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Pecil Note:
innovation This slides are based on the additional material provided with the textbook that we use: J. Han,

Excellence M. Kamber and J. Pei, “Data Mining: Concepts and Techniques” and P. Tan, M. Steinbach, and V.
Kumar "Introduction to Data Mining”.
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Classification: predicts categorical class labels
— E.g., Personal homepage classification
* X = (Xy, X9, X3, ...), ¥; =+l or-1
* X, : # of word “homepage”
* X, :# of word “welcome”
Mathematically, x e X=R",y € Y = {+1, -1},
— We want to derive a function f: X > Y
Linear Classification
— Binary Classification problem

— Data above the red line belongs to class X’
— Data below red line belongs to class ‘0’
— Examples: SVM, Perceptron, Probabilistic Classifiers
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* Advantages

— Prediction accuracy is generally high
e As compared to Bayesian methods — in general

- " — Robust, works when training examples contain errors
= — Fast evaluation of the learned target function
o™ * Bayesian networks are normally slow
* Criticism
— Long training time
o~ — Difficult to understand the learned function (weights)

Innovation

S * Bayesian networks can be used easily for pattern discovery
— Not easy to incorporate domain knowledge
e Easy in the form of priors on the data or distributions
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A relatively new classification method for both linear and
nonlinear data

It uses a nonlinear mapping to transform the original training
data into a higher dimension

With the new dimension, it searches for the linear optimal
separating hyperplane (i.e., “decision boundary”)

With an appropriate nonlinear mapping to a sufficiently high
dimension, data from two classes can always be separated by a
hyperplane

SVM finds this hyperplane using support vectors (“essential”
training tuples) and margins (defined by the support vectorsé)
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e Vapnik and colleagues (1992)—groundwork from Vapnik &

Chervonenkis’ statistical learning theory in 1960s

* Features: training can be slow but accuracy is high owing to

- their ability to model complex nonlinear decision boundaries

(margin maximization)

* Used for: classification and numeric prediction
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Applications:

— handwritten digit recognition, object recognition, speaker

identification, benchmarking time-series prediction tests
9
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* Find a linear hyperplane (decision boundary) that will separate the data
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One Possible Solution
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* Another possible solution



' -:;-'él*; '

WI'NUS .
wiversty — Support Vector Machines

ONLINE
LEARNING O
O
“ O
™~ N O
~ >N
~
N DN
NN O O
. X O
B, - _ N~ ~
\\\\\ \\ \\\
i = \\\\\\_\\
NGRS .
~ S
B ~ S N
~ ~
~ ~ ~
~ DN
O ~.
[ | ~
People |
Innovation
Excellence N N

e Other possible solutions
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Which one is better? B1 or B2?
How do you define better?
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* Find hyperplane maximizes the margin => B1 is bebter than B2
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f(x)={_1

weX+b=+1

\
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If WeX+b>1

If WeX+b<-1

b :
*#  Margin =

2
|
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* We want to maximize: I\/Iargin —
V_V 2
g .-' — Which is equivalent to minimizing:
4 = 112
W
% YORLL
— But subjected to the following constraints:
. [1 ifWex +b>1

r:\enoo‘:/l:tion f (Xl) —

Excellence ° _1 if \_N ® )_{I + b S _1

* This is a constrained optimization problem

— Numerical approaches to solve it (e.g., quadratic programming)
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Let data D be (Xy, Y1), ..., (Xp, ¥|pj), Where X; is the set of training tuples
associated with the class labels vy,

People

imnovation | There are infinite lines (hyperplanes) separating the two classes but we want

Excellence

to find the best one (the one that minimizes classification error on unseen
data)

SVM searches for the hyperplane with the largest margin, i.e., maximum
marginal hyperplane (MMH)

20
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A separating hyperplane can be written as
W@X+b=0
where W={w,, w,, ..., W} is @ weight vector and b a scalar (bias)
For 2-D it can be written as
Wy +W; Xy + Wy, X =0
The hyperplane defining the sides of the margin:
Hi:wg+w; X +wW, %, 21 fory,=+1, and
Hy:wy+wy Xy +wW, X, <—1fory,=-1
Any training tuples that fall on hyperplanes H, or H, (i.e., the
sides defining the margin) are support vectors

