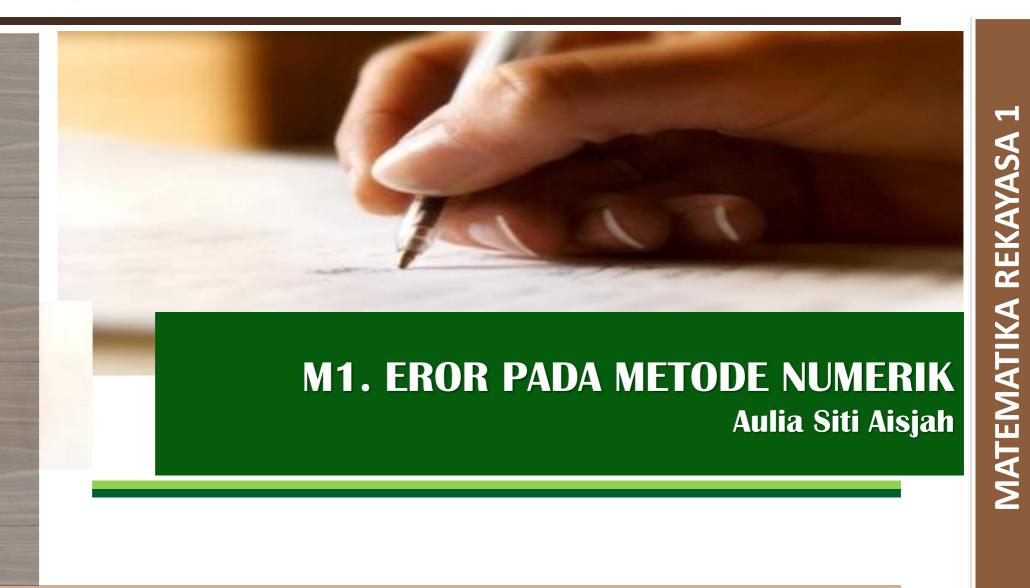


Institut Teknologi Sepuluh Nopember Surabaya



Pengantar

- Advanced Engineering Mathematics, Erwin Kreyszig, 2011
- 2. Numerical Methods, S. Nakamura

Pengantar

Materi

Contoh Soal

Ringkasan

Latihan

Asesmen

Pengantar

PART E

Chaps. 19–21 Numeric Analysis

Chap. 19 Numerics in General Chap. 20 Numeric Linear Algebra Chap. 21 Numerics for ODEs and PDEs

Numeric Analysis 787 Software 788			
CHAPTER 19 Numerics in General 790			
19.1 Introduction 790			
19.2 Solution of Equations by Iteration 798			
19.3 Interpolation 808			
19.4 Spline Interpolation 820			
19.5 Numeric Integration and Differentiation 827			
Chapter 19 Review Questions and Problems 841			
Summary of Chapter 19 842			

CHAPTER 20 Numeric Linear Algebra 844			
20.1 Linear Systems: Gauss Elimination 844			
20.2 Linear Systems: LU-Factorization, Matrix Inversion 852			
20.3 Linear Systems: Solution by Iteration 858			
20.4 Linear Systems: Ill-Conditioning, Norms 864			
20.5 Least Squares Method 872			
20.6 Matrix Eigenvalue Problems: Introduction 876			
20.7 Inclusion of Matrix Eigenvalues 879			
20.8 Power Method for Eigenvalues 885			
20.9 Tridiagonalization and QR-Factorization 888			
Chapter 20 Review Questions and Problems 896			
Summary of Chapter 20 898			

CHA	PTER 15 Power Series, Taylor Series	671		
15.1	Sequences, Series, Convergence Tests 671			
15.2	Power Series 680			
15.3	Functions Given by Power Series 685			
15.4	Taylor and Maclaurin Series 690			
15.5	Uniform Convergence. Optional 698			
Chapter 15 Review Questions and Problems 706				
Summary of Chapter 15 706				

CHAPTER 5 Series Solutions of ODEs. Special Functions 167

- 5.1 Power Series Method 167
- Legendre's Equation. Legendre Polynomials $P_n(x)$ 175

- 5.3 Extended Power Series Method: Frobenius Method 180
- 5.4 Bessel's Equation. Bessel Functions $J_{\nu}(x)$ 187
- 5.5 Bessel Functions of the $Y_{\nu}(x)$. General Solution 196

Chapter 5 Review Questions and Problems 200

Summary of Chapter 5 201

Model sistem → Model Matematis Penyelesaian

Penyelesaian analitis

Penyelesaian numerik

Perbedaan antara

Xtrue dengan Xappr = Error

Error = Xtrue - Xappr

Nilai yang benar (True value) = X true Nilai pendekatan (True value) = X appr

Tujuan:

Mampu menjelaskan beberapa eror yang terjadi pada metode numerik

CHAPTER 3

Approximations and Round-Off Errors 52

- 3.1 Significant Figures 53
- 3.2 Accuracy and Precision 55
- 3.3 Error Definitions 56
- 3.4 Round-Off Errors 62

CHAPTER 4

Truncation Errors and the Taylor Series 78

- 4.1 The Taylor Series 78
- 4.2 Error Propagation 94
- 4.3 Total Numerical Error 98
- 4.4 Blunders, Formulation Errors, and Data Uncertainty 103

Materi – Beberapa Definisi

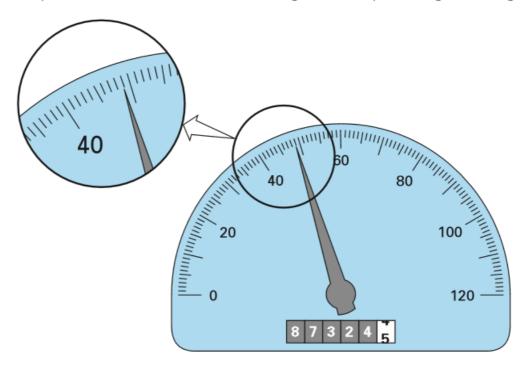
Error Approximation dan and Round-Off Errors

- Dalam beberapa permasalahan, sulit / tidak mendapatkan penyelesaian secara analitik.
- Metode numerik, merupakan metode pendekatan yang kan mendapatkan hasil / nilai pendekatan, yang dalam hal ini hasilnya sangat dekat dengan hasil penyelesaian analitik.
- Kita tidak bisa secara tepat mendapatkan error dari hasil penyelesaian secara numerik
 - Kadang data tidak eksak, karena hasil dari alat ukur.
 - Kemungkinan error dari masukan sebuah sistem
 - Sehingga keluaran sistem mengandung error

• • •

FIGURE 3.1

An automobile speedometer and odometer illustrating the concept of a significant figure.



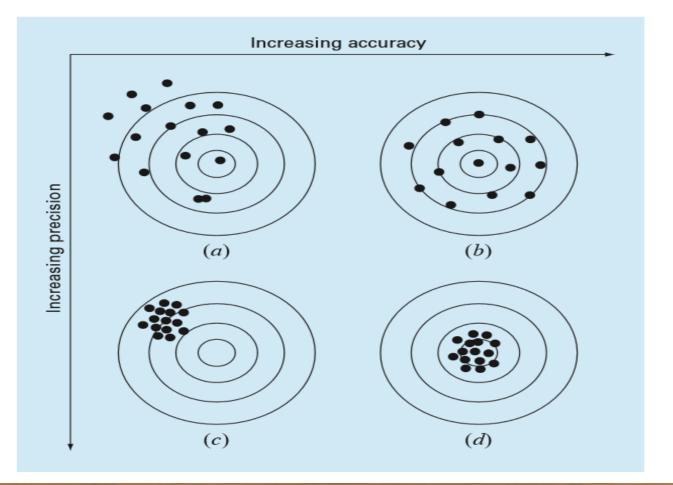
- Bagaimana tingkat kepercayaan kita terhadap hasil pendekatan?
- Seberapa besar error yang akan muncul dalam perhitungan kita dan apakah error tsb dalam batas toleransi?

Materi – beberapa definisi

- Accuracy. Seberapa dekat hasil perhitungan terhadap nilai yang benar
- Precision (or *reproducibility*). Seberapa dekat hasil perhitungan atau hasil pengukuran terhadap hasil perhitungan / pengukuran sebelumnya.
- Inaccuracy (or *bias*). Deviasi dari nilai yang benar.
- Imprecision (or *uncertainty*). Besar nya menyebar

FIGURE 3.2

An example from marksmanship illustrating the concepts of accuracy and precision. (a) Inaccurate and imprecise; (b) accurate and imprecise; (c) inaccurate and precise; (d) accurate and precise.



Materi - Significant Figures

• Angka signifikansi menggambarkan kepresisian. Digit signifikansi merupakan jumlah angka yang dapat digunakan dengan tingkat kepercayaan tertentu.

