

People Innovation Excellence

LECTURE NOTES

COMP8014 Knowledge Data Discovery

Classification: Advanced Methods 1

LEARNING OUTCOMES

LO4: Mahasiswa diharapkan mampu untuk menentukan metode data mining yang sesuai dengan sifat kealamiahan permasalahan yang dihadapi.

LO5: Mahasiswa diharapkan mampu untuk mengimplementasikan metode data mining.

OUTLINE MATERI:

- 1. Bayes classification methods
- 2. Rule-based methods
- 3. Bayesian Belief networks

ISI MATERI

Kenapa Klasifikasi Bayesian?

- Pengelompokan statistik: melakukan prediksi probabilistik, yaitu memprediksi probabilitas keanggotaan kelas
- Berdasarkan Teorema Bayes.
- Kinerja: Pengklasifikasi Bayesian sederhana, pembaur Bayesian naif, memiliki kinerja yang sebanding dengan pohon keputusan dan pengenal jaringan syaraf terpilih Inkremental: Setiap contoh pelatihan dapat secara bertahap meningkatkan / menurunkan probabilitas bahwa hipotesis benar - pengetahuan sebelumnya dapat dikombinasikan dengan data yang diamati.
- Standar: Bahkan ketika metode Bayesian secara komputasi sulit dilakukan, mereka dapat memberikan standar pengambilan keputusan yang optimal yang dengannya metode lain dapat diukur.

Teorema Bayes:

$$P(B) = \sum_{i=1}^{M} P(B|A_i)P(A_i)$$

$$i = 1$$

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$$

(Note: Keterangan notasi bisa dilihat di slide)

Naïve Bayes Classifier:

Contoh penggunaan bisa dilihat di slide.

Diberikan data sebagai berikut, dengan dua kelas

C1:buys_computer = 'yes'

C2:buys computer = 'no'

age	income	<mark>student</mark>	redit_rating	_com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Problem: dengan metode Naïve Bayes Classifier, data X = (age <=30, Income = medium, Student = yes, Credit_rating = Fair) akan masuk ke kelas C1 atau C2?

Keunggulan dan kelemahan metode naïve bayes:

Keuntungan:

- Mudah diimplementasikan
- Hasil bagus didapat pada sebagian besar kasus
- Robust ke titik kebisingan terisolasi
- Tangani nilai yang hilang dengan mengabaikan contoh selama perhitungan perkiraan probabilitas
- Robust terhadap atribut yang tidak relevan
- Asumsi independensi mungkin tidak berlaku untuk beberapa atribut
- Gunakan teknik lain seperti Bayesian Belief Networks (BBN) untuk meningkatkan akurasi.

Kekurangan:

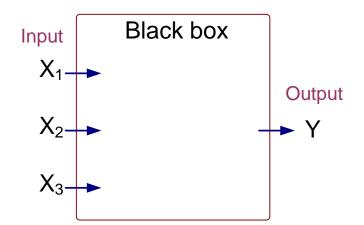
Asumsi: independensi bersyarat kelas, oleh karena itu kehilangan keakuratan

- Praktis, ketergantungan ada antar variabel
 - Misalnya, rumah sakit: pasien: Profil: usia, riwayat keluarga, dll.
 Gejalanya: demam, batuk dll. Penyakit: kanker paru-paru, diabetes, dll.
 - o Ketergantungan di antara ini tidak dapat dimodelkan oleh Naïve Bayes Classifier

Bayesian Belief Network (BNN):

Kelebiham dibandinkan dengan naïve bayes classifier adalah BNN memungkinkan independensi bersyarat kelas antara himpunan bagian dari variabel.

Untuk contoh: lihat di slide ppt yang sudah disediakan.



Backpropagation Neural Network (BPNN)

- Backpropagation: Algoritma pembelajaran jaringan syaraf tiruan
- Dimulai oleh psikolog dan neurobiologists untuk mengembangkan dan menguji analog komputasi neuron
- Jaringan syaraf tiruan: Satu set unit input / output terhubung dimana masing-masing sambungan memiliki bobot yang terkait dengannya
- Selama tahap pembelajaran, jaringan belajar dengan menyesuaikan bobot sehingga bisa memprediksi label kelas yang benar dari input tupel.
- Juga disebut sebagai pembelajaran koneksionis karena adanya hubungan antar unit

Contoh BPNN:

X 1	X ₂	X 3	Υ
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
0	0	1	0
0	1	0	0
0	1	1	1
0	0	0	0

Dari contoh di atas, diperoleh rule bahwa output Y adalah 1 jika paling sedikit dua dari tiga input sama dengan 1.

SIMPULAN

- 1. Telah dijelaskan konsep dari Bayes classifiers
- 2. Telah diperkenalkan teknik dan algoritma dari Naive Bayes classifiers
- 3. Telah diperkenalkan teknik dan algoritma dari Bayesian Belief networks
- 4. BPNN

DAFTAR PUSTAKA

- 1. Han, J., Kamber, M., & Pei, Y. (2006). "Data Mining: Concepts and Technique". Edisi 3. Morgan Kaufman. San Francisco
- 2. Tan, P.N., Steinbach, M., & Kumar, V. (2006). "Introduction to Data Mining". Addison-Wesley. Michigan
- 3. Witten, I. H., & Frank, E. (2005). "Data Mining: Practical Machine Learning Tools and Techniques". Second edition. Morgan Kaufmann. San Francisco