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These course notes represent a set of lectures that I wrote and 
organized for an introductory graduate level course in biometry.  
Although I organized the notes and contributed my own ideas 
throughout, I have drawn extensively from several texts.  Many of the 
ideas contained in these notes build upon or are taken directly from 
ideas presented by the authors of those texts.  When an example or 
an idea that improves explanation of a concept is based on material 
presented in a previous text and used with little or no modification on 
my part, I have tried to cite the text and the location of the material.  
Any omissions of such citations are my errors.  The list below includes 
published texts that I have drawn from in the creation of these course 
notes.  The first three texts listed were used most extensively. 
   
1. A Primer of Ecological Statistics (1st edition; 2004) by Nicholas  

J. Gotelli and Aaron M. Ellison 
 
2. Biometry (3rd edition; 1995) by Robert R. Sokal and F. James Rohlf 

 
3. Biostatistical Analysis (4th edition; 1999) by Jerrold H. Zar 
 
4. Design and Analysis of Ecological Experiments (2nd edition;  

2001) by Samuel M. Scheiner and Jessica Gurevitch 
 
5. Ecological Methodology (2nd edition; 1999) by Charles J. Krebs 
 



  

6. Experimental Design and Data Analysis for Biologists (1st  
edition; 2002) by Gerry P. Quinn and Michael J. Keough 

 
7. Experiments in Ecology: Their Logical Design and  

Interpretation Using Analysis of Variance (1st edition; 1997) 
by A. J. Underwood 

 
 
In addition to the above texts, these course notes also benefited from 
ideas and examples contained in the course notes for Public Health 
540 and 640; two graduate level biostatistics courses taught during the 
1994-95 academic year at the University of Massachusetts, Amherst by 
Drs. David W. Hosmer and Stanley Lemeshow. 
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Introduction to Biostatistics 
 
First, some definitions: 
 
What is Biostatistics exactly? 
 
- The application of statistical methods to the solution of biological 
problems 
 
 
Statistics = the scientific study of data describing natural variation 
(Sokal and Rohlf 1995) 
 
Scientific study = objectivity 
 
Data = information about populations or groups of individuals (data is 
plural since statistical testing can’t be performed on a single datum) 
 
Natural variation = events that happen in nature not under the direct 
control of the investigator, plus those events that are evoked by and 
are, at least partly, under the control of the investigator (Sokal and 
Rohlf 1995) 
 
 
Why do we care? 
 
-Increased use of statistics in all disciplines within biology 
 
-Realization that biological phenomena are affected by multiple causal 
factors that cannot always be identified or controlled 
 
-These factors vary and their interactions generate large amounts of 
variation 
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-We need statistics to generate quantitative measures of observed 
phenomena and to assess the probability of measured differences 
 
-Statistics, thus, places biological phenomena within a probabilistic 
framework (Sokal and Rohlf 1995) 
 
-It represents a common language with which we can interpret the 
quantitative measures of our observations 
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A conceptual example: 
Suppose you are walking through campus and are interested in 
quantifying the density of students.  Your question might be “What is 
the best estimate of student density at UNCW?”  Is it 1 student per 
10m2? or 5 students per 10m2?  How should you measure student 
density?  Does it vary in different places on campus? at different times 
of the academic year? 
 
Ultimately you should ask “What mechanisms or hypotheses might 
account for the variation observed?” and “What experiments or 
observations could be made to test these hypotheses?” 
 
 
Statistics allows us to summarize and interpret the data (quantitative 
measurements) after we have made our observations.  We can then 
test and differentiate among our hypotheses. 
 
 
 
For many people, in the simplest sense,  
 

  Statistics ≈ Patterns 
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Biological Data 
 
Individual observations – measurements or data taken on the smallest 
sampling unit 
 
Sample = a collection of individual observations 
 
Population = totality of individual observations about which inferences 
are to be made (defined and justified by the investigator; often not 
explicitly defined, but implied instead) 
 
 
When we make individual observations, the actual property measured 
is called a variable (length of a fish; number of plant leaves; etc.), 
and there are many types of variables 
 
Types of variables 
 
Ratio scale data 

• Constant size interval between adjacent units on the 
measurement scale 

• There exists a zero point on the measurement scale, which 
allows us to talk in terms of the ratios of measurements 
(e.g., x is twice as large as y) 

• Most data on a ratio scale (examples include lengths, 
weights, numbers of items, volume, rates, lengths of time) 

 
Interval scale data 

• Constant interval, but no true zero, so can’t express in terms 
of ratios 

• Temperature scale is a good example (zero point is 
arbitrary; can’t say 40º is twice as hot as 20º) 

• Other biological examples could be time of day and lat/long 
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Ordinal scale data 

• Data consist of an ordering or ranking of measurements only 
• Exact measurement data unknown or not taken (e.g., we 

may only know larger/smaller, lighter/darker, etc.) 
• Often ratio or interval data is converted to ordinal data to 

aid interpretation (i.e., exact measurements assigned ranks) 
and statistical analysis (e.g., grades) 

 
Nominal scale data 

• Data doesn’t have a numerical measurement 
• Eye color, sex, with or without some attribute 

 
 
Continuous and Discrete data 
 

 A continuous variable can take any value within the measured 
range 

 
For example, if we measure fish length, the variable can be an infinite 
number of lengths between any two integers (thus, we are only limited 
by the sensitivity of our measurement devices) 
 

 A discrete variable can generally only take on values that are 
consecutive integers (no fractional values are possible) 

 
For example, if we count the number of ants in a colony there can be 
221 ants or 222 ants, but not 221.5 ants 
 
Nominal scale data are always discrete; other data types can be either 
continuous or discrete  
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Accuracy and Precision 
 
Accuracy = closeness of a measured value to its true value  

(Bias = inaccuracy) 
 
Precision = closeness of repeated measurements of the same quantity 
 (Variation or variability = imprecision) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Many fields within biology differ in their ability to measure variables 
accurately and precisely 
 
Most continuous variables are approximate, while discrete are exact 
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Significant Figures 
 
The last digit of measurement implies precision = limits of 
measurement scale between which the true measurement lies 
 
A length measurement of 14.8 mm implies that the true value lies 
between 14.75 and 14.85 
 
***The limit always carries one figure past the last significant digit 
measured by the investigator 
 
Rule of thumb for significant figures (Sokal and Rohlf, p. 14) 
The number of unit steps from the smallest to the largest 
measurement in an array should usually be between 30 and 300 
 
Example: If we were measuring the diameter of rocks to the nearest 
mm and the range is from 5-9mm, that is only four unit steps from 
smallest to largest and we should measure an additional significant 
figure (e.g., 5.3 – 9.2 mm, with 39 unit steps).  In contrast if we were 
measuring the length of bobcat whiskers within the range of 10-
150mm, there would be no need to measure to another significant 
figure (we already have 140 unit steps) 
 
Reasoning: The greater the number of unit steps, the less relative 
error for each mistake of one measurement unit.  Also, the 
proportional error reduction decreases quickly above high numbers of 
unit steps (300), making measurement to this level of precision not 
worthwhile 
 
Examples of significant figures 
 
22.34 (4)  25 (2) 0.065 (2)  0.1065 (4) 
14,212 (5) 14,000 (2) 
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Derived variables 
 
A variable expressed as a relation of two or more independently 
measured variables (e.g., ratios, percentages, or rates) 
 
These type of variables are very common in the field of biology; often 
times their construction is the only way to gain an understanding of 
some observed phenomena. 
 
We will deal with the statistical issues with ratio data a bit more later, 
but for now we just need to mention that they present certain 
disadvantages when it comes to analysis.  These are related to their 
inaccuracy (compounded when independent variables are combined) 
and their tendency to not be distributed normally 
 
 
Frequency Distributions 
 
A logical first step when collecting large amounts of data is to 
summarize it in a simple way on a routine basis.  This is best done 
while collecting the data (i.e., continuously), rather than waiting until 
all of the data are collected to look at the patterns.  Often, the 
patterns that begin to emerge from early data collections may enable 
adjustments to be made in your sampling approach that couldn’t be 
done if you wait until data collection is completed before summarizing 
 
Most investigators will start out by entering data into a common 
spreadsheet software package (e.g., EXCEL).  This allows for easy 
computation of frequency tables and distributions.  A frequency table 
is just a list of all of the values observed for a variable and how often 
each value was observed 
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Example: 
 
