CapaianPembelajaran: - Mampu menyelesaikan akar akar persamaan non linier dengan menggunakan metode regula falsi, biseksi, newton raphson dan secant - Mampu membandingkan kelebihan dan kekurangan keempat metode tersebut **03** Bisection 05 Secant Methods ## Solution of equation by iteration False Position Methods 02 Newton- 04 Raphson **Formulas for Errors.** If \tilde{a} is an approximate value of a quantity whose exact value is a, we call the difference $$\epsilon = a - \tilde{a}$$ the **error** of \tilde{a} . Hence (4*) $$a = \tilde{a} + \epsilon$$, True value = Approximation + Error. For instance, if $\tilde{a} = 10.5$ is an approximation of a = 10.2, its error is $\epsilon = -0.3$. The error of an approximation $\tilde{a} = 1.60$ of a = 1.82 is $\epsilon = 0.22$. The relative error ϵ_r of \widetilde{a} is defined by (5) $$\epsilon_r = \frac{\epsilon}{a} = \frac{a - \tilde{a}}{a} = \frac{\text{Error}}{\text{True value}} \qquad (a \neq 0).$$ This looks useless because a is unknown. But if $|\epsilon|$ is much less than $|\tilde{a}|$, then we can use \tilde{a} instead of a and get (5') $$\epsilon_r \approx \frac{\epsilon}{\widetilde{\alpha}}$$ The relative error ϵ_r of \widetilde{a} is defined by (5) $$\epsilon_r = \frac{\epsilon}{a} = \frac{a - \tilde{a}}{a} = \frac{\text{Error}}{\text{True value}} \qquad (a \neq 0).$$ This looks useless because a is unknown. But if $|\epsilon|$ is much less than $|\tilde{a}|$, then we can use \tilde{a} instead of a and get (5') $$\epsilon_r \approx \frac{\epsilon}{\widetilde{\alpha}}$$ # Prinsip dasar error Didalam setiap metode numerik harus terdapat perhitungan error. Jika tidak terdapat formulasi eror, maka hasil numerik tersebut akan menjadi complicated We can approximate the solution by doing a *linear interpolation* between $f(x_u)$ and $f(x_l)$ Find x_r such that $l(x_r)=0$, where l(x) is the linear approximation of f(x)between x_l and x_u Derive x_r using similar triangles $$x_r = \frac{x_U f(x_L) - x_L f(x_U)}{f(x_L) - f(x_U)}$$ ## Basis of False Position Method $\frac{0-f(x_L)}{-g(x_U)} - \frac{0-f(x_U)}{-g(x_U)}$ $X_r - X_T$ $X_r - X_T$ From Equation (4), one obtains $$(x_r - x_I) f(x_{II}) = (x_r - x_{II}) f(x_I)$$ $$(x_r - x_L)f(x_U) = (x_r - x_U)f(x_L)$$ $$x_U f(x_L) - x_L f(x_U) = x_r \{ f(x_L) - f(x_U) \}$$ The above equation can be solved to obtain the next predicted root $$x_m$$ as $x_U f(x_L) - x_L f(x_U)$ $$x_r = \frac{x_U f(x_L) - x_L f(x_U)}{f(x_L) - f(x_U)}$$ The above equation, through simple algebraic manipulations, can also be expressed as The above equation, through simple algebraic manipulations, can also be expressed as The above equation, through simple algebraic manipulations, can also be expressed as $$x_r = x_U - \frac{f(x_U)}{\left[f(x_U) - f(x_U)\right]}$$ $$x_r = x_U - \frac{f(x_U)}{\left(f(x_L) - f(x_U)\right)}$$ $x_r = x_U - \frac{f(x_U)}{\left\{\frac{f(x_L) - f(x_U)}{x_L - x_U}\right\}} \longrightarrow x_r = x_U - \frac{f(x_U)(x_l - x_U)}{f(x_l) - f(x_U)}$ or $$x_{L} - x_{U}$$ $$x_{r} = x_{L} - \frac{f(x_{L})}{\left\{\frac{f(x_{U}) - f(x_{L})}{x_{U} - x_{L}}\right\}}$$ Based on two similar triangles, shown in Figure 1, one gets 1. Choose x_L and x_U as two guesses for the root such that $f(x_L)f(x_U) < 0$, or in other words, f(x) changes sign between x_L and x_U . 