������
	9.10.1 Forward Selection Procedure Applied to the Gas Mileage Data Set�����������������������������������������������������������������������������
	9.10.2 Backward Elimination Procedure Applied to the Gas Mileage Data Set��������������������������������������������������������������������������������
	9.10.3 The Stepwise Selection Procedure Applied to the Gas Mileage Data Set����������������������������������������������������������������������������������
	9.10.4 Best Subsets Procedure Applied to the Gas Mileage Data Set������������������������������������������������������������������������
	9.10.5 Mallows' Cp Statistic�����������������������������������

	9.11 Using the Principal Components as Predictors in Multiple Regression�������������������������������������������������������������������������������
	The R Zone�����������������
	R References�������������������
	Exercises����������������


	Part III Classification������������������������������
	Chapter 10  k-Nearest Neighbor Algorithm�����������������������������������������������
	10.1 Classification Task�������������������������������
	10.2 k-Nearest Neighbor Algorithm����������������������������������������
	10.3 Distance Function�����������������������������
	10.4 Combination Function��������������������������������
	10.4.1 Simple Unweighted Voting��������������������������������������
	10.4.2 Weighted Voting�����������������������������

	10.5 Quantifying Attribute Relevance: Stretching the Axes����������������������������������������������������������������
	10.6 Database Considerations�����������������������������������
	10.7 k-Nearest Neighbor Algorithm for Estimation and Prediction����������������������������������������������������������������������
	10.8 Choosing k����������������������
	10.9 Application of k-Nearest Neighbor Algorithm Using IBM/SPSS Modeler������������������������������������������������������������������������������
	The R Zone�����������������
	R References�������������������
	Exercises����������������

	Chapter 11 Decision Trees��������������������������������
	11.1 What is a Decision Tree?������������������������������������
	11.2 Requirements for Using Decision Trees�������������������������������������������������
	11.3 Classification and Regression Trees�����������������������������������������������
	11.4 C4.5 Algorithm��������������������������
	11.5 Decision Rules��������������������������
	11.6 Comparison of the C5.0 and CART Algorithms Applied to Real Data���������������������������������������������������������������������������
	The R Zone�����������������
	R References�������������������
	Exercises����������������

	Chapter 12 Neural Networks���������������������������������
	12.1 Input and Output Encoding�������������������������������������
	12.2 Neural Networks for Estimation and Prediction���������������������������������������������������������
	12.3 Simple Example of a Neural Network����������������������������������������������
	12.4 Sigmoid Activation Function���������������������������������������
	12.5 Back-Propagation����������������������������
	12.6 Gradient-Descent Method�����������������������������������
	12.7 Back-Propagation Rules����������������������������������
	12.8 Example of Back-Propagation���������������������������������������
	12.9 Termination Criteria��������������������������������
	12.10 Learning Rate��������������������������
	12.11 Momentum Term��������������������������
	12.12 Sensitivity Analysis���������������������������������
	12.13 Application of Neural Network Modeling���������������������������������������������������
	The R Zone�����������������
	R References�������������������
	Exercises����������������

	Chapter 13 Logistic Regression�������������������������������������
	13.1 Simple Example of Logistic Regression�������������������������������������������������
	13.2 Maximum Likelihood Estimation�����������������������������������������
	13.3 Interpreting Logistic Regression Output���������������������������������������������������
	13.4 Inference: are the Predictors Significant?������������������������������������������������������
	13.5 Odds Ratio and Relative Risk����������������������������������������
	13.6 Interpreting Logistic Regression for a Dichotomous Predictor������������������������������������������������������������������������
	13.7 Interpreting Logistic Regression for a Polychotomous Predictor��������������������������������������������������������������������������
	13.8 Interpreting Logistic Regression for a Continuous Predictor�����������������������������������������������������������������������
	13.9 Assumption of Linearity�����������������������������������
	13.10 Zero-Cell Problem������������������������������
	13.11 Multiple Logistic Regression�����������������������������������������
	13.12 Introducing Higher Order Terms to Handle Nonlinearity������������������������������������������������������������������
	13.13 Validating the Logistic Regression Model�����������������������������������������������������
	13.14 WEKA: Hands-On Analysis Using Logistic Regression��������������������������������������������������������������
	The R Zone�����������������
	R References�������������������
	Exercises����������������

	Chapter 14 Naïve Bayes and Bayesian Networks
	14.1 Bayesian Approach�����������������������������
	14.2 Maximum a Posteriori (Map) Classification�����������������������������������������������������
	14.3 Posterior Odds Ratio��������������������������������
	14.4 Balancing the Data������������������������������
	14.5 Naïve Bayes Classification
	14.6 Interpreting the Log Posterior Odds Ratio�����������������������������������������������������
	14.7 Zero-Cell Problem�����������������������������
	14.8 Numeric Predictors for Naïve Bayes Classification
	14.9 WEKA: Hands-on Analysis Using Naïve Bayes
	14.10 Bayesian Belief Networks�������������������������������������
	14.11 Clothing Purchase Example��������������������������������������
	14.12 Using the Bayesian Network to Find Probabilities�������������������������������������������������������������
	14.12.1 WEKA: Hands-on Analysis Using Bayes Net������������������������������������������������������

	The R Zone�����������������
	R References�������������������
	Exercises����������������

	Chapter 15 Model Evaluation Techniques���������������������������������������������
	15.1 Model Evaluation Techniques for the Description Task����������������������������������������������������������������
	15.2 Model Evaluation Techniques for the Estimation and Prediction Tasks�������������������������������������������������������������������������������
	15.3 Model Evaluation Measures for the Classification Task�����������������������������������������������������������������
	15.4 Accuracy and Overall Error Rate�������������������������������������������
	15.5 Sensitivity and Specificity���������������������������������������
	15.6 False-Positive Rate and False-Negative Rate�������������������������������������������������������
	15.7 Proportions of True Positives, True Negatives, False Positives, and False Negatives�����������������������������������������������������������������������������������������������
	15.8 Misclassification Cost Adjustment to Reflect Real-World Concerns����������������������������������������������������������������������������
	15.9 Decision Cost/Benefit Analysis������������������������������������������
	15.10 Lift Charts and Gains Charts�����������������������������������������
	15.11 Interweaving Model Evaluation with Model Building��������������������������������������������������������������
	15.12 Confluence of Results: Applying a Suite of Models��������������������������������������������������������������
	The R Zone�����������������
	R References�������������������
	Exercises����������������

	Chapter 16 Cost-Benefit Analysis Using Data-Driven Costs���������������������������������������������������������������
	16.1 Decision Invariance Under Row Adjustment����������������������������������������������������
	16.2 Positive Classification Criterion���������������������������������������������
	16.3 Demonstration of the Positive Classification Criterion������������������������������������������������������������������
	16.4 Constructing the Cost Matrix����������������������������������������
	16.5 Decision Invariance Under Scaling���������������������������������������������
	16.6 Direct Costs and Opportunity Costs����������������������������������������������
	16.7 Case Study: Cost-Benefit Analysis Using Data-Driven Misclassification Costs���������������������������������������������������������������������������������������
	16.8 Rebalancing as a Surrogate for Misclassification Costs������������������������������������������������������������������
	The R Zone�����������������
	R References�������������������
	Exercises����������������

	Chapter 17  COST-BENEFIT ANALYSIS FOR TRINARY AND k-NARY CLASSIFICATION MODELS�������������������������������������������������������������������������������������
	17.1 Classification Evaluation Measures for a Generic Trinary Target���������������������������������������������������������������������������
	17.2 Application of Evaluation Measures for Trinary Classification to the Loan Approval Problem������������������������������������������������������������������������������������������������������
	17.3 Data-Driven Cost-Benefit Analysis for Trinary Loan Classification Problem�������������������������������������������������������������������������������������
	17.4 Comparing Cart Models with and without Data-Driven Misclassification Costs��������������������������������������������������������������������������������������
	17.5 Classification Evaluation Measures for a Generic k-Nary Target��������������������������������������������������������������������������
	17.6 Example of Evaluation Measures and Data-Driven Misclassification Costs for k-Nary Classification������������������������������������������������������������������������������������������������������������
	The R Zone�����������������
	R References�������������������
	Exercises����������������

	Chapter 18 Graphical Evaluation of Classification Models���������������������������������������������������������������
	18.1 Review of Lift Charts and Gains Charts��������������������������������������������������
	18.2 Lift Charts and Gains Charts Using Misclassification Costs����������������������������������������������������������������������
	18.3 Response Charts���������������������������
	18.4 Profits Charts��������������������������
	18.5 Return on Investment (ROI) Charts���������������������������������������������
	The R Zone�����������������
	R References�������������������
	Exercises����������������


	Part IV Clustering�������������������������
	Chapter 19  HIERARCHICAL AND k-MEANS CLUSTERING������������������������������������������������������
	19.1 The Clustering Task�������������������������������
	19.2 Hierarchical Clustering Methods�������������������������������������������
	19.3 Single-Linkage Clustering�������������������������������������
	19.4 Complete-Linkage Clustering���������������������������������������
	19.5 k-Means Clustering������������������������������
	19.6 Example of k-Means Clustering at Work�������������������������������������������������
	19.7 Behavior of MSB, MSE, and Pseudo-F as the k-Means Algorithm Proceeds��������������������������������������������������������������������������������
	19.8 Application of k-Means Clustering Using SAS Enterprise Miner������������������������������������������������������������������������
	19.9 Using Cluster Membership to Predict Churn�����������������������������������������������������
	The R Zone�����������������
	R References�������������������
	Exercises����������������

	Chapter 20 Kohonen Networks����������������������������������
	20.1 Self-Organizing Maps��������������������������������
	20.2 Kohonen Networks����������������������������
	20.3 Example of a Kohonen Network Study����������������������������������������������
	20.4 Cluster Validity����������������������������
	20.5 Application of Clustering Using Kohonen Networks������������������������������������������������������������
	20.6 Interpreting The Clusters�������������������������������������
	20.6.1 Cluster Profiles������������������������������

	20.7 Using Cluster Membership as Input to Downstream Data Mining Models������������������������������������������������������������������������������
	The R Zone�����������������
	R References�������������������
	Exercises����������������

	Chapter 21 Birch Clustering����������������������������������
	21.1 Rationale for Birch Clustering������������������������������������������
	21.2 Cluster Features����������������������������
	21.3 Cluster Feature Tree��������������������������������
	21.4 Phase 1: Building the CF Tree�����������������������������������������
	21.5 Phase 2: Clustering the Sub-Clusters������������������������������������������������
	21.6 Example of Birch Clustering, Phase 1: Building the CF Tree����������������������������������������������������������������������
	21.7 Example of Birch Clustering, Phase 2: Clustering the Sub-Clusters�����������������������������������������������������������������������������
	21.8 Evaluating the Candidate Cluster Solutions������������������������������������������������������
	21.9 Case Study: Applying Birch Clustering to the Bank Loans Data Set����������������������������������������������������������������������������
	21.9.1 Case Study Lesson One: Avoid Highly Correlated Inputs to Any Clustering Algorithm�����������������������������������������������������������������������������������������������
	21.9.2 Case Study Lesson Two: Different Sortings May Lead to Different Numbers of Clusters�������������������������������������������������������������������������������������������������

	The R Zone�����������������
	R References�������������������
	Exercises����������������

	Chapter 22 Measuring Cluster Goodness��������������������������������������������
	22.1 Rationale for Measuring Cluster Goodness����������������������������������������������������
	22.2 The Silhouette Method���������������������������������
	22.3 Silhouette Example������������������������������
	22.4 Silhouette Analysis of the IRIS Data Set����������������������������������������������������
	22.5 The Pseudo-F Statistic����������������������������������
	22.6 Example of the Pseudo-F Statistic���������������������������������������������
	22.7 Pseudo-F Statistic Applied to the IRIS Data Set�����������������������������������������������������������
	22.8 Cluster Validation������������������������������
	22.9 Cluster Validation Applied to the Loans Data Set������������������������������������������������������������
	The R Zone�����������������
	R References�������������������
	Exercises����������������


	Part V Association Rules�������������������������������
	Chapter 23 Association Rules�����������������������������������
	23.1 Affinity Analysis and Market Basket Analysis��������������������������������������������������������
	23.1.1 Data Representation for Market Basket Analysis������������������������������������������������������������

	23.2 Support, Confidence, Frequent Itemsets, and the a Priori Property�����������������������������������������������������������������������������
	23.3 How Does the a Priori Algorithm Work (Part 1)? Generating Frequent Itemsets���������������������������������������������������������������������������������������
	23.4 How Does the a Priori Algorithm Work (Part 2)? Generating Association Rules���������������������������������������������������������������������������������������
	23.5 Extension from Flag Data to General Categorical Data����������������������������������������������������������������
	23.6 Information-Theoretic Approach: Generalized Rule Induction Method�����������������������������������������������������������������������������
	23.6.1 J-Measure�����������������������

	23.7 Association Rules are Easy to do Badly��������������������������������������������������
	23.8 How can we Measure the Usefulness of Association Rules?�������������������������������������������������������������������
	23.9 Do Association Rules Represent Supervised or Unsupervised Learning?�������������������������������������������������������������������������������
	23.10 Local Patterns Versus Global Models������������������������������������������������
	The R Zone�����������������
	R References�������������������
	Exercises����������������


	Part VI Enhancing Model Performance������������������������������������������
	Chapter 24 Segmentation Models�������������������������������������
	24.1 The Segmentation Modeling Process���������������������������������������������
	24.2 Segmentation Modeling Using EDA to Identify the Segments��������������������������������������������������������������������
	24.3 Segmentation Modeling using Clustering to Identify the Segments���������������������������������������������������������������������������
	The R Zone�����������������
	R References�������������������
	Exercises����������������

	Chapter 25 Ensemble Methods: Bagging and Boosting��������������������������������������������������������
	25.1 Rationale for Using an Ensemble of Classification Models��������������������������������������������������������������������
	25.2 Bias, Variance, and Noise�������������������������������������
	25.3 When to Apply, and not to apply, Bagging����������������������������������������������������
	25.4 Bagging�������������������
	25.5 Boosting��������������������
	25.6 Application of Bagging and Boosting Using IBM/SPSS Modeler����������������������������������������������������������������������
	References�����������������
	The R Zone�����������������
	R Reference������������������
	Exercises����������������

	Chapter 26 Model Voting and Propensity Averaging�������������������������������������������������������
	26.1 Simple Model Voting�������������������������������
	26.2 Alternative Voting Methods��������������������������������������
	26.3 Model Voting Process��������������������������������
	26.4 An Application of Model Voting������������������������������������������
	26.5 What is Propensity Averaging?�����������������������������������������
	26.6 Propensity Averaging Process����������������������������������������
	26.7 An Application of Propensity Averaging��������������������������������������������������
	The R Zone�����������������
	R References�������������������
	Exercises����������������


	Part VII  Further Topics�������������������������������
	Chapter 27 Genetic Algorithms������������������������������������
	27.1 Introduction To Genetic Algorithms����������������������������������������������
	27.2 Basic Framework of a Genetic Algorithm��������������������������������������������������
	27.3 Simple Example of a Genetic Algorithm at Work���������������������������������������������������������
	27.3.1 First Iteration�����������������������������
	27.3.2 Second Iteration������������������������������

	27.4 Modifications and Enhancements: Selection�����������������������������������������������������
	27.5 Modifications and Enhancements: Crossover�����������������������������������������������������
	27.5.1 Multi-Point Crossover�����������������������������������
	27.5.2 Uniform Crossover�������������������������������

	27.6 Genetic Algorithms for Real-Valued Variables��������������������������������������������������������
	27.6.1 Single Arithmetic Crossover�����������������������������������������
	27.6.2 Simple Arithmetic Crossover�����������������������������������������
	27.6.3 Whole Arithmetic Crossover����������������������������������������
	27.6.4 Discrete Crossover��������������������������������
	27.6.5 Normally Distributed Mutation�������������������������������������������

	27.7 Using Genetic Algorithms to Train a Neural Network��������������������������������������������������������������
	27.8 WEKA: Hands-On Analysis Using Genetic Algorithms������������������������������������������������������������
	The R Zone�����������������
	R References�������������������
	Exercises����������������

	Chapter 28 Imputation of Missing Data��������������������������������������������
	28.1 Need for Imputation of Missing Data�����������������������������������������������
	28.2 Imputation of Missing Data: Continuous Variables������������������������������������������������������������
	28.3 Standard Error of the Imputation��������������������������������������������
	28.4 Imputation of Missing Data: Categorical Variables�������������������������������������������������������������
	28.5 Handling Patterns in Missingness��������������������������������������������
	Reference����������������
	The R Zone�����������������
	R References�������������������
	Exercises����������������


	Part VIII Case Study: Predicting Response to Direct-Mail Marketing�������������������������������������������������������������������������
	Chapter 29 Case Study, Part 1: Business Understanding, Data Preparation, and EDA���������������������������������������������������������������������������������������
	29.1 Cross-Industry Standard Practice for Data Mining������������������������������������������������������������
	29.2 Business Understanding Phase����������������������������������������
	29.3 Data Understanding Phase, Part 1: Getting a Feel for the Data Set�����������������������������������������������������������������������������
	29.4 Data Preparation Phase����������������������������������
	29.4.1 Negative Amounts Spent?�������������������������������������
	29.4.2 Transformations to Achieve Normality or Symmetry��������������������������������������������������������������
	29.4.3 Standardization�����������������������������
	29.4.4 Deriving New Variables������������������������������������

	29.5 Data Understanding Phase, Part 2: Exploratory Data Analysis�����������������������������������������������������������������������
	29.5.1 Exploring the Relationships between the Predictors and the Response���������������������������������������������������������������������������������
	29.5.2 Investigating the Correlation Structure among the Predictors��������������������������������������������������������������������������
	29.5.3 Importance of De-Transforming for Interpretation��������������������������������������������������������������


	Chapter 30 Case Study, Part 2: Clustering and Principal Components Analysis����������������������������������������������������������������������������������
	30.1 Partitioning the Data���������������������������������
	30.1.1 Validating the Partition��������������������������������������

	30.2 Developing the Principal Components�����������������������������������������������
	30.3 Validating the Principal Components�����������������������������������������������
	30.4 Profiling the Principal Components����������������������������������������������
	30.5 Choosing the Optimal Number of Clusters Using Birch Clustering��������������������������������������������������������������������������
	30.6 Choosing the Optimal Number of Clusters Using k-Means Clustering����������������������������������������������������������������������������
	30.7 Application of k-Means Clustering���������������������������������������������
	30.8 Validating the Clusters�����������������������������������
	30.9 Profiling the Clusters����������������������������������

	Chapter 31 Case Study, Part 3: Modeling And Evaluation For Performance And Interpretability��������������������������������������������������������������������������������������������������
	31.1 Do you Prefer the Best Model Performance, or a Combination of Performance and Interpretability?�����������������������������������������������������������������������������������������������������������
	31.2 Modeling and Evaluation Overview��������������������������������������������
	31.3 Cost-Benefit Analysis Using Data-Driven Costs���������������������������������������������������������
	31.3.1 Calculating Direct Costs��������������������������������������

	31.4 Variables to be Input to the Models�����������������������������������������������
	31.5 Establishing the Baseline Model Performance�������������������������������������������������������
	31.6 Models that use Misclassification Costs���������������������������������������������������
	31.7 Models that Need Rebalancing as a Surrogate for Misclassification Costs�����������������������������������������������������������������������������������
	31.8 Combining Models Using Voting and Propensity Averaging������������������������������������������������������������������
	31.9 Interpreting the Most Profitable Model��������������������������������������������������

	Chapter 32 Case Study, Part 4: Modeling and Evaluation for High Performance Only���������������������������������������������������������������������������������������
	32.1 Variables to be Input to the Models�����������������������������������������������
	32.2 Models that use Misclassification Costs���������������������������������������������������
	32.3 Models that Need Rebalancing as a Surrogate for Misclassification Costs�����������������������������������������������������������������������������������
	32.4 Combining Models using Voting and Propensity Averaging������������������������������������������������������������������
	32.5 Lessons Learned���������������������������
	32.6 Conclusions�����������������������
	Part 1: Summarization 1: Building Blocks of Data Analysis����������������������������������������������������������������
	Part 2: Visualization: Graphs and Tables for Summarizing and Organizing Data�����������������������������������������������������������������������������������
	Part 3: Summarization 2: Measures of Center, Variability, and Position�����������������������������������������������������������������������������
	Part 4: Summarization and Visualization of Bivariate Relationships�������������������������������������������������������������������������


	Index������������
	EULA�����������


