
Excess Inventory Model

- M = jumlah stok yang sudah ada saat ini di gudang
- Jika tidak ada kelebihan stok (q = 0) maka stok sebanyak M unit akan habis dalam waktu $T = \frac{M}{R}$ (jika R adalah laju permintaan per tahun maka t dalam satuan tahun)
- Jika ada kelebihan stok sebesar q > 0, maka stok yang dibutuhkan sebenarnya hanya sebesar M-q unit. Stok sebanyak M- q unit cukup untuk memenuhi kebutuhan selama $t=\frac{M-q}{R}$ tahun (jika R adalah laju permintaan per tahun). Selanjutnya t (dalam tahun) disebut sebagai time supply.
- Kita perlu menentukan berapa lama time supply yang optimal, t^* , yang dapat memaksimumkan (net benefit) penghematan biaya per tahun dengan menjual kembali kelebihan stok q unit dengan harga jual kembali $P_{\rm S} < P$ (P: harga beli per unit di awal).
- Total pengematan biaya terdiri dari pendapatan menjual kembali kelebihan stok + penghematan biaya simpan (karena sudah dijual sebagian) biaya pembelian kembali (setelah waktu time supply t) biaya pemesanan ulang (setelah stok M-q unit habis dalam waktu t).
- Pendapatan dari menjual kelebihan stok sebanyak q unit dengan harga Ps adalah $q \times P_s$

Berdasarkan formula time supply $t=\frac{M-q}{R}$, maka kelebihan stok q=M-t.R unit, sehingga pendapatan dari menjual kelebihan stok sebanyak q unit adalah $P_s(M-t.R)$

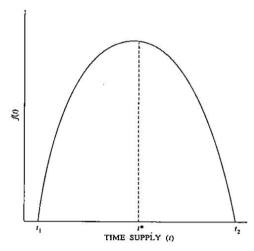
- Pengematan biaya simpan dari menjual kelebihan stok sebanyak q unit adalah selisih antara (1) biaya simpan stok sebanyak M unit sampai habis dalam waktu $T=\frac{M}{R}$ tahun dikurangi dengan (2) simpan stok sebanyak M- q unit selama time supply $t=\frac{M-q}{R}$ tahun dan (3) simpan stok selama sisa waktunya $(T-t)=\frac{q}{R}$ tahun menyimpan stok yang dipesan ulang sebanyak Q unit . Perhitungan biaya simpan = P x F x rata-rata inventory x lama waktu simpan
 - (1) Biaya simpan stok sebanyak M unit (rata-rata inventory = M/2) sampai habis dalam waktu $T=\frac{M}{R}$ tahun adalah $P\times F\times \frac{M}{2}\times \frac{M}{R}=P\times F\times \frac{M^2}{2R}$
 - (2) Biaya simpan stok sebanyak M- q unit (rata-rata inventory $=\frac{M-q}{2}$) selama time supply $t=\frac{M-q}{R}$ tahun adalah $P\times F\times \frac{M-q}{2}\times \frac{M-q}{R}=P\times F\times \frac{(M-q)^2}{2R}$
 - (3) Biaya simpan stok sebanyak q unit yang dibeli ulang dengan jumlah pemesanan sebanyak Q unit (rata-rata inventory $=\frac{Q}{2}$) dalam waktu $t=\frac{q}{R}$ tahun adalah $P\times F\times \frac{Q}{2}\times \frac{q}{R}=P\times F\times \frac{Qq}{2R}$

Jadi penghematan biaya simpan sebesar (1) - (2) - (3) =

$$P \times F \times \frac{M^2}{2R} - P \times F \times \frac{(M-q)^2}{2R} - P \times F \times \frac{Qq}{2R}$$

substitusi q dengan $q = M - tR$

holding cost savings
$$= \frac{M^2PF}{2R} - \frac{(M-q)^2PF}{2R} - \frac{QqPF}{2R}$$
$$= \frac{M^2PF}{2R} - \frac{RPFt^2}{2} - \frac{MQPF}{2R} + \frac{QPFt}{2},$$


Menjadi

- Biaya pembelian ulang sebanyak q unit dengan harga P adalah $P \times q = P \times (M tR)$
- Biaya pesanan ulang menggantikan kelebihan q unit yang sudah dijual, dengan jumlah tiap pesanan sebanyak Q unit dan biaya sekali pesan C adalah $C \frac{q}{o} = C \frac{M-tR}{o}$
- Sehingga total penghematan biaya adalah

net benefit = salvage revenue + holding cost savings - repurchase costs - reorder costs, salvage revenue =
$$qP_s = P_s(M - tR) = P_sM - P_sRt$$
, holding cost savings = $\frac{M^2PF}{2R} - \frac{(M-q)^2PF}{2R} - \frac{QqPF}{2R}$ = $\frac{M^2PF}{2R} - \frac{RPFt^2}{2} - \frac{MQPF}{2R} + \frac{QPFt}{2}$, repurchase costs = $Pq = PM - PRt$, reorder costs = $\frac{Cq}{O} = \frac{CM}{O} - \frac{CRt}{O}$,

$$f(t) = -\frac{RPFt^2}{2} + \left(PR - P_sR + \frac{QPF}{2} + \frac{CR}{Q}\right)t$$
$$+ \frac{M^2PF}{2R} - \frac{MQPF}{2R} + P_sM - PM - \frac{CM}{Q}.$$

 Penghematan biaya sebagai fungsi time supply t merupakan fungsi kuadratik berbentuk parabola terbuka ke bawah (karena t² memiliki koefisien negatif) seperti pada gambar berikut.