2. Estimate the root, x_r of the equation f(x) = 0 as $$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$ 3. Now check the following If $f(x_L)f(x_r) < 0$, then the root lies between x_L and x_r ; then $x_L = x_L$ and $x_U = x_r$. If $f(x_L)f(x_r) > 0$, then the root lies between x_r and x_U ; then $x_L = x_r$ and $x_U = x_U$. If $f(x_L)f(x_r) = 0$, then the root is x_r . Stop the algorithm. 4. Find the new estimate of the root $$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$ Find the absolute relative approximate error as $$\left| \in_a \right| = \left| \frac{x_r^{new} - x_r^{old}}{x_r^{new}} \right| \times 100$$ where x_r^{new} = estimated root from present iteration x_r^{old} = estimated root from previous iteration 5. Compare the absolute relative approximate error $|\epsilon_a|$ with the pre-specified relative error tolerance ϵ_s . If $|\epsilon_a| > \epsilon_s$, then go to step 3, else stop the algorithm. Note one should also check whether the number of iterations is more than the maximum number of iterations allowed. If so, one needs to terminate the algorithm and notify the user about it. Note that the false-position and bisection algorithms are quite similar. The only difference is the formula used to calculate the new estimate of the root x_r as shown in steps #2 and #4! #### Example-1 Find a root of an equation $f(x) = x^3 - x - 1$ using False Position method #### Solution: Here $$x^3 - x - 1 = 0$$ Let $$f(x) = x^3 - x - 1$$ #### Here | x | 0 | 1 | 2 | |------|----|----|---| | f(x) | -1 | -1 | 5 | 1st iteration: Here $$f(1) = -1 < 0$$ and $f(2) = 5 > 0$ \therefore Now, Root lies between $x_0 = 1$ and $x_1 = 2$ $$x_2 = x_0 - f(x_0) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$ $$x_2 = 1 - (-1) \cdot \frac{2 - 1}{5 - (-1)}$$ $$x_2 = 1.16667$$ $$f(x_2) = f(1.16667) = -0.5787 < 0$$ 2nd iteration: $x_3 = 1.25311$ Here f(1.16667) = -0.5787 < 0 and f(2) = 5 > 0 \therefore Now, Root lies between $x_0 = 1.16667$ and $x_1 = 2$ $$x_3 = x_0 - f(x_0) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$ $$x_3 = 1.16667 - (-0.5787) \cdot \frac{2 - 1.16667}{5 - (-0.5787)}$$ $$f(x_3) = f(1.25311) = -0.28536 < 0$$ 3rd iteration: Here $$f(1.25311) = -0.28536 < 0$$ and $f(2) = 5 > 0$ $$\therefore$$ Now, Root lies between $x_0 = 1.25311$ and $x_1 = 2$ $$x_4 = x_0 - f(x_0) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$ $$x_4 = 1.25311 - (-0.28536) \cdot \frac{2 - 1.25311}{5 - (-0.28536)}$$ $$x_4 = 1.29344$$ $$f(x_4) = f(1.29344) = -0.12954 < 0$$ Here f(1.29344) = -0.12954 < 0 and f(2) = 5 > 0 $$\therefore$$ Now, Root lies between $x_0 = 1.29344$ and $x_1 = 2$ $$x_5 = x_0 - f(x_0) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$ $$x_5 = 1.29344 - (-0.12954) \cdot \frac{2 - 1.29344}{5 - (-0.12954)}$$ $$x_5 = 1.31128$$ $$5 - (-0.12954)$$ $$x_5 = 1.31128$$ $$f(x_5) = f(1.31128) = -0.05659 < 0$$ $x_{10} = 1.32453$ Here f(1.32428) = -0.00187 < 0 and f(2) = 5 > 0 $$\therefore$$ Now, Root lies between $x_0 = 1.32428$ and $x_1 = 2$ $$x_{10} = x_0 - f(x_0) \cdot \frac{x_1 - x_0}{}$$ $$x_{10} = x_0 - f(x_0) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$ $$x_{10} = 1.32428 - (-0.00187) \cdot \frac{2 - 1.32428}{5 - (-0.00187)}$$ $$_{10} = 1.32428 - (-0.00187) \cdot \frac{2 - 1.02 \cdot 126}{5 - (-0.00187)}$$ $$f(x_{10}) = f(1.32453) = -0.00079 < 0$$ Here $$f(1.32453) = -0.00079 < 0$$ and $f(2) = 5 > 0$ $$\therefore$$ Now, Root lies between $x_0 = 1.32453$ and $x_1 = 2$ $$x_{11} = x_0 - f(x_0) \cdot \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$ $$x_{11} = 1.32453 - (-0.00079) \cdot \frac{2 - 1.32453}{5 - (-0.00079)}$$ $$x_{11} = 1.32464$$ $$f(x_{11}) = f(1.32464) = -0.00034 < 0$$ Approximate root of the equation x^3 - x - 1 = 0 using False Position mehtod is 1.32464 | n | x_0 | $f(x_0)$ | <i>x</i> ₁ | $f(x_1)$ | x_2 | $f(x_2)$ | |----|---------|----------|-----------------------|----------|---------|----------| | 1 | 1 | -1 | 2 | 5 | 1.16667 | -0.5787 | | 2 | 1.16667 | -0.5787 | 2 | 5 | 1.25311 | -0.28536 | | 3 | 1.25311 | -0.28536 | 2 | 5 | 1.29344 | -0.12954 | | 4 | 1.29344 | -0.12954 | 2 | 5 | 1.31128 | -0.05659 | | 5 | 1.31128 | -0.05659 | 2 | 5 | 1.31899 | -0.0243 | | 6 | 1.31899 | -0.0243 | 2 | 5 | 1.32228 | -0.01036 | | 7 | 1.32228 | -0.01036 | 2 | 5 | 1.32368 | -0.0044 | | 8 | 1.32368 | -0.0044 | 2 | 5 | 1.32428 | -0.00187 | | 9 | 1.32428 | -0.00187 | 2 | 5 | 1.32453 | -0.00079 | | 10 | 1.32453 | -0.00079 | 2 | 5 | 1.32464 | -0.00034 | | | | | | | | | ### **Basis of Bisection Method** **Theorem** An equation f(x)=0, where f(x) is a real continuous function, has at least one root between x_l and x_u if $f(x_l)$ $f(x_u) < 0$. **Figure 1** At least one root exists between the two points if the function is real, continuous, and changes sign. http://numericalmethods.eng.usf.edu ### **Basis of Bisection Method** **Figure 2** If function f(x) does not change sign between two points, roots of the equation f(x)=0 may still exist between the two points. ### **Basis of Bisection Method** **Figure 3** If the function f(x) does not change sign between two points, there may not be any roots for the equation f(x) = 0 between the two points. **Figure 4** If the function f(x) changes sign between two points, more than one root for the equation f(x) = 0 may exist between the two points. Choose x_{ℓ} and x_{u} as two guesses for the root such that $f(x_{\ell})$ $f(x_{u}) < 0$, or in other words, f(x) changes sign between x_{ℓ} and x_{u} . This was demonstrated in Figure 1. Estimate the root, x_m of the equation f(x) = 0 as the mid point between x, and x, as f(x) $$x_{m} = \frac{x_{\ell} + x_{u}}{2}$$ ### Now check the following - a) If $f(x_l)f(x_m) < 0$, then the root lies between x_ℓ and x_m ; then $x_\ell = x_\ell$; $x_u = x_m$. - b) If $f(x_l)f(x_m) > 0$, then the root lies between x_m and x_u ; then $x_\ell = x_m$; $x_u = x_u$. - c) If $f(x_l)f(x_m)=0$; then the root is x_m . Stop the algorithm if this is true. #### Find the new estimate of the root $$x_{m} = \frac{x_{\ell} + x_{u}}{2}$$ ### Find the absolute relative approximate error $$\left| \in_{a} \right| = \left| \frac{x_{m}^{new} - x_{m}^{old}}{x_{m}^{new}} \right| \times 100$$ #### where $$x_m^{old}$$ = previous estimate of root $$x_m^{new}$$ = current estimate of root Compare the absolute relative approximate error $|\epsilon_a|$ with the pre-specified error tolerance ϵ_s . Note one should also check whether the number of iterations is more than the maximum number of iterations allowed. If so, one needs to terminate the algorithm and notify the user about it. #### Example-1 1. Find a root of an equation $f(x) = x^3 - x - 1$ using Bisection