Location    Number of golf balls recovered 
Woods      27 
Pond       22 
Fescue      19 
Bunker      15 
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*** Note that this example uses nominal data 
 
The y-axis scale should begin at zero and the bars should be equal 
width, this ensures that the frequencies are expressed clearly 
 
Bar graphs are straightforward to construct for nominal, ordinal, and 
discrete ratio-scale data (see examples 1.1-1.3 in Zar) 
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When ratio-scale data is distributed continuously, however, individual 
observations must be grouped before they can be tabulated (this is 
because continuous data can take on an infinite number of values) 
 
Sometimes discrete data is also grouped to ease the procedures of 
tabulation and graphing (see examples 1.4a and b in Zar).   
 
But keep in mind that grouping always results in a loss of information 
in the graph 
 
 
Example: 
 
Total lengths (mm) of Atlantic silversides collected in the Hudson River (n = 180;  
range = 23 – 125mm) 

23 65 69 70 73 75 76 79 82
32 65 69 70 74 75 76 79 82
51 66 69 70 74 75 77 79 82
55 66 69 71 74 75 77 79 83
55 66 69 71 74 75 77 79 84
55 66 69 71 74 75 77 79 85
55 66 69 72 74 76 77 79 85
57 66 69 72 74 76 77 80 86
58 67 69 72 74 76 77 80 89
60 67 70 72 74 76 77 80 90
60 67 70 72 74 76 77 80 90
60 67 70 72 74 76 77 80 92
60 67 70 72 75 76 78 80 101
60 67 70 73 75 76 78 80 105
62 67 70 73 75 76 78 80 105
63 68 70 73 75 76 78 80 107
65 68 70 73 75 76 78 81 109
65 68 70 73 75 76 78 81 115
65 68 70 73 75 76 79 82 118
65 68 70 73 75 76 79 82 125   
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Bin width = 5 mm
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Bin width = 10 mm
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Bin width = 20 mm
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Good rule of thumb: Bin width = 2*IQR/n1/3 from Freedman and 
Diaconis (1981) on the histogram as a density estimator 
*** IQR = Interquartile range = 75th quartile – 25th quartile 
 
Quartile is a statistical function in EXCEL (Quartile (array, quartile) 
 
For this example: 
 
75th quartile = 78 
25th quartile = 69 
N = 180 
 
So, 2*IQR/n1/3 = 2*9/5.65 = 3.19 
 
Let’s see what a histrogram with a bin width of 3mm looks like 
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Bin width = 3 mm
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We can see more detail in the density distribution (number of fish per 
bin) with the smaller bin width.  This histogram does a pretty good job 
of illustrating the underlying density distribution of silverside total 
lengths. 
 
Obviously, if the bin width becomes as small as units of the last 
significant digit in our measurement scale, the histogram simply 
becomes the underlying density distribution 
 
 
 
Often, you will see histograms plotted in terms of relative frequency 
(%) as opposed to frequency (n).  This doesn’t change the appearance 
of the histogram, but enables comparison with other data sets because 
the numbers of observations are scaled to 100% 
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Often, we are interested in knowing how many observations occur 
above or below some value (e.g., how many fish were larger or 
smaller than 75mm?).  We can construct cumulative frequency (or 
relative frequency) distributions to evaluate these questions quickly 
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Measures of central tendency and variation 
 
Now that you have begun to examine the general structure and 
distribution of your data by plotting it as a histogram or some other 
graphical display (stem and leaf plot, box plot, etc.), you need a way 
to describe the tendencies and variability present 
 
We do this by estimating parameters for our population of interest by 
sampling 
 
Some population parameters and their corresponding sample statistics: 
 
Population mean = μ       Sample mean = x⎯  
 
Population variance = σ2 Sample variance = s2 
 
Population St. Dev. = σ Sample St. Dev. = s    
 
 
 
The most common measure used to make inferences about sample 
data is a measure of central tendency (location of the peak) 
 
 
Different measures of central tendency 
 
Mode = the most frequent observation 
 
Median = the middle observation when the data is ranked (50% of 
observations above and below the median) 
 
