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Operator D

/
Dy =y

Contoh D%y = D(Dy) = y",

y” - ay’ + by = 0
Iy = vy

[ = P(D) = D? + aD + bl,

Ly = P(D)y = (D*> + aD + bl)y = 0.

L operator linier

L(cy + kw) = cLy + kLw.

Le'(x) = P(D)e\(x) = (D? + aD + bhe'(x)

= (A* + a) + b)e™ = PV

0.



Factorization, Solution of an ODE

Factor P(D) = D* — 3D — 401 and solve P(D)y = 0.

Solution. D* - 3D - 401 = (D - 81)(D + 5I) because I° = I. Now (D — 8)y = y' — 8y = 0 has the
solution y; = & Simularly, the solution of (D + 3I)y = 015 yy = e~ This is a basis of P(D)y = 0 on any
interval. From the factorization we obtain the ODE, as expected,

(D-8I)D +5I)y=(D -8y +5) =Dy +5y) - 84" + 5

=y 4+ 5 =8 —4d0y=y" -3 - 40y =0

Verify that this agrees with the result of our method in Sec. 2.2. This 1s not unexpected because we factored
P(D) n the same way as the characteristic polynomial P(A) = A2 - 3\ - 40, B



dzy dy
— 2= 1+t y=10
dx? dx J

(D* —2D +1)y =0
Or (D—-1)72y=0
Let (D—-1)y=u
Then (D—1)u=0
u= Ae"
(D—1)y = Ae*

dy |
— —y=Ae
d;'-!l' Y ‘

ye "=Ax + B
y = (Ax+ B)e*



Sifat operator D

(D — GJ) = e De” " L(y) = (aD? +bD + ¢)y = ¢(D)y = 0,

(D _ al)-n, — EGIDHB—HI
$(D) = (aD? + bD + ¢)

d d |
Y9 ay = e ( (ﬁ_w’!})) 2.2 Cases (I) ( b* — dac > 0)

dax dax






2.3 Cases (II) ( b* —4ac =0)

@(D) — (D — T’l}z
L(y] - (-D — Tl)gy = ().

(D —r1)%y =e""D% "7y =
D(e™"y) =z = Ae(ri—r2)a
D*(e™*y) = 0.
(e""*y) = A+ Bu,
y = (A+ Bx)e"".

L(y) = (D —mr)"y =0.

» Y= (Al + Ao+ -+ + Aﬂg;ﬂ—l)erlx_



2.4 Cases (III) ( b* — 4ac < 0)

_ we My(x) = Acos px + Bsin uz,
1,2 = AL Ipu. /
(D) = (D — A)* + p?, /
L(y) = (D — \)? + p*)y = 0. ! y(z) = e (A cos ux + Bsin p)
/
. 2 2\, _ .
L(z) = (D T )z 0- _’ Dengan rl dan r2 adalah bil. kompleks
I
D(cos px) = —psin x, D(sinx) = pcosz, , : —i
(FGH,{LT) J4 S11 T, (HIIIT) JL COS I, , y(m) — e)\:x: (Ael’u‘m 4 Be m,m)
I
z(x) = Acos px + Bsin px. '
AT N2 ,.—Ax 2 '
(e D=e +_u)y=(). .

I
|
DQ(C—Aary) _I_P:2D—A;::y — (DA + ﬂﬂ)e—hxy — 0.



Example 1. ' +2/ +y=12
(D*+2D +I)(y) = x.
(D? +2D +1) = ¢(D)
(D +1)* = (e7"De”) (e "De") = e "D?e".
e D% (y) =z
P2

—(e"y) = e

xI

e'y=xe " =2+ Az +B, y=x-2+ Aze " + Be™".



Example 2. " -3y + 2y = ¢°.

(D* = 3D +2I)(y) = €".
(D?—3D+2I)=(D-I)(D - 2I)
(D—=1I)(D-2I)(y) =¢€". 2= (D -2I)

(D-1I)(z) = e,

z = xe’ + Ae”.

:=(D-2I)(y) o —2y=uze"+ Ae”

Y 0‘@ Penyelesaian Umum

Penyelesaian Partikulir



Example 3
y" + 2y + 5y = sin(x)
(D*+2D +5I)(y) = sin(x).