53.8<u>00</u> Berapa signifikansi number sari bilangan ini?

```
5,38 x 10<sup>4</sup>
5,380 x 10<sup>4</sup>
5,3800 x 10<sup>4</sup>
```

Nol kadang digunakan untuk menentukan angka signifikansi dalam desimal..

```
0,00001753
0,0001753
20,001753
```

Angka significant

SIGNIFICANT NUMBER

 $\pi = 3.141592653589793238462643...$

 $\pi = 3.14159$

 $\pi = 3.1416$

 $\pi = 3.145$

 $\pi = 3.14$

Berapa digit dibelakang koma ...

Akurasi dan Presisi

Seberapa dekat hasil perhitungan komputer dengan nilai yang "benar" / true value Seberapa dekat satu hasil perhitungan komputer dengan hasil yang lain

Contoh:

True Value = 15.00 Hasil perhitungan = 14.99

Contoh:

Hasil perhitungan ke 1= 15.00 Hasil perhitungan ke 2= 14.99

Definisi Error

True Value = Approximation + Error

E_t = True value – Approximation (+/-)

True error

True fractional relative error = $\frac{\text{true error}}{\text{true value}}$

True percent relative error, $\varepsilon_{\rm t} = \frac{\rm true\ error}{\rm true\ value} \times 100\%$

 Dalam metode numeri, True Value merupakan nilai hasil yang diperoleh dengan cara analitik. Dalam dunia riil aplikasi, seringkali kita tidak mendapatkan jawaban yang benar (sebelumnya)

$$\varepsilon_{\rm a} = \frac{{\rm Approximat\,e\,error}}{{\rm Approximat\,ion}} \times 100\%$$

Pendekatan secara iterasi, contoh dalam metode Newton

$$\varepsilon_{\rm a} = \frac{\text{Current approximation - Previous approximation}}{\text{Current approximation}} \times 100\%$$

- Gunakan nilai absolut
- Perhitungan dilakukan secra berulang sampai pada kriteria yang memenuhi.

$$|\mathcal{E}_a|\langle\mathcal{E}_s$$

Toleransi dalam persen (%) didasarkan pada pengetahuan / informasi dari penyelesaian sebelumnya

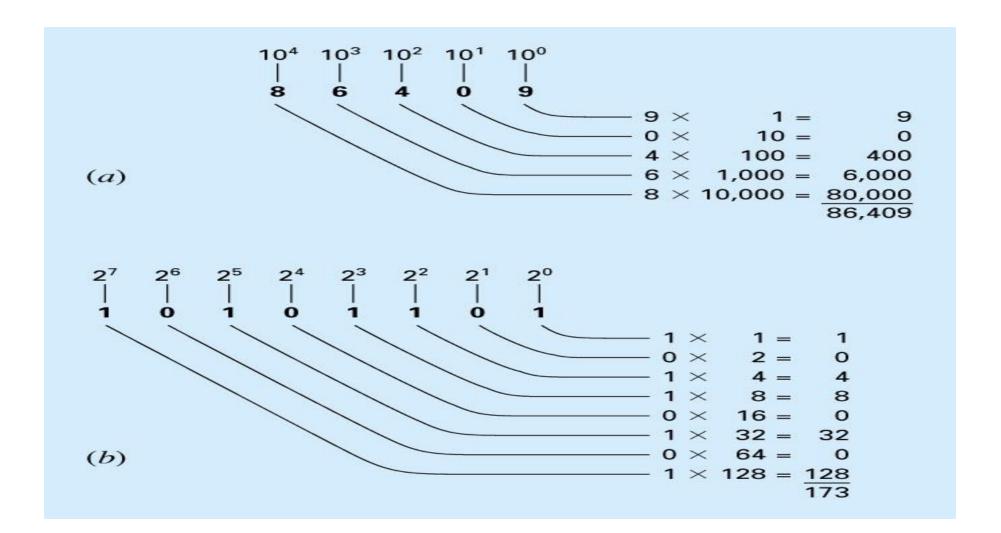
Jika memenuhi kriteria berikut ini

$$\varepsilon_{\rm s} = (0.5 \times 10^{(2-n)})\%$$

Dapat digunakan untuk mendapatkan hasil yang benar, dengan menggunakan sedikitnya n signifikan number

Materi Round-off Errors

- Bilangan seperti: π , e, or $\sqrt{7}$ tidak dapat dinyatakan dengan bilangan yang pasti atai dengan angka signifikan tertentu.
- Dua / lebih kalkulator dengan jenis dan beda merek tidak bisa memberikan hasil yang sama. Coba tekan angka $\sqrt{7}$ untuk 2 jenis kalk.
- Perhitungan dengan menggunakan komputer bergantung pada jenis, tipe, kapasitas, kemampuan semua koponen dan software yang digunakan