This becomes a constrained (convex) quadratic optimization
problem: Quadratic objective function and linear constraints ->
Quadratic Programming (QP) - Lagrangian multipliers 21

SVM—Linearly Separable
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The complexity of trained classifier is characterized by the # of
support vectors rather than the dimensionality of the data

The support vectors are the essential or critical training examples —

they lie closest to the decision boundary (MMH)

If all other training examples are removed and the training is
repeated, the same separating hyperplane would be found

The number of support vectors found can be used to compute an
(upper) bound on the expected error rate of the SVM classifier, which

is independent of the data dimensionality

Thus, an SVM with a small number of support vectors can have good

generalization, even when the dimensionality of the data is high
22
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= Transform the original input data into a higher
dimensional space

Example 6.8 Nonlinear transformation of original input data into a higher dimensional space. ~ Con-
'sider the following example. A 3D input vector X = (21,29, 29) 1s mapped into a 60 space Z using the mappings
01(X) = 21,00(X) = 29, 03(X ) = 23, 04(X) = (21)%,05(X) = 2120, and 0(X ) = 2125, A decision hyperplane
In the new space is d(Z)= WZ + b, where W and Z are vectors, This is linear. We solve for W and b and then
substitute back so that we see that the lnear decision hyperplane in the new (Z) space corresponds to a nonlinear

second order polynomial in the original 3-1) input space,
I

- Y
CodlZ) = wpey wnzy +wszs +wy(ng)* + wszyeg + werizg +b
= W21 + Wz + wzg + wazy + Wiz +wgzg 0

= Search for a linear separating hyperplane in the new
space #



.'.:f‘;~.A

BINUS
UNIVERSITY
ONLINE
LEARNING

* What if the problem is not linearly separable?
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* Transform data into higher dimensional space
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=8 * What if the problem is not linearly

~  separable?

b 4 ! — Introduce slack variables

- * Need to minimize: ||W||2 N
L(w) = ; +C(Zéﬂkj

=1

e Subject to:

People

i fxy| T ifwex b T2
T ifWeX +b<CL+ &)
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Instead of computing the dot product on the transformed data,
it is math. equivalent to applying a kernel function K(X;, X;) to
the original data, i.e., K(X;, X;) = ®(X;) O(X;)

Typical Kernel Functions

Polynomial kernel of degree h: K(X]. }{}) = (X; X + 1)h
Gaussian radial basis function kernel : K (Xj, }{}) = .g-g—||X='—3ifr'||gf”202

Sigmoid kernel :  K(X;, X;) = tanh(xX; - X; — 0)
= SVM can also be used for classifying multiple (> 2) classes and
for regression analysis (with additional parameters)

Excellence

27
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 What if decision boundary is not linear?
12 . . . . . .
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* SVM is not scalable to the number of data objects in terms of training time

and memory usage

* H.VYu,lJ. Yang, and J. Han, “Classifying Large Data Sets Using SVM with
Hierarchical Clusters”, KDD'03)

 (CB-SVM (Clustering-Based SVM)

— Given limited amount of system resources (e.g., memory), maximize the

SVM performance in terms of accuracy and the training speed

— Use micro-clustering to effectively reduce the number of points to be
considered

— At deriving support vectors, de-cluster micro-clusters near “candidate
vector” to ensure high classification accuracy

29
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People

Moo Read the data set once, construct a statistical summary of the data
(i.e., hierarchical clusters) given a limited amount of memory

= Micro-clustering: Hierarchical indexing structure

= provide finer samples closer to the boundary and coarser

samples farther from the boundary 30
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* CFtreeis a suitable base structure for selective declustering

e De-cluster only the cluster E; such that

— D,—R, <D, where D, is the distance from the boundary to the center point of E, and R,

is the radius of E;
b 4 — Decluster only the cluster whose subclusters have possibilities to be the support cluster
- of the boundary

* “Support cluster”: The cluster whose centroid is a support vector
People C C)
Innovation
Excellence
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e Construct two CF-trees from positive and negative data sets
independently

— Need one scan of the data set
* Train an SVM from the centroids of the root entries

* De-cluster the entries near the boundary into the next level

— The children entries de-clustered from the parent entries
are accumulated into the training set with the non-
People declustered parent entries

Innovation
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Train an SVM again from the centroids of the entries in the
training set

* Repeat until nothing is accumulated

32
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Accuracy and Scalability on Synthetic
Dataset

e
—

i) data distribution at the last iteration in
(B-SVM(N =597}

(b} 0.5% randomly sampled data

(N =603)

Figure 6: Synthetic data set in a two-dimensional space. ‘| positive data: *=": negative data

* Experiments on large synthetic data sets shows better
accuracy than random sampling approaches and far more
scalable than the original SVM algorithm

33
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* SVM — Nondeterministic
— Deterministic algorithm algorithm
— Nice generalization — Generalizes WE” but
A8 ’
- oroperties doesn’t have strong

. mathematical foundation
— Hard to learn — learned in

— Can easily be learned in

batch mode using , _
incremental fashion

People

Innovaticn quadratic programming
Excaiinca — To learn complex

techniques ,
functions—use

multilayer perceptron
very complex functions (nontrivial)

— Using kernels can learn

34
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SVM Website: http://www.kernel-machines.org/

|

* Representative implementations

D% :
b 4 ’ — LIBSVM: an efficient implementation of SVM, multi-class
o™ classifications, nu-SVM, one-class SVM, including also

various interfaces with java, python, etc.

— SVM-light: simpler but performance is not better than

People
Innovation

Excellence LIBSVM, support only binary classification and only in C

— SVM-torch: another recent implementation also written in C

35
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e Evaluation metrics: How can we measure accuracy? Other
metrics to consider?

* Use validation test set of class-labeled tuples instead of
training set when assessing accuracy

- . Methods for estimating a classifier’s accuracy:
— Holdout method, random subsampling

ool — Cross-validation

ks — Bootstrap

* Comparing classifiers:
— Confidence intervals

— Cost-benefit analysis and ROC Curves 57
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Confusion Matrix:
Actual class\Predicted class C, -C;

C, True Positives (TP) False Negatives (FN)

-C; False Positives (FP) True Negatives (TN)

Example of Confusion Matrix:

Actual class\Predicted class buy computer = yes buy _computer = no Total
buy computer = yes 6954 46 7000

buy computer = no 412 2588 3000
Total 7366 2634 10000

* Given m classes, an entry, CM,-J- in a confusion matrix indicates # of
tuples in class i that were labeled by the classifier as class j

* May have extra rows/columns to provide totals

38
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AP C | -C * Class Imbalance Problem:

— One class may be rare, e.g.

C|TPIFN| P fraud, or HIV-positive
~C |FP|TN| N

— Significant majority of the

™ T Tan negative class and minority
of the positive class
- Classifier Accuracy, or recognition — Sensitivity: True Positive
Pecple rate: percentage of test set tuples recognition rate
Innovation .
Excellence that are correctly classified * Sensitivity = TP/P

Accuracy = (TP + TN)/AII
* Errorrate: 1 — accuracy, or
Error rate = (FP + FN)/AlI

— Specificity: True Negative
recognition rate

* Specificity = TN/N

39
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Precision: exactness — what % of tuples that the classifier labeled as
positive are actually positive et /¥ o
4 TP + FP
Recall: completeness — what % of positive tuples did the classifier label
as positive? TP
Perfect score is 1.0 recall = TP+ FN

Inverse relationship between precision & recall
F measure (F, or F-score): harmonic mean of precision and recall,
2 X precision X recall

precision + recall
Fg: weighted measure of precision and recall

— assigns 8 times as much weight to recall as to precision

)

(1+ /3?) x precision x recall
32 x precision + recall

Fg =

40
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Classifier Evaluation
Metrics: Example

'e, Actual Class\ Predicted | cancer =yes | cancer=no | Total Recognition(%)
@ ’ class
cancer = yes 90 210 300 30.00 (sensitivity
el
cancer = no 140 9560 9700 | 98.56 (specificity)
Total 230 9770 10000 | 96.40 (accuracy)

People

movatien —_— Precision = 90/230 = 39.13%

Recall = 90/300 = 30.00%

41
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 Holdout method
— Given data is randomly partitioned into two independent sets
* Training set (e.g., 2/3) for model construction
» Test set (e.g., 1/3) for accuracy estimation
— Random sampling: a variation of holdout

i * Repeat holdout k times, accuracy = avg. of the accuracies
> obtained

* Cross-validation (k-fold, where k = 10 is most popular)

—— — Randomly partition the data into kK mutually exclusive subsets, each
innovation approximately equal size

eelence — At i-th iteration, use D, as test set and others as training set
— Leave-one-out: k folds where k = # of tuples, for small sized data

— *Stratified cross-validation*: folds are stratified so that class dist. in
each fold is approx. the same as that in the initial data

42
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e Accuracy: Bootstrap

Bootstrap

— Works well with small data sets

— Samples the given training tuples uniformly with replacement

* i.e., each time a tuple is selected, it is equally likely to be
selected again and re-added to the training set

Several bootstrap methods, and a common one is .632 boostrap

— A data set with d tuples is sampled d times, with replacement, resulting in a
training set of d samples. The data tuples that did not make it into the
training set end up forming the test set. About 63.2% of the original data
end up in the bootstrap, and the remaining 36.8% form the test set (since (1
—1/d)¢=e1=0.368)

— Rebpeat the skamoling procedure k times. overall accuracv of the model:

1
Ace(M) = =3 (0632 x Ace(M;)gest_set + 0.368 x Ace(M;)irain_set)

i=1

43
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* Suppose we have 2 classifiers, M; and M,, which one is better?

o W, 4

|

0; |
»
x“’
Q‘

* Use 10-fold cross-validation to obtain €77 (M) and &r7(Ms)

These mean error rates are just estimates of error on the true

population of future data cases

 What if the difference between the 2 error rates is just attributed to

chance?
People
Innovation

Excellence — Use a test of statistical significance

— Obtain confidence limits for our error estimates

44
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Null Hypothesis
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e Perform 10-fold cross-validation

* Assume samples follow a t distribution with k—1 degrees of
freedom (here, k=10)

%« Use t-test (or Student’s t-test)
* Null Hypothesis: M, & M, are the same

* |f we can reject null hypothesis, then

People
Innovation
Excellence

— we conclude that the difference between M, & M, is

statistically significant

— Chose model with lower error rate

45
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* If only 1 test set available: pairwise comparison

— For it round of 10-fold cross-validation, the same cross partitioning is used

to obtain err(M,); and err(M,), W(ﬂ/fl) and W(Ab)
— Average over 10 rounds to get

— t-test computes t-statistic with k-1 degrees of freedom:
‘o err(My) —err (M)

- Var(M, — My)/k

where

k
1 2
var(My — M) = — ) [m-(ﬂ.fl)i —err(My); — (e (M) — err(Mo))
People 'lL —1
Innovation =
Excellence . .
* If two test sets available: use non-paired t-test
where i \/var(AIl) , var(My)
ki ks

where k; & &, are # of cross-validation samples used for M, & M,, resp.

46



Estimating Confidence Intervals:

UNIVERSITY Table for t-distribution
ONLINE

LEARNING TABLE B: 1-DISTRIBUTION CRITICAL VALUES
Teil probability »
df | 25 20 A5 A0 05 025 02 01 .00S 0025 001 L000Ss
111000 1376 1963 3078 6314 1271 1589 3182 6366 1273 3133 6366
2] 816 1061 1386 1886 2920 4303 4849 6965 9925 1409 2233 3160
3| 765 978 1250 1638 2353 3.1_.82 3482 4541 5841 7453 1021 1292
4| 741 941 1190 1533 2132 2776 2999 3747 4604 5598 7173 8610
5| 7 820 1156 1476 2015 2571 2757 3365 4032 4773 5893 6869
6] 718 S06 1134 1440 1943 2447 2612 3143 3707 4317, 5208 5959
71 M 896 1119 1415 1895 2365 2517 2998 3499 4.029 4785 5408
8| .706 889 1108 1397 1860 2306 2449 289G 3355 3833 4501 5041
91 903 883 1100 1383 1833 2262 2398 2821 3250 3690 4297 4781
10| 700 479 1093 1372 1812 2228 2359 2764 3169 3581 4.144 4587
11| 697 876 1.088 1363 L1796 2201 2328 2718 3106 3497 4025 447
12 | 695 B73 1083 135 1782 2179 2203 2681 3055 3428 3930 4318
H 13 | 694 870 1079 1350 1771 2160 2282 2650 3.012° 3372 3852 4221
i Sy l I I I I I et r I C 14 | 692 868 1076 1345 1761 2145 2264 2624 2977 5326 3787 -4.140
15| .691 866 1074 1341 L753 2131 2249 2602 2947 3286 3733 4073

° ° o 16 | 690 865 1071 1337 1746 2120 2235 2583 2921 3252 3686 4015

[ ] S f I I 17| 689 863 1069 1333 1740 2110 2224 2567 2898 3222 3646 3965
Ig n I I ca n ce eve ) 18| 688 862 1067 1330 1734 201 2214 2552 2878 3197 3611 3922

19| 688 861 1LD66 1328 1729 2093 2205 2539 2861 3174 3579 3383

e sig = 0 05 or 20| .687 860 1.064 1325 1725 2086 2197 2528 2845 3153 3552 3850
-g- ) g . 21| 686 859 1063 1323 1721 2080 2189 2518 2831, 3135 3527 3819
22| 68 858 1061 1321 1717 2074 2183 2508 2819 3419 3505 3792

5 y means M & M 23| 685 858 1060 1319 1714 2089 2177 2500 2807 3.104 3485 3768

(0] 1 2 24| 685 857 1059 1318 L711 2064 2172 2492 2797 3001 3467, 3745

] D 25| 684 856 1058 1316 1708 2060 2167 2485 2787 3.078 3450 3725

2| 68 856 1058 1315 1706 2056 2162 2479 2779 3067 3435 3707

People are Slgnlf ICGnt/y 27| 684 855 1057 1314 1703 2052 2158 2473 2771 3.057 3421 3.690
Innovation o 28| 683 855 1056 1313 1701 2048 2154 2467 2763 3047 3408 3674
H 29| 683 854 L0SS 1311 1699 2045 2150 2462 2756 3.038 3396 3659

Excellence different for 95% of Wla e L e e i T o e o
40| 681 851 1050 1303 1684 2021 2023 2423 2704 2971 32307 3551

I t SO| 679 849 1047 1299 1676 2009 2109 2403 2678 2937 3261 349

pOpU ation 60| 679 848 1045 1296 1671 2000 2099 2390 2660 2915 3232 3460

80| 678 346 1043 1292 1664 1990 2088 2374 2639 2887 3195 3416

. . . 100 | 677 845 1042 1200 1660 1984 2081 2364 2626 2871 3174 3390

° c f d I 1000 | 675 842 1087 1282 1646 1962 2056 2330 2581 2813 3098 3300

onriaence |m|t, Z w| 674 841 1036 1282 1645 1960 205¢ 2326 2576 2.807 3.051 3291

w
=]
+

60% 70% B80% 90% 95% 96% 98% 99% 995% 99.8% 99.9%

= Sig/z Confidence level C

47
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s O Statistical Significance

* Are M, & M, significantly different?