Mean = the sum of all observations divided by the sample size (n) 
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***The mean is the most commonly calculated measure of central 
tendency 
 
 
Before defining the mean, some statistical symbols: 
 
X = each observation is usually referred to as a variate X 
 
∑   = Greek capital letter sigma denotes “the sum of” 
 

∑
=

n

i
iX

1
= “the sum of the Xi’s from i = 1 to n” 

 
 
 
The arithmetic mean 
 

n

X
X

n

i
i∑

== 1
 

 
 
In words, the mean is equal to the sum of the variates divided by the 
sample size 
 
 
But, how does our sample estimate of x⎯ relate to μ? 
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X̄ will be an unbiased estimator of μ if: 
 

1. observations (Xi’s) are random 
2. observations (Xi’s) are independent 
3. observations (Xi’s) are drawn from a larger population which can 

be described by a normal random variable 
 
The Law of Large Numbers establishes that X̄ will approach μ as the 
sample size (n) gets large 
 
 
Other measures of central location: 
 
The Geometric Mean 
 
The GM is calculated as: 

n

X
n

i
i

e
∑
=1

ln

 
 

The GM is used routinely for count data that fluctuate dramatically as it 
reduces the influence of large outliers on the mean 
 
The Harmonic Mean 
 
The HM is calculated as: 

∑
=

n

i iX

n

1

1  
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The HM is very sensitive to small values and can be used to evaluate 
the potential effect on a group of low values that occur sporadically 
 
 
Which measure of central location is best? 
 
The arithmetic mean is widely used (and is assumed when someone 
uses the term ‘mean’ or ‘average’) because of the Central Limit 
Theorem 
 
The Central Limit Theorem states that the averages of large (n), 
independent samples will follow a normal distribution regardless of the 
underlying population distribution 
 
Stated differently: The distribution of sample means from a non-
normal population will tend toward normality as n (the number of 
sample means drawn) increases 
 
Importance: Enables us to use statistical tests that require our samples 
to be drawn from a normally distributed population, even when our 
data isn’t normal, as long as n is large and our observations are 
independent (more on the significance of the CLM later…..) 
 
The Geometric Mean and the Median (or other quantiles) are well 
suited to estimate central tendency when our data includes extreme 
observations that would have large leverage on the arithmetic mean 
 
Weighted means can be used to calculate a ‘grand mean’ from several 
sample means of different n 

∑

∑

=

=
n

i
i

n

i
ii

w

Xw

1

1
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Measures of spread 
 
There are several measures that provide an indication of the spread of 
observations about the center of the distribution 
 
The sample range 
 
= the difference between the highest and lowest observations in a 
data set 
 
Provides information on the boundaries of the sample data (but is a 
relatively crude measure of dispersion, and is a biased estimate of the 
population range) 
 
Interquartile range IQR 
 
= 75th percentile – 25th percentile  
 
This measure indicates the boundaries of the majority of the sample 
data and is less sensitive to outliers 
 
The IQR is the default box edge when constructing a box plot 
 
Other percentiles (e.g., 90th-10th, 95th-5th) can also be used 
 
The Mean deviation 

n

XXi∑ −
 

 
aka, the Mean absolute deviation is a measure of the difference 
between each observation and the mean expressed in the same units 
as the data 
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The Variance 
 
Introducing….the Sum of Squares 
 

SS = ( )2∑ − XXi  
 
The SS is the preferred measure used to represent the differences 
between observations and the mean (like absolute values, squaring 
also removes the negative signs, but we really use it for reasons 
related to bias and additivity that we’ll talk about later) 
 
The mean SS is the Variance (or Mean Square) and is signified using 
σ2 for a population and s2 for a sample 
 

( )
1

2

−

−∑
n

XX i

 

 
We also have what is referred to as a working or machine formula that 
simplifies the computation of the variance 
 

( )

1

2
2

−

−∑ ∑

n
n
X

X i
i

 

  
* Note that we don’t divide the Sum of squares by n, but rather by n-1 
 
The quantity (n-1) represents the Degrees of Freedom (df) 
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So what exactly do we mean by Degrees of freedom?  
 