 Nilai optimal time supply, t*, yang dapat memaksimumkan total penghematan biaya diperoleh dari turunan pertama set sama dengan nol

$$f'(t) = -RPFt + \left(PR - P_sR + \frac{QPF}{2} + \frac{CR}{Q}\right) = 0,$$

$$t^* = \frac{P - P_s + C/Q}{PF} + \frac{Q}{2R}.$$

• Jika julah pemesanan ulang sebanyak EOQ, maka time supply optimal berkurang menjadi

$$t^{\bullet} = \frac{Q^{\bullet}}{R} + \frac{P - P_s}{PF}.$$

 Minimum economic salvage value adalah minimum nilai jual kembali kelebihan stok, Ps, yang menghasilkan nilai penghematan biaya sebesar NOL.

$$f(t) = -\frac{RPFt^2}{2} + \left(PR - P_sR + \frac{QPF}{2} + \frac{CR}{Q}\right)t$$
$$+ \frac{M^2PF}{2R} - \frac{MQPF}{2R} + P_sM - PM - \frac{CM}{Q}.$$

$$f(t) = 0$$

Penghematan biaya sebesar NOL saat time supply optimal $t^* = \frac{M}{R}$, maka

$$t^{\bullet} = \frac{M}{R} = \frac{P - P_s + C/Q}{PF} + \frac{Q}{2R}.$$

Berdasarkan persamaan di atas, maka minimum nilai jual kembali minimum adalah

$$P_s^{\bullet} = P + \frac{C}{Q} - \frac{PF(M - Q/2)}{R}.$$

- Sebelum menjual kelebihan stok kita perlu cek terlebih dahulu, stok sebanyak M unit bisa untuk memenuhi demand berapa lama → M/R tahun
- Selanjutnya kita bandingkan dengan time supply yang ekonomis, apakah $\frac{M}{R} > t^*$? Jika tidak berarti stok sebanyak M tidak berlebihan dan tidak perlu dijual kembali.
- Jika $\frac{M}{R} > t^*$, kita cek apakah leadtime pengiriman L > t^* ?

 Jika L $\leq t^*$, maka kelebihan yang bisa dijual jika harga jual kembali melebihi minimum P_s^* adalah sebanyak $\left(\frac{M}{R} t^*\right) R$ unit.

Jika L > t*, maka kelebihan yang bisa dijual jika harga jual kembali melebihi minimum P_s^* adalah sebanyak $\left(\frac{M}{R}-L\right)R$ unit

Berikut cara pengambilan keputusan stok sebanyak M perlu dijual sebagian karena berlebihan atau tidak perlu.

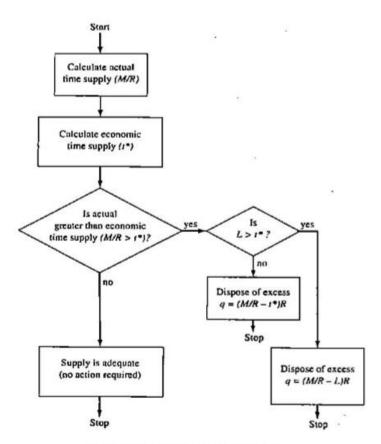


FIGURE 6-4 Excess stock determination

SOAL-SOAL

- 1. Jelaskan apa yang dimaksud dengan Excess Inventory Model, data yang dibutuhkan dan keputusan apa saja yang perlu diambil?
- 2. Faktor apa saja yang menyebabkan terjadinya excess inventory?
- 3. Bagaimana cara penanganan jika terjadi excess inventory?
- 4. Jelaskan indicator terjadi excess inventory di perusahaan.
- 5. Bagaimana cara menghitung Inventory turnover, jika terjadi excess inventory maka nilai inventory turnover adalah TINGGI atau RENDAH?
- 6. Jika NRP Anda adalah 160318xyz, maka untuk kasus berikut:
 Saat ini di gudang tersedia stok sebanyak 4 digit terakhir NRP Anda (yaitu 8xyz unit).
 Kebutuhan untuk 1 tahun sebanyak 8xyz/0,9 unit. Produk tersebut dibeli dari supplier dengan harga per unit sebesar Rp. 18xyz. Fraksi biaya simpan per tahun sebesar 30%. Jika harga jual kembali per unit sebesar 80% dari harga beli ke supplier dan biaya pemesanan ulang 6 digit terakhir NRP Anda (yaitu Rp. 318.xyz) dan jumlah pemesanan sebanyak 8xyz/10 unit. Leadtime pemesanan selama 6 bulan.
 - a. Tentukan berapa lama stok di Gudang akan habis
 - b. Tentukan economic time supply yang optimal
 - c. Tentukan kelebihan stok yang perlu dijual kembali, jika ada
 - d. Tentukan maksimum total penghematan biaya
 - e. Tentukan minimum harga jual kembali, sehingga total penghematan biaya = NOL.
 - f. Jika jumlah pemesanan ulang menggunakan EOQ, tentukan nilai EOQ dan hitung soal b, c, d dan e.

DO IT YOUR BEST