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Capaian Pembelajaran

* Mahasiswa mampu menerapkan metode numerik (Euler, Taylor dan Rung-
kutta) untuk penyelesaian persamaan diferensial dan integral tertentu



Numerical Differentiation

 Estimate the derivatives (slope, curvature, etc.)
of a function by using the function values at only
a set of discrete points

 Ordinary differential equation (ODE)
* Partial differential equation (PDE)



Euler's Method
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Figure 1 Graphical interpretation of the first step of Euler’s method
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Euler’'s Method
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Figure 2. General graphical interpretation of Euler’s method



How to write Ordinary Differential
Equation

How does one write a first order differential equation in the form of
dy

2 = f(x,

o= fxy)

Example

j—i +2y=1.3e7%,y(0)=5

IS rewritten as
W g e 2y,y(0)=5
dx

In this case

f(x,y)=13e"% -2y



Example

A ball at 1200K is allowed to cool down in air at an ambient temperature

of 300K. Assuming heat is lost only due to radiation, the differential
equation for the temperature of the ball is given by

‘Z—f — 22067 x1072(9* —81x10° ), 6(0) = 1200K

Find the temperature at t =480 seconds using Euler’s method. Assume a step size of

h=240 seconds.



Step 1.

% — —2.2067 x1072(6* —81x10° )

f(t,0)=—2.2067x10 2(0* —81x10°)
0.,=0+1(t.6)h
6, =6,+ f(t,,6,)h
=1200 + f(0,1200)240
=1200 + (— 2.2067 x102(1200* — 81x10° )240
=1200 + (- 4.5579)240

=106.09K
G, is the approximate temperature at t=t =t,+h=0+240=240

6(240) ~ 6, =106.09K



Step2: For i=1 t =240, 6, =106.09

0,=6,+ f(t,6,)h
=106.09 + f(240,106.09)240

=106.09 + (— 2.2067 x10 2 (106.09* —81x10° )}240
=106.09 +(0.017595)240
=110.32K

6@, Is the approximate temperature at t=t, =t, + h=240+240 = 480

6(480)~ 6, =110.32K



The exact solution of the ordinary differential equation is given by the
solution of a non-linear equation as

6 —-300
6+ 300

0.92593In —1.8519tan*(0.003330) = —0.22067 x 103t — 2.9282

The solution to this nonlinear equation at t=480 seconds is

0(480) = 647.57K



The exact solution of the ordinary differential equation is given by the
solution of a non-linear equation as

6 —300
6+ 300

0.92593In —1.8519tan(0.003330) = —0.22067 x10~°t — 2.9282

The solution to this nonlinear equation at t=480 seconds is

6(480) = 647.57K



Comparison of Exact and
Numerical Solutions
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Figure 3. Comparing exact and Euler’s method



Table 1. Temperature at 480 seconds as a function of step size, h

Step, 7 | 6(480) E, |€.|%

480 |—987.81| 1635.4 | 252.54
240 110.32 | 537.26 | 82.964
120 546.77 | 100.80 | 15.566
60 614.97 | 32.607 | 5.0352
30 632.77 | 14.806 | 2.2864

0(480) =647.57K  (exact)



Comparison with exact
results
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Figure 4. Comparison of Euler’s method with exact solution for different step sizes



Errors in Euler’s Method

It can be seen that Euler’s method has large errors. This can be illustrated using
Taylor series.

dy

d?y
.o =V. +—=
y|+1 yl dX

1
21 dx?

(Xi+l — X )+
Xi i

Xi 1 Yi

As you can see the first two terms of the Taylor series

Yin=Yit f(Xi i )h are the Euler’'s method.

The true error in the approximation is given by

E :Mhz_i_mh?;_l_ E OCh2
t 2! 3 t



Numerical Differentiation

* Represent the function by Taylor polynomials or
Lagrange interpolation

« Evaluate the derivatives of the interpolation
polynomial at selected nodal points



Numerical Differentiation

A Taylor series or Lagrange interpolation of points can be used to find

the derivatives. The Taylor series expansion is defined as:

df
£ (%)= F (X )+ Ax—
()= )+ x>

+(Ax)2 d*f

3 43
x) & +(Ax) d®f

3 dx®

+ ...