Compute t. Select significance level (e.g. sig = 5%)

Consult table for t-distribution: Find t value corresponding to k-1
degrees of freedom (here, 9)

t-distribution is symmetric: typically upper % points of distribution
shown - look up value for confidence limit z=sig/2 (here, 0.025)

Ift>zort<-z thentvalue lies in rejection region:

* Reject null hypothesis that mean error rates of M; & M, are
same

* Conclude: statistically significant difference between M, & M,
Otherwise, conclude that any difference is chance
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ROC (Receiver Operating
Characteristics) curves: for visual
comparison of classification models

Originated from signal detection theory

Shows the trade-off between the true
positive rate and the false positive rate

The area under the ROC curve is a
measure of the accuracy of the model

Rank the test tuples in decreasing order:

the one that is most likely to belong to
the positive class appears at the top of
the list

The closer to the diagonal line (i.e., the
closer the area is to 0.5), the less
accurate is the model

Model Selection: ROC Curves

0 Lo
falze posinve e

nz oL e

Vertical axis
represents the true
positive rate

Horizontal axis rep.
the false positive rate

The plot also shows a
diagonal line

A model with perfect
accuracy will have an
areaof 1.0
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* Accuracy

— classifier accuracy: predicting class label
e Speed

— time to construct the model (training time)

— time to use the model (classification/prediction time)
* Robustness: handling noise and missing values
* Scalability: efficiency in disk-resident databases

People * Interpretability

Innovation
Excellence

— understanding and insight provided by the model

 Other measures, e.g., goodness of rules, such as decision tree size or
compactness of classification rules

50



People
Innovation
Excellence

BINUS
UNIVERSITY
ONLINE
LEARNING

Techniques to Improve Classification
Accuracy: Ensemble Methods
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= ¢ Construct a set of classifiers from the
| training data

5

ﬂ

* Predict class label of previously unseen

records by aggregating predictions made by
= multiple classifiers

Excellence
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Original
D Training data
.
Step 1: * * * *
Create Multiple D, D, &"" D, , D,
Data Sets ¢ l l l
Step 2:
Build Multiple
Classifiers “1 C2 Cua “
lF’eopletI * ¢ ¢ ¢
ExceTlaen::
Step 3:
Combine
Classifiers
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¥

—
(ombine
voles
* Ensemble methods

— Use a combination of models to increase accuracy

— Combine a series of k learned models, M,, M,, ..., M, with the aim
— of creating an improved model M*

Innovation

excellence  ® Popular ensemble methods

— Bagging: averaging the prediction over a collection of classifiers
— Boosting: weighted vote with a collection of classifiers
— Ensemble: combining a set of heterogeneous classifiers
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UNIVERSITY .
LEARNING Aggregation

* Analogy: Diagnosis based on multiple doctors’ majority vote

* Training

— Given a set D of d tuples, at each iteration J, a training set D, of d tuples is
sampled with replacement from D (i.e., bootstrap)

— A classifier model M. is learned for each training set D,
Ol e Classification: classify an unknown sample X
— Each classifier M, returns its class prediction

— The bagged classifier M* counts the votes and assigns the class with the
most votes to X

e ®  Prediction: can be applied to the prediction of continuous values by taking the
Excellance average value of each prediction for a given test tuple

* Accuracy
— Often significantly better than a single classifier derived from D
— For noise data: not considerably worse, more robust

— Proved improved accuracy in prediction s
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* Sampling with replacement

Original Data 1 2 3 4 5 6 7 8 9 10
™ Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9
Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2
Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

~» * Build classifier on each bootstrap sample

Innovation
Excellence

* Each sample has probability (1 — 1/n)" of being
selected
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Analogy: Consult several doctors, based on a combination of weighted
diagnoses—weight assigned based on the previous diagnosis accuracy

How boosting works?

Weights are assigned to each training tuple
A series of k classifiers is iteratively learned

After a classifier M, is learned, the weights are updated to allow
the subsequent classifier, M.,,, to pay more attention to the
training tuples that were misclassified by M.