156.78

0.15678x10³ dalam sistem basis 10

$$\frac{1}{34}$$
 = 0.029411765

Perhatikan hanya 4 desimal

$$0.0294 \times 10^0$$
 $\frac{1}{2} \le |m| < 1$

 Dapat juga dituliskan dengan mengalikan dengan bilangan 10 dengan eksponen 1

$$0.2941 \times 10^{-1}$$

Pada saat dirubah dengan mengalikan dengan pangkat 10 yang lain, tetapi dengan tetap 4 signifikan number

Contoh

 π =3.14159265358 dapat disimpan dalam sistem based 10 dengan membawa 7 sign number.

$$\pi = 3.141592 \rightarrow \epsilon_{t} = 0.00000065$$

Dan dibulatkan

$$\pi = 3.141593 \rightarrow \epsilon_{t} = 0.00000035$$

• Beberapa mesin komputer menggunakan pembulatan

Truncation Errors and the Taylor Series

pemotongan suku pada deret Taylor

Taylor's Theorem

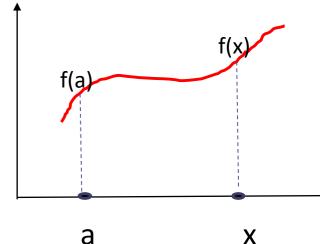
If the function f and its first n + 1 derivatives are continuous on an interval containing a and x, then the value of the function at x is given by

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^{2} + \frac{f^{(3)}(a)}{3!}(x - a)^{3} + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^{n} + R_{n}$$
(B4.1.1)

where the remainder R_n is defined as

$$R_n = \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$
 (B4.1.2)

Deret sampai dengan tak berhingga • Titik acuan adalah a



In a similar manner, additional terms can be included to develop the complete Taylor series expansion:

$$f(x_{i+1}) = f(x_i) + f'(x_i)(x_{i+1} - x_i) + \frac{f''(x_i)}{2!}(x_{i+1} - x_i)^2 + \frac{f^{(3)}(x_i)}{3!}(x_{i+1} - x_i)^3 + \dots + \frac{f^{(n)}(x_i)}{n!}(x_{i+1} - x_i)^n + R_n$$
(4.5)

It is often convenient to simplify the Taylor series by defining a step size $h = x_{i+1} - x_i$ and expressing Eq. (4.5) as

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + \frac{f^{(3)}(x_i)}{3!}h^3 + \dots + \frac{f^{(n)}(x_i)}{n!}h^n + R_n$$

(4.7)

where the remainder term is now

$$R_n = \frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1} \tag{4.8}$$

Contoh:

Deret pendekatan untuk fungsi f(x) = exp (x)

Problem Statement. In mathematics, functions can often be represented by infinite series. For example, the exponential function can be computed using

$$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!}$$
 (E3.2.1)

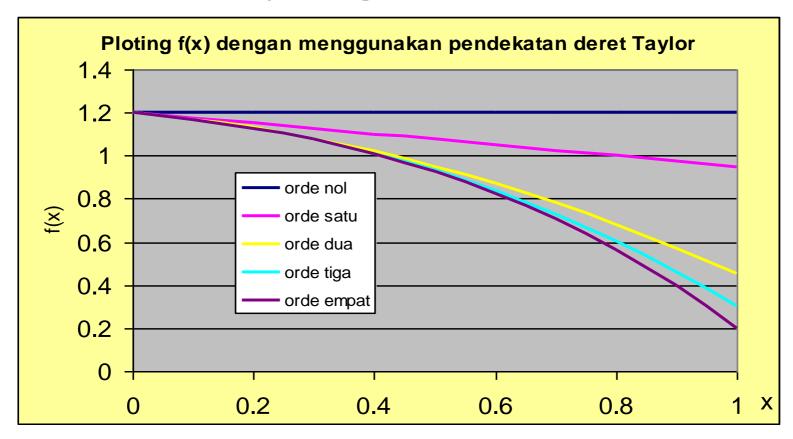
Mulai dengan exp (0) = 1, tentukan nilai pendekatan exp (0.5). Bila true Value untuk exp (0.5) = 1.648721

Dengan deret Taylor, (a) Orde 0, 1, 2, dan 3, (b) Tentukan True error, (c) Tentukan Error Aproximate

Deret Taylor 1 dimensi

$$f(x) = f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + \dots + \frac{h^m}{m!}f^{(m)}(a) + \dots$$