method #### Solution: Here $x^3 - x - 1 = 0$ Let $f(x) = x^3 - x - 1$ Here | x | 0 | 1 | 2 | | |------|----|----|---|--| | f(x) | -1 | -1 | 5 | | - 1st iteration: - Here f(1) = -1 < 0 and f(2) = 5 > 0 - ∴ Now, Root lies between 1 and 2 - $x_0 = \frac{1+2}{2} = 1.5$ - $f(x_0) = f(1.5) = 0.875 > 0$ - 2nd iteration : - Here f(1) = -1 < 0 and f(1.5) = 0.875 > 0 - : Now, Root lies between 1 and 1.5 - $x_1 = \frac{1+1.5}{2} = 1.25$ - $f(x_1) = f(1.25) = -0.29688 < 0$: Now, Root lies between 1.25 and 1.5 $x_2 = \frac{1.25 + 1.5}{2} = 1.375$ Here f(1.25) = -0.29688 < 0 and f(1.5) = 0.875 > 0 3rd iteration: $$f(x_2) = f(1.375) = 0.22461 > 0$$ Here $$f(1.25) = -0.29688 < 0$$ and $f(1.375) = 0.22461 > 0$ Here $$f(1.25) = -0.29688 < 0$$ and $f(1.375) = 0$. Here $$f(1.25) = -0.29688 < 0$$ and $f(1.375) = 0$. \therefore Now, Root lies between 1.25 and 1.375 $$x_3 = \frac{1.25 + 1.375}{2} = 1.3125$$ $f(x_3) = f(1.3125) = -0.05151 < 0$ Here $$f(1.3125) = -0.05151 < 0$$ and $f(1.34375) = 0.08261 > 0$: Now, Root lies between 1.3125 and 1.34375 $$x_5 = \frac{1.3125 + 1.34375}{2} = 1.32812$$ $$f(x_5) = f(1.32812) = 0.01458 > 0$$ 6th iteration : $$7^{th}$$ iteration : Here $f(1.3125) = -0.05151 < 0$ and $f(1.32812) = 0.01458 > 0$ $$\therefore$$ Now, Root lies between 1.3125 and 1.32812 $$x_6 = \frac{1.3125 + 1.32812}{2} = 1.32031$$ $$f(x_6) = f(1.32031) = -0.01871 < 0$$ $$x_7 = \frac{1.32031 + 1.32812}{2} = 1.32422$$ $$f(x_7) = f(1.32422) = -0.00213 < 0$$ $$9^{th}$$ iteration : Here $f(1.32422) =$ Here $$f(1.32422) = -0.00213 < 0$$ and $f(1.32812) = 0.01458 > 0$ 8th iteration : $$x_8 = \frac{1.32422 + 1.32812}{2} = 1.32617$$ $f(x_8) = f(1.32617) = 0.00621 > 0$ $$\frac{2+1.32812}{2}=1$$ $$x_9 = \frac{1.32422 + 1.32617}{2} = 1.3252$$ Here f(1.32422) = -0.00213 < 0 and f(1.32617) = 0.00621 > 0 ∴ Now, Root lies between 1.32422 and 1.32617 10th iteration : Here $$f(1.32422) = -0.00213 < 0$$ and $f(1.3252) = 0.00204 > 0$ $x_{10} = \frac{1.32422 + 1.3252}{2} = 1.32471$ $f(x_{10}) = f(1.32471) = -0.00005 < 0$ $$f(x_9) = f(1.3252) = 0.00204 > 0$$ 11^{th} iteration: Approximate root of the equation $x^3 - x - 1 = 0$ using Bisection mehtod is 1.32471 | n | а | f(a) | b | f(b) | $c=\frac{a+b}{2}$ | f(c) | |----|---------|----------|---------|---------|-------------------|----------| | 1 | 1 | -1 | 2 | 5 | 1.5 | 0.875 | | 2 | 1 | -1 | 1.5 | 0.875 | 1.25 | -0.29688 | | 3 | 1.25 | -0.29688 | 1.5 | 0.875 | 1.375 | 0.22461 | | 4 | 1.25 | -0.29688 | 1.375 | 0.22461 | 1.3125 | -0.05151 | | 5 | 1.3125 | -0.05151 | 1.375 | 0.22461 | 1.34375 | 0.08261 | | 6 | 1.3125 | -0.05151 | 1.34375 | 0.08261 | 1.32812 | 0.01458 | | 7 | 1.3125 | -0.05151 | 1.32812 | 0.01458 | 1.32031 | -0.01871 | | 8 | 1.32031 | -0.01871 | 1.32812 | 0.01458 | 1.32422 | -0.00213 | | 9 | 1.32422 | -0.00213 | 1.32812 | 0.01458 | 1.32617 | 0.00621 | | 10 | 1.32422 | -0.00213 | 1.32617 | 0.00621 | 1.3252 | 0.00204 | | 11 | 1.32422 | -0.00213 | 1.3252 | 0.00204 | 1.32471 | -0.00005 | | | | | | | | | #### Tugas Penyelesaian Persamaan Non Linier Cari akar akar persamaan non linier dibawah dengan menggunakan metode regula falsi dan biseksi - 1. $2x^3-2x-5=0$, interval [1,2] - 2. $f(x) = 3x + \sin x e^x = 0$ $x_0 = 0, x_1 = 1, f_0 \times f_1 < 0$ - 3. $5\sin^2 x 8 \cos^5 x = 0$, interval [0.5, 1.5] - 4. $(x-2)^2$ $\ln x = 0$, interval [1,2]