The final M* combines the votes of each individual classifier,
where the weight of each classifier's vote is a function of its
accuracy

Boosting algorithm can be extended for numeric prediction

Comparing with bagging: Boosting tends to have greater accuracy, but it also
risks overfitting the model to misclassified data
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e Records that are wrongly classified will have their
= weights increased

Q; |
;’ * Records that are classified correctly will have their
e weights decreased

Original Data 1 2 3 4 5 6 7 8 9 10
Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3
Boosting (Round 2) ViR 9 4 5 o 7 4 2
Boosting (Round 3) @: (4 )| 8 10 @ 5 6 3
~ aud -
Peoie e Example 4 is hard to classify
Innovation

Excellence

e |ts weight is increased, therefore it is more likely
to be chosen again in subsequent rounds
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Proposed by Freund and Schapire, 1997

Gi

In

iven a set of d class-labeled tuples, (X;, y4), -, (Xg Yg)
itially, all the weights of tuples are set the same (1/d)

Generate k classifiers in k rounds. At round i,

Tuples from D are sampled (with replacement) to form a training set
D, of the same size

Each tuple’s chance of being selected is based on its weight

A classification model M, is derived from D,

Its error rate is calculated using D, as a test set

If a tuple is misclassified, its weight is increased, o.w. it is decreased

Error rate: err(Xj) is the misclassification error of tuple X;. Classifier M.
error rate is the sum %f the weights of the misclassified tuples:

The weight of classifier M.'s vote is

error(M;) = > w;, xerr(X;)
j

0 1—-error(M;)
error(M,) 59
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* Base classifiers: C;, C,, ..., C;

5
p . * Error rate: Al
) 4 ;
w0 2
ﬂ 1 N %1
&i —Zng(Ci(XJ)iyJ) <
j: ;f—‘l
— 2
e e ® Importance of a classifier: 3
Excellence 4
1 1_ E. > o.iz 0?4 O.iﬁ oﬁs 1
a =—In ! :
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e Random Forest:

— Each classifier in the ensemble is a decision tree classifier and is generated
using a random selection of attributes at each node to determine the split

— During classification, each tree votes and the most popular class is returned

e Two Methods to construct Random Forest:

- — Forest-RI (random input selection): Randomly select, at each node, F
attributes as candidates for the split at the node. The CART methodology is
used to grow the trees to maximum size

— Forest-RC (random linear combinations): Creates new attributes (or
People features) that are a linear combination of the existing attributes (reduces

Innovation

B the correlation between individual classifiers)
 Comparable in accuracy to Adaboost, but more robust to errors and outliers

* Insensitive to the number of attributes selected for consideration at each split,
and faster than bagging or boosting
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Class-imbalance problem: Rare positive example but numerous negative
ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc.

Traditional methods assume a balanced distribution of classes and equal
error costs: not suitable for class-imbalanced data

Typical methods for imbalance data in 2-class classification:
- — Oversampling: re-sampling of data from positive class
— Under-sampling: randomly eliminate tuples from negative class

— Threshold-moving: moves the decision threshold, t, so that the rare
class tuples are easier to classify, and hence, less chance of costly

People false negative errors

Innovation . . e .

Excellence — Ensemble techniques: Ensemble multiple classifiers introduced
above

» Still difficult for class imbalance problem on multiclass tasks
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* Classification involving more than two classes (i.e., > 2 Classes)
« Method 1. One-vs.-all (OVA): Learn a classifier one at a time
— Given m classes, train m classifiers: one for each class
— Classifier j: treat tuples in class j as positive & all others as negative

— To classify a tuple X, the set of classifiers vote as an ensemble

 Method 2. All-vs.-all (AVA): Learn a classifier for each pair of classes
— Given m classes, construct m(m-1)/2 binary classifiers

— A classifier is trained using tuples of the two classes

PP — To classify a tuple X, each classifier votes. X is assigned to the class with

Excellence

maximal vote
* Comparison
— All-vs.-all tends to be superior to one-vs.-all

— Problem: Binary classifier is sensitive to errors, and errors affect vote count
64
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Originally designed to correct errors during data Class Egggvsgrrg
transmission for communication tasks by exploring data c 1111
redundancy L (1111
C, |o|ojojo[1|1]1
Example
. . . C |0(0f1]1({0]|0 (1
— A 7-bit codeword associated with classes 1-4
c, |o|1|lo[1]|o|1]0

= Given a unknown tuple X, the 7-trained classifiers output: 0001010

= Hamming distance: # of different bits between two codewords

= H(X, C,) =5, by checking # of bits between [1111111] & [0001010]