 
The true definition actually stems from multi-dimensional geometry 
and sampling theory and is related to the restriction of random vectors 
to lie in linear subspaces……………. 
 
For our purposes, the definition used by Gotelli and Ellison (2004) will 
suffice: the number of independent pieces of information (i.e., n) in a 
data set that can be used to estimate statistical parameters 
 
Essentially, we’ve already used up 1 degree of freedom to estimate the 
mean (X̄) 
 
Box 2.1 on p. 20 of Quinn and Keough (2002) explains degrees of 
freedom as the number of observations in our data set that are “free 
to vary” when estimating the variance 
 
Example from Quinn and Keough (2002): Suppose you have a data set 
with three observations (3, 4, and 5) and you know the sample mean 
= 4 and want to estimate the variance.  Knowing the mean and one of 
the observations doesn’t tell what the values of the other two 
observations must be, but if you know the mean and two of the 
observations, the third is fixed.  So, once you know the mean, only 
two (n-1) of the observations are “free to vary”.  
 
 
Dividing our Sum of squares by n-1 generates an unbiased estimate of 
the variance        
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* Note that the variance is expressed in square units (relative to the 
mean) 
 
We now introduce another statistic to express the spread in our data 
using the same units as the mean 
 
The Standard deviation 
 

( )
1

2

−

−∑
n

XX i

 

 
The standard deviation (s) is often signified using an SD or sd, and is 
sometimes referred to as the root mean square 
 
This is the most commonly reported measure of dispersion in 
the biological sciences 
 
However, in reading the biological literature, you will often see another 
measure of dispersion reported, namely the standard error (SE or se).  
These are not the same quantities and we will deal with the standard 
error a bit later when we get to construction of confidence intervals 
and hypothesis testing 
 
 
A way to compare measures of spread 
 
Since your measure of spread is linked to the magnitude of the mean, 
how can you compare measures of spread when the means differ 
appreciably?  
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The coefficient of variation (CV) is calculated as SD/X̄ x 100 (to 
convert it to a percentage) 
 
This statistic enables comparison of variation on a relative scale 
 
 
Skewness, Kurtosis, and Central Moments 
 
The variance (and SD) are examples of central moments 
 
A central moment in statistics is: 

( ) ( )ri XXn ∑ −1  
 
The first central moment equals zero and the second central moment 
is simply the variance 

( ) ( )21 ∑ − XXn i  
 

 
The third central moment divided by the cube of s is g1 and is known 
as the skewness 

( ) ( )331 ∑ − XXns i  
 
 
The fourth central moment divided by the 4th power of s and then 
minus 3 is g2 and is known as the kurtosis 

( ) ( )[ ] 31
44 −−∑ XXsn i  
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Skewness measures asymmetry in the distribution; whether long tails 
exist on the right (positive skew; g1>0) or left (negative skew; g1<0) 
side 
 
 
 
 
 
 
 
 
 
 
 
 
Kurtosis measures the proportion of the distribution in the center and 
tails relative to the shoulders.  Leptokurtic (g2>0) = more 
observations in the center and tails; Platykurtic (g2<0) = more 
observations in the shoulders 
 
 
 
 
 
 
 
 
 
 
 
 
Skewness and Kurtosis not used as much in modern literature as they 
are very sensitive to outliers and the magnitude of the mean 

Positive skew or skewed right

Negative skew or skewed left

Leptokurtic

Platykurtic
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An Introduction to Probability 
(Note: the following ideas are generously borrowed from Chapter 1 in 
Gotelli and Ellison (2004), who do a nice job of placing probabilistic 
ideas in a biological/ecological context) 
 
Goal: To develop a conceptual understanding of basic probability 
calculations which are the backbone of the ‘probabilistic framework’ 
upon which all statistical analyses rest 
 
We generally have an intuitive feel for what is meant by the term 
probability.  If we make a statement that there is a 40% chance that a 
hurricane is going to make landfall at a specific location, we have a 
pretty good idea what that means because we understand that there is 
a level of uncertainty due to natural variation 
 
How do we measure probability exactly? 
Rather than use common examples of a coin flip or the toss of a die, 
we’ll use a biological example (Gotelli and Ellison use pitcher plant 
ecology; I’ll incorporate some ideas from fish predator-prey 
interactions instead) 
 