D? +2D 451 = (D +1)* +4I
Penyelesaian Umum: y (x)

Ae™ " cos(2x) + Be " sin(2x).



Example 4.
y" =3y "+ Ty =5y =0, y(0)=1,4'(0)=4"(0)=0

(D3 — 3D? + 7D — 3)(y) = 0.

d(r)=1r>=3r*+Tr—5=>r-1(r*=2r+5)=(r —1)[(r—1)2+4]

Ly) = (D®—-3D*+17D —3)(y)
= (D- )[(D - 1)% + 4] (y)
= [(D-1)"+4](D-1)(y)
= 0.
(D —1)(y) =0, (D —1)* +4](y) =
y(x) = cre’, y(x) = coe” cos(2x) + c3e” sin(2x),

y = c1e” + coe” cos(2x) + cze” sin(2x),



y = c1e” + coe” cos(2x) + cze” sin(2x).

(31-|—82=1,

Cl+¢2+203:0?
c1 — 3¢y +4cg3 =0,

C1 — 5/4.{.{_’:2 — —1/4.{.(33 — —1/2.



PD orde 2

my" + ky = 0.

| k
wo — E

y(f) = A cos wgt + B sin wgpt

y(t) = C cos (wgt — 96)

C=\A% + B2 dg tand = B/A.

Unstretched I
5o

spring = 0)
I
System at

rest

System in
motion

(a) (b) (c)

Fig. 33. Mechanical mass—spring system



(D Positive
) Zero } Initial velocity
(3) Negative
Fig. 34. Typical harmonic oscillations (4) and (4*) with the same y(0) = A and
different initial velocities y'(0) = wyB, positive (1), zero (2), negative (3)



Harmonic Oscillation of an Undamped Mass—Spring System

If a mass—spring system with an iron ball of weight W = 98 nt (about 22 1b) can be regarded as undamped, and
the spring is such that the ball stretches it 1.09 m (about 43 in.), how many cycles per minute will the system
execute? What will its motion be if we pull the ball down from rest by 16 ¢m (about 6 in.) and let it start with
zero initial velocity?

Solution. Hooke's law (1) with W as the force and 1.09 meter as the stretch gives W = 1.09k; thus
k= W/1.09 = 98/1.09 = 90 [kg/sec®] = 90 [nt/meter]. The mass is m = W/g = 98/9.8 = 10 [kg]. This
gives the frequency wo/(27) = Vk/m/(2m) = 3/(27) = 0.48 [Hz] = 29 [cycles/min].

From (4) and the initial conditions, v(0) = A = 0.16 [meter] and y'(0) = weB = 0. Hence the motion is

v(r) = 0.16 cos 3t [meter] or 0.52 cos 3r [ft] (Fig. 35).

If vou have a chance of experimenting with a mass—spring system. don’t miss it. You will be surprised about
the good agreement between theory and experiment, usually within a fraction of one percent if you measure

carefully. ||
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Fig. 35. Harmonic oscillation in Example 1



k Spring
m Ball
d S Dashpot
Fig. 36.

Damped system

ODE of the Damped System

Gaya peredam

Pers. Hukum Newton

Fo = —cy’,




Case 1. c? > 4mk. Distinct real roots Ay, As. (Overdamping)
Case II. ¢ = 4mk. A real double root. (Critical damping)

Case III. ¢? < 4dmk. Complex conjugate roots. (Underdamping)

Discussion of the Three Cases
Case |. Overdamping

y(t) = cle_{“_ﬁ}r’ + cze_(“"'mt.

(D) Positive
@) Zero Initial velocity
(3) Negative




2.2 Cases (I) ( b* —4ac > 0)

The polynomial ¢(r) have two distinct real roots ry > r5. Then,
d(D) = (D — r1)(D — ry) and re-write the equation as:

L(y) = (D —r1)(D — 1)y = 0.

letting
z = (D - T‘Z)y?



Case Il. Critical Damping

dengan c® = 4mk,

ﬂzﬂ,llzﬁgz—ﬂ.

y(1) = (¢1 + cot)e .