X=Xo X=X X=Xg

AX =X, — X,

)= £06 )+ (- x0) 1 )+ B0 o) 0200 o)




First Derivative at a Point

F'(x)

____________

5 7 'i 7
[+2



Numerical Differentiation

Use the Taylor series expansion to represent three points about single

location:




Numerical Differentiation

Assume that the data points are “equally spaced”
and the equations can be written as:

(AxY A fmix )

2! fr(x)+ 3l

f (Xi+1) =1 (Xi )"‘ (Ax)f ,(Xi )+




Forward Differentiation

For a forward first derivative, subtract egn[2] from egn[1]:

(Ax)

f(x0)— FOx)=(Ax)F'(x )+ o £(x )+

(A i)

3!
Rearrange the equation:
2 3
(001°06)= 1 (6.0) £06)~ L 1(00) - X ()




Forward Differentiation

As the Ax gets smaller the error will get smaller

f'(x, )= ( f ()= F X )j — Error

AX

The error is defined as:

(Ax)’
3

Error = (AT)I() f"(x. )+

£7(x )+ ..



Backward Differentiation

Subtract eqgn[3] from egn[2]:

f'(x, )= ( f(x)-f (X"l)j — Error

AX

The error is defined as:

(AX) ., (Ax)
Error = = f (x)+ A,

£7(x )+ ..



Central Differentiation

Subtract eqgn[3] from eqgn[1]:

f'(x, )= ( f ()1 (X"l)j — Error

2AX

The error is defined as:

Error =



Differential Error

Notice that the errors of the forward and backward 1st derivative of the
equations have an error of the order of O(Ax) and the central
differentiation has an error of order O(Ax2?). The central difference has
an better accuracy and lower error that the others. This can be
improved by using more terms to model the first derivative.



ngher Order 1st Derivative
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Higher Order Derivatives

To find higher derivatives, use the Taylor series expansions of term and
eliminate the terms from the sum of equations. To improve the error in
the problem add additional terms.



2nd Derivative of the Function

It will require three terms to get a central 2"d derivative of discrete set of

data.

A 10)= 10)| + (@01 0|+ | B peg) |+ g
B*f(xi): f(xi)

C f(x)4 F0e)| = [(ax)/(x)]+ (A;!)zf(x) ] (A?);)3f (x) +




2nd Order Central Difference

The terms become .

A+B+C=0
A-C=0
A+C = #(2)

The terms become A=1,B=-2 and C=1. Therefore

f”(xi):( f(xi+1)_2 f (Xi)+ f(xi'l)j+ E[O(AXZ)]

AX°




Lagrange Differentiation

Another form of differentiation is to use the Lagrange interpolation
between three points. The values can be determine for unevenly
spaced points. Given:

L(x)= Li(x)y, + L (x)y, + La(x)ys
o) o) | exxex) |
(XI_XZ)(Xl_XS) 1 (Xz_xl)(xz_xs) ’ (X3—X2)(X3—X1) 3




Lagrange Differentiation

Differentiate the Lagrange interpolation

2X =X, — Xq

== )"

N 2X =X, — Xq v, + 2X— X, — X, y
(XZ—X1XX2—X3) 2 (X3_X2)(X3_X1) 3

Assume a constant spacing

f,(x):2x—x2—x3 2X— X, — X4 2X =X, — X,

o T A T oae



Lagrange Differentiation

Differentiate the Lagrange interpolation

2X—X, —X 2X — X, — X 2X — X, —X
er — 2 3 + 1 3 + 1 2
(x) ond T A T oae

Various locations

, 2%, — X, — X 2%, — X, — X 2%, — X, — X -3y, +4y, -y
f (Xl): 12A;2 g2 1—A>1<2 Y- 1ZA;Z Vs 1 2Ax2 3
, 2%, — X, — X 2%, — X, — X 2%, — X, — X V. —Y
f (XZ): 22A>§2 Tt 2— A>1<2 Y 22A>i2 Y ;Axl
, 2%, — X, — X 2%, — X, — X 2%, — X, — X —4y,+3
f (Xs): A E 3 M 73 Y, + 3 M 2 Y1 Y> Ys

2AX? — AX? 2AX? 3 2AX



Lagrange Differentiation

To find a higher order derivative from the Lagrange interpolation for a
three point Lagrange

2X—X, — X 2X — X, — X 2X — X, —X
er — 2 3 + 1 3 + 1 2
(x) o T A T oae

Take the derivative

1 2 1 Y, —2Y,+Y
frr X)= — + 4= — 1 2 3
(x) PYCRCNINER LN AX?




Partial Derivatives

« Straightforward extension of one-dimensional

(i+2 J)

formula
1 7+2)
(9,770 7+ (%9, 1)
20 ) ) D
L) GJD (1,71

(i, j-2)



Zh{@ 0 -1

(i+2 J)

Hx 6 X
-2 L@ @ - @)
()
) (L) (47, j+1)
20 050 G [+.p
(A=) ) 7, 1-7)

(i, j-2)



Partial Derivatives

Laplacian Operator
2
Viu=u, +u, =

® |
|

L0 -0

® |-

-1 | j+1




Partial Derivatives

Mixed Derivative

S -0 - @)

Y 4h?