Imagine a small cove in a large estuarine system.  Young-of-the-year 
bluefish routinely enter this cove in search of prey, which are other 
fishes that inhabit the cove.  As an individual bluefish swims through 
the cove, it either encounters a prey fish or it doesn’t (it’s a discrete 
outcome).  Once a prey fish is encountered, an attack may or may not 
follow (also a discrete outcome); and if an attack occurs, it may or 
may not be successful (another discrete outcome) 
 
Therefore, we are interested in estimating the probability that a single 
bluefish encounters, attacks, and captures a prey fish during a search 
of the cove.   
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The search is called an event (it has a beginning and an end), an 
encounter (or not), an attack (or not), and a capture (or not) are all 
considered outcomes, with the set of all possible outcomes = the 
sample space 
 
***The sample space should be defined carefully because it limits our 
scope of inference 
 
Events are often referred to as trials, with a set of trials making up an 
experiment (either controlled or natural, more on this later……) 
 

P = number of outcomes/number of trials 
 

and 
 

0 ≤ P ≤ 1 
 

***You can’t have more outcomes than trials*** 
 

 
Next, we would sample to generate data on the fraction of bluefish 
that encounter, attack, and capture prey.  We might make 
observations from a platform above the water from which we could 
distinguish a bluefish and its behavior, or we might fix a camera or 
some other device to an individual bluefish and use video technology 
to generate our data (this technology is not quite there yet for a small 
fish).  In any case, we use an effective sample design (more on this 
topic soon…..) and collect our data. 
 
In our example, say we observed 100 bluefish search the cove and 
found that 72 of them encountered a prey fish (determined by some 
behavioral reaction by the bluefish to a nearby prey fish), and that 44 
of those encounters elicited an attack, resulting in 11 captures 
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So, we now have 
P (encounter) = 72/100 = 0.72 

P (attack) = 44/100 = 0.44 
P (capture) = 11/100 = 0.11 

 
We’ll return to this example a bit later when we discuss conditional 
probabilities 
 
 
For now, let’s just focus on the number of captures per search.  
Suppose that an individual bluefish searches our cove twice each day 
(once at dawn and once again at dusk), and that each search lasts for 
about ½ hour.  We know, because of the time it takes to manipulate 
and swallow a prey fish, that the maximum number of prey fish that a 
single bluefish can eat per search is 2.  We now have 3 possible 
outcomes for each search (0,1,or 2) and two searches per day, so all 
total we have nine possible outcomes {(0,0), (0,1), (0,2), (1,0), (1,1), 
(1,2), (2,0), (2,1), (2,2)}.  It is important to note that these outcomes 
are said to be mutually exclusive. 
 
This means that the sum of all of the probabilities of the outcomes will 
be equal to 1.0 (The First Axiom of Probability).  If the outcomes 
are not mutually exclusive, this will not be true. 
 
In our example, each outcome has a probability of 1/9 and they sum 
to 1.0. 
 
 
Complex and Shared Events 
 
A complex event is one that can occur by multiple different pathways 
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A shared event is one that requires the simultaneous occurrence of 
two or more simple events 
 
Complex events are represented using an ‘or’ statement (e.g., event A 
or event B or event C) and equal the union of simple events.  We 
simply sum the probabilities of simple events 
 
Shared events are represented using an ‘and’ statement (e.g., event A 
and event B and event C) and equal the intersection of simple 
events.  In this case, we multiply the probabilities of simple events 
 
Complex event example: 
What is the probability that a bluefish captures three prey fish over the 
course of a single day?  This event can occur in two ways: 

Two prey fish = {(1,2), (2,1)} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(2,1)

(1,2)

(0,0)

(2,2)

(1,0)

(1,1)

(2,0)

(0,2)

(0,1)

Three prey 
fish eaten

All possible
outcomes
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Since two of the possible nine outcomes yield three prey fish eaten, we 
would estimate this probability as 1/9 + 1/9 = 2/9 
 
This is the Second Axiom of Probability: The probability of a 
complex event equals the sum of the probabilities of the outcomes that 
make up that event 
 

P(A or B or C) = P(A) + P(B) + P(C) 
 

Shared event example: Suppose instead that we were interested in 
estimating the probability of a bluefish catching 1 prey fish during each 
of its two search events.  The probability of each of these events is 
1/3, so the probability of obtaining both is 1/3 × 1/3 = 1/9. 
 
 

P(A ∩ B) = P(A) × P(B) (if A and B are independent) 

 
 
Now, an example from Gotelli and Ellison (2004) pp. 16-17 that 
illustrates probability calculations for both complex and shared events: 
 
Suppose you are sampling a set of rock outcroppings in which there 
exist populations of the milkweed plant and populations of caterpillars 
that eat the milkweed.  Some of the milkweed populations have 
developed chemical resistance (R) to predation by caterpillars and 
others have not.  After sampling, you note that 20% of milkweed 
populations are resistant, P(R) = 0.20, which means that P(not R) = 1 
– P(R) = 0.80.  Sampling also reveals that 70% of the outcroppings 
contain caterpillars (C), so P(C) = 0.70, and P(not C) = 1-P(C) = 0.30. 
 
Now we define some ecological rules based on our knowledge of the 
movements and interactions of the two species.  The first rule is that 
all milkweeds and caterpillars can disperse and reach all of the 
outcroppings.  Second, all milkweeds can persist when caterpillars are 
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absent, but only resistant milkweeds can persist when caterpillars are 
present.  Third, the initial colonization of outcroppings are independent 
events. 
 
What are the different combinations of outcomes that can occur?  We 
have four possible outcomes that are each the result of shared events 
(in this case, two events occurring simultaneously). 
 
 
Shared event 

 
Probability calculation 

Milkweed 
present? 

Caterpillar 
present? 

NR milkweed and 
no caterpillar 

[1-P(R)]×[1-P(C)]= 
(1.0-0.2)×(1.0-0.7)=0.24 
 

Yes No 

NR milkweed with 
caterpillar 

[1-P(R)]×[P(C)]= 
(1.0-0.2)×(0.7)=0.56 
 

No Yes 

R milkweed and 
no caterpillar 

[P(R)]×[1-P(C)]= 
(0.2)×(1.0-0.7)=0.06 
 

Yes No 

R milkweed with 
caterpillar 

[P(R)]×[P(C)]= 
(0.2)×(0.7)=0.14 

Yes Yes 

 
***Note that the probabilities add to 1.0 
 
We can now add some of these probabilities to obtain the probabilities 
of complex events.  For instance, what is the probability that a 
milkweed population will be resistant?  We simply add the two 
probabilities for the shared events that contain resistant milkweed 
(0.06 without caterpillars and 0.14 with caterpillars) to obtain 0.20, 
which matches the original probability of resistance at the outset.   
 
We also know that non-resistant milkweed will not persist in the 
presence of caterpillars.  This shared event is represented by a 
probability of 0.56.  The compliment of this event (1 – 0.56) = 0.44 is 



 31

the probability that an outcropping will contain milkweed, a probability 
which can also be obtained by adding the probabilities from the other 
three shared events (0.24 + 0.06 + 0.14).  Therefore, although the 
probability of resistance is only 0.20, we expect to find milkweed in 
44% of outcroppings because not all non-resistant milkweed will be 
occupied by caterpillars. 
 
 
Rules for combining complex and shared events 
 
Returning to our bluefish foraging example, suppose we wish to know 
the combined probability of a bluefish consuming zero prey fish during 
its first search, and two prey fish during its second search.  We now 
have two events (searches) each with sets of possible outcomes.  
We’ve already seen that we can have a total of 9 possible outcomes in 
the entire set.  For this particular question, we’ll call the first set of 
outcomes 1st and the second set 2nd: 
 

1st = [(0,0), (0,1), (0,2)] 
2nd = [(0,2), (1,2), (2,2)] 

 
We can now construct two new sets of combined outcomes.  The 
union of 1st and 2nd contains all of the outcomes that are in 1st or 2nd 
alone and is represented by 1st U 2nd.  It is basically the addition of 1st 
and 2nd sets 
 

1st U 2nd = [(0,0), (0,1), (0,2), (1,2), (2,2)] 
 
The second new set of combined outcomes is the intersection of 1st 
and 2nd sets and contains only those outcomes common to both 1st 
and 2nd  
 

1st ∩ 2nd = [(0,2)] 
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We can also create what are called complimentary sets.  For instance, 
the complimentary set of 1st would be denoted 1stc and would include 
all outcomes not included in 1st  

 
1stc = [(1,0), (1,1), (1,2), (2,0), (2,1), (2,2)] 

 
Lastly, we need to have an empty set, which contains no outcomes 
and is written as {Ø}.  The intersection of 1st and 1stc would be the 
empty set. 
 