(D) Positive
(2) Zero Initial velocity
(3) Negative

Fig. 38. Critical damping [see (8)]



Case lll. Underdamping

(:2 < dmk.
1 k c?
y
dimana Sl g
~._Ce
/\ /X
A = —a + iw*, Ao = —a — Iw* \/ AN
o = {j/(Zm) HH;"IF—CE.'_M

_ —at " . wn _ o —at Yo _
(1) = e (A cos w*t + Bsinw*t) = Ce ™ cos (0¥t — 0) Fig. 39. Damped oscillation in Case Ill [see (10)]

C?=A*+ B> tand = B/A



The Three Cases of Damped Motion

Contoh

(I) ¢ = 100 kg/sec, (II) ¢ = 60 kg/sec, (III) ¢ = 10 kg/sec.

Nilai parameter sistem
m = 10 k = 90,

10v" + 100yv" + 90y = 0, y(0) = 0.16 [meter]. v (0) = 0.

dengan 10A% + 100A + 90 = 10X + 9)(A + 1) =0.  akar -9 & -1,
y = cre” " + coe” " Juga y' = =9¢c1e” — coe” "
cp + g = 0.16, —=9¢; — ¢5 = 0. cp = —0.02, 5 = 0.18.

y = —0.02¢77" + 0.18¢7".



(IT) The model is as before, with ¢ = 60 instead of 100. The characteristic equation now has the form
10A% + 60A + 90 = 10(A + 3)2 = 0. It has the double root —3. Hence the corresponding general solution is

3t

- ) —
y=1(cy + cot)e ™. We also need v = (c9 — 31 — deal)e 3t

The initial conditions give y(0) = ¢; = 0.16, y'([l) = ¢9 — 3c1 = 0,9 = 048, Hence in the critical case the
solution 1s

y = (0.16 + 0.487)e ™"

It is always positive and decreases to () in a monotone fashion.



(I1I) TI]{: .mudc:l now is 10y" + 10y’ + 90y = 0. Since ¢ = 10 is smaller than the critical ¢, we shall get
oscillations. The characteristic equation is 10AZ + 104 + 90 = 10[(A + %]2 + 9 — &] = (. It has the complex
roots [see (4) in Sec. 2.2 witha = 1 and b = 9]

A=—05+ V052 —9=—-05 + 2.96i
This gives the general solution
y = e~ 23%A cos 2.96r + B sin 2.961).
Thus v(0) = A = 0.16. We also need the derivative
vy = e 7 —0.5A cos 2.961 — 0.5B sin 2.961 — 2.96A sin 2.961 + 2.96B cos 2.961).
Hence y'(0) = —0.54 + 2.96B = 0, B = 0.5A/2.96 = 0.027. This gives the solution
y = e "9%0.16 cos 2.96¢ + 0.027 sin 2.961) = 0.162¢ 27" cos (2.96t — 0.17).

We see that these damped oscillations have a smaller frequency than the harmonic oscillations in Example 1 by
about 1% (since 2.96 is smaller than 3.00 by about 1%). Their amplitude goes to zero. See Fig. 40. [
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Fig. 40. The three solutions in Example 2



TEAM PROJECT. Harmonic Motions of Similar
Models. The unifying power of mathematical meth-
ods results to a large extent from the fact that different
physical (or other) systems may have the same or very
similar models. Illustrate this for the following three
systems

(a) Pendulum clock. A clock has a I-meter pendulum.
The clock ticks once for each time the pendulum
completes a full swing, returning to its original position.
How many times a minute does the clock tick?

(b) Flat spring (Fig. 45). The harmonic oscillations
of a flat spring with a body attached at one end and
horizontally clamped at the other are also governed by
(3). Find its motions, assuming that the body weighs
8 nt (about 1.8 1b), the system has its static equilibrium
1 cm below the horizontal line, and we let it start from
this position with initial velocity 10 cm/sec.

Fig. 45. Flat spring

Tugas Teamwork

d?y dy
0 ——6—+1=0
dz? dx
)
Hg 9 i
“;T + 2k % + n2e
dt= ¢

0
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