= H(X, C,) =3, H(X, C) = 3, H(X, C;) = 1, thus C, as the label for X
Error-correcting codes can correct up to (h — 1)/2 1-bit error, where h is the
minimum Hamming distance between any two codewords

If we use 1-bit per class, it is equiv. to one-vs.-all approach, the code are
insufficient to self-correct

When selecting error-correcting codes, there should be good row-wise and col.-

wise separation between the codewords
65
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Semi-supervised: Uses labeled and unlabeled data to build a classifier

Self-training:
— Build a classifier using the labeled data

— Use it to label the unlabeled data, and those with the most confident
label prediction are added to the set of labeled data

— Repeat the above process
— Adv: easy to understand; disadv: may reinforce errors
Co-training: Use two or more classifiers to teach each other

— Each learner uses a mutually independent set of features of each tuple
to train a good classifier, say f,;

— Then f; and f, are used to predict the class label for unlabeled data X

— Teach each other: The tuple having the most confident prediction from
f, is added to the set of labeled data for f,, & vice versa

Other methods, e.g., joint probability distribution of features and labels
66
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L E A R N I N G oracle (e.g., human annotator)

* Class labels are expensive to obtain
e Active learner: query human (oracle) for labels
* Pool-based approach: Uses a pool of unlabeled data
— L:asmall subset of D is labeled, U: a pool of unlabeled data in D

— Use a query function to carefully select one or more tuples from U and
request labels from an oracle (a human annotator)

— The newly labeled samples are added to L, and learn a model
— Goal: Achieve high accuracy using as few labeled data as possible

e Evaluated using learning curves: Accuracy as a function of the number of instances
queried (# of tuples to be queried should be small)

People
innovation e Research issue: How to choose the data tuples to be queried?

Excellence

— Uncertainty sampling: choose the least certain ones
— Reduce version space, the subset of hypotheses consistent w. the training data

— Reduce expected entropy over U: Find the greatest reduction in the total
number of incorrect predictions
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* Transfer learning: Extract knowledge from one or more source tasks and apply
the knowledge to a target task

* Traditional learning: Build a new classifier for each new task

* Transfer learning: Build new classifier by applying existing knowledge learned
from source tasks

Different Tasks Source Tasks [ Target Task ]

Innovatio

N B B Y

[Learning System} [Learning System] [Learning System] [ Knowledge } ’ [Learning System}

Traditional Learning Framework Transfer Learning Framework
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* Applications: Especially useful when data is outdated or distribution
changes, e.g., Web document classification, e-mail spam filtering

* Instance-based transfer learning: Reweight some of the data from source
tasks and use it to learn the target task

 TrAdaBoost (Transfer AdaBoost)

— Assume source and target data each described by the same set of
attributes (features) & class labels, but rather diff. distributions

— Require only labeling a small amount of target data

— Use source data in training: When a source tuple is misclassified, reduce
the weight of such tupels so that they will have less effect on the

Peopl oo
cdalion subsequent classifier

Excellence

Research issues
— Negative transfer: When it performs worse than no transfer at all

— Heterogeneous transfer learning: Transfer knowledge from different
feature space or multiple source domains

— Large-scale transfer learning o
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Effective and advanced classification methods
— Backpropagation (Neural networks)
— Support Vector Machine (SVM)

— Other classification methods: lazy learners (KNN, case-based reasoning),
genetic algorithms, rough set and fuzzy set approaches

Evaluation metrics include: accuracy, sensitivity, specificity, precision,
recall, F measure, and F, measure.

Stratified k-fold cross-validation is recommended for accuracy
estimation. Bagging and boosting can be used to increase overall
accuracy by learning and combining a series of individual models.
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e Significance tests and ROC curves are useful for model selection.

* There have been numerous comparisons of the different classification

methods; the matter remains a research topic

* Nosingle method has been found to be superior over all others for all

data sets

* Issues such as accuracy, training time, robustness, scalability, and

interpretability must be considered and can involve trade-offs, further

People
Innovation

Excellence complicating the quest for an overall superior method

e Additional Topics on Classification

— Multiclass classification, Semi-supervised classification, Active learning, etc.
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