Pendekatan dalam $f(x) = -0.1x^4-0.15x^3-0.5x^2-0.25x+1.2$ pada x = 1, berdasarkan deret Taylor untuk orde nol, satu, dua, tiga dan empat



$$f(x,y) = f(a,b) + hf_x + gf_y + \frac{1}{2} \left[h^2 f_{xx} + 2hgfxy + g^2 f_{yy} \right] + \frac{1}{6} \left[\frac{h^3 f_{xxx} + 3h^2 g f_{xxy} + 1}{3hg^2 f_{xyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xxx} + 3h^2 g f_{xxy} + 1}{3hg^2 f_{xyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xxx} + 3h^2 g f_{xxy} + 1}{3hg^2 f_{xyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xxx} + 3h^2 g f_{xxy} + 1}{3hg^2 f_{xyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xxx} + 3h^2 g f_{xxy} + 1}{3hg^2 f_{xyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xxx} + 3h^2 g f_{xxy} + 1}{3hg^2 f_{xyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xxx} + 3h^2 g f_{xxy} + 1}{3hg^2 f_{xyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xxx} + 3h^2 g f_{xxy} + 1}{3hg^2 f_{xyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xxx} + 3h^2 g f_{xxy} + 1}{3hg^2 f_{xyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xxx} + 3h^2 g f_{xxy} + 1}{3hg^2 f_{xyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xxx} + 3h^2 g f_{xyy} + 1}{3hg^2 f_{xyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xxx} + 3h^2 g f_{xyy} + 1}{3hg^2 f_{xyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xxx} + 3h^2 g f_{xyy} + 1}{3hg^2 f_{xyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xxx} + 3h^2 g f_{xyy} + 1}{3hg^2 f_{xyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xxx} + 3h^2 g f_{xyy} + 1}{3hg^2 f_{xyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xxx} + 3h^2 g f_{xyy} + 1}{3hg^2 f_{xyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xxx} + 3h^2 g f_{xyy} + 1}{3hg^2 f_{xyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xxx} + 3h^2 g f_{xyy} + 1}{3hg^2 f_{xyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xxx} + 3h^2 g f_{xyy} + 1}{3hg^2 f_{xyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xyy} + 3h^2 g f_{yyy} + 1}{3hg^2 f_{xyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xyy} + 3h^2 g f_{yyy} + 1}{3hg^2 f_{xyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xyy} + 3h^2 g f_{yyy} + 1}{3hg^2 f_{yyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xyy} + 3h^2 g f_{yyy} + 1}{3hg^2 f_{yyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_{xyy} + 3h^2 g f_{yyy} + 1}{3hg^2 f_{yyy} + g^3 f_{yyy}} \right] + \frac{1}{6} \left[\frac{h^3 f_$$

$$\frac{1}{24} \Big[h^4 f_{xxxx} + 4h^3 g f_{xxxy} + 6h^2 g^2 f_{xxyy} + 4h g^3 f_{xyyy} + g^4 f_{yyyy} \Big] + \dots$$

Pers. 1.1.5

Deret Taylor dua dimensi

dimana h = x - a, g = y - b,
$$f_x = \frac{\partial}{\partial x} f(x, y) \Big|_{x=a, y=b}$$
, $f_y = \frac{\partial}{\partial y} f(x, y) \Big|_{x=a, y=b}$

1. Ekspansi deret Maclaurine untuk cos x adalah:

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

Dimulai dengan suku paling sederhana, cos x=1 tambahkan suku suku yang lain untuk mengestimasi cos $(\pi/3)$. Dan hitung errornya.

2. Gunakan deret Taylor sampai dengan orde empat untuk memprediksi nilai f(4) untuk $f(x) = \ln x$ dengan menggunakan titik acuan x = 1. Dan hitung eror relatifnya.

Soal – dikerjakan Upload 3 Nop 2017, 24.00

- 1. Gunakan deret Taylor sampai dengan orde empat untuk memprediksi nilai f(4) untuk $f(x) = \ln x$ dengan menggunakan titik acuan x = 1. Dan hitung eror relatifnya.
- 2. Dengan menggunakan orde ke nol sampai keempat dari deret Taylor untuk memprediksi f(2) untuk fungsi $f(x) = e^{-x}$ dengan titik acuan a = 1. Hitung error relatif untuk masing masing pendekatan.
- 3. Gunakan orde nol sampai ketiga dari deret Taylor untuk memprediksi f(3) pada fungsi:

$$f(x) = 25 x^3 - 6x^2 + 7x - 88$$

dengan titik acuan x = 2. Dan hitung error relatif untuk masing – masing pendekatan.

Semua perhitungan dalam metode numerik, Gunakan software:

- Excel
- Matlab
- MathCad
- dll

Untuk kerja kelompok

Bentuk kelompok dengan jumlah maksimal 4 mhs, dan urut NRP