Returning to our question about bluefish foraging, the union of 1st and 
2nd only contains 5 outcomes yielding a probability of 5/9 that either 
the 1st search would have 0 prey eaten or the 2nd search would have 2 
prey eaten.  This seems to violate the 2nd axiom of probability which 
states that the probability of a complex event equals the sum of the 
probabilities of the outcomes that make up the event.  But, this axiom 
only holds true if the events 1st and 2nd are mutually exclusive.  In this 
case, they are not, they have the outcome (0,2) in common. 
 

(0,1) (0,0)

(1,2)(2,2) (1,0)

(1,1)

(2,0)
(0,2)

1st n 2nd

(2,1)

1st search

All possible
outcomes

2nd search1st U 2nd
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Therefore, the union of two non-mutually exclusive events is their sum 
minus their intersection: 
 

P(A U B) = P(A) + P(B) – P(A ∩ B) 
 

So, in our case, P(1st U 2nd) = 3/9 + 3/9 – 1/9 = 5/9.  In addition, the 
probability that a bluefish eats 0 prey during its first search and 2 prey 
during its second search is the intersection of the two events = 1/9 
 
 
Now, what if we know the outcome of the first search and wish to 
estimate the probability of the second search?  The probability 
estimate for the second search is what we call a conditional 
probability and is written as: 
 

P(B|A) or in our case, P(2nd|1st) 
 

The conditional probability is calculated as: 
 

P(B|A) = P(A ∩ B)/P(A) 
 

If outcome A has already occurred, then the outcomes for B need to 
be restricted to the set of outcomes in common with A, thus the 
intersection in the numerator.  The denominator is the restricted 
sample space of possible outcomes for A, which has already occurred. 
 
In our example the probability that a bluefish eats 2 prey fish during 
the second search after having already eaten 0 prey fish during the 
first search P(2nd|1st) = 1/9 ÷ 1/3 = 1/3.  Note that the probability is 
higher than 1/9, which we calculated for the probability of both events 
occurring with no prior knowledge.  Having prior knowledge narrows 
the possibilities for subsequent events. 
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As another example, consider the following questions based on our 
bluefish observations: What is the probability of a bluefish attack given 
that an encounter has already occurred?  What is the probability of a 
successful capture for each attack?  These are both questions that 
require us to estimate conditional probabilities. 
 
Remember,  

P(encounter) = 0.72 
P(attack) = 0.44 

P(capture) = 0.11 
 

If an encounter has occurred, we can calculate the probability of an 
attack as: 
 

P(attack|encounter) = P(encounter ∩ attack)/P(encounter) 
= (0.44)/(0.72) = 0.611 

 
P(encounter ∩ attack) = 0.44 since all fish that were attacked had to 
be encountered first, but not all encountered fish are attacked. 
 

P(capture|attack) = P(attack ∩ capture)/P(attack) 
= (0.11)/(0.44) = 0.25 

 
Again, P(attack ∩ capture) = 0.11 since all fish that were captured had 
to be attacked first, but not all attacked fish are captured. 
 
 
***Conditional probabilities are the foundation of Bayesian statistics, 
the framework for which we will describe a bit later relative to other 
statistical and model selection approaches 



 35

Probability distributions 
 
All random variables will have an associated probability distribution 
with a range of values of the variable on the x-axis and the relative 
probabilities of each value on the y-axis 
 
Most of the statistical procedures that you will use in the study of 
biology make some assumptions about the probability distribution of 
the variable you have measured (or about the distribution of the 
statistical errors).  We also use probability distributions to generate 
models and make predictions, so they are very important to what we 
do. 
 
Many (too many) probability distributions have been defined 
mathematically and there are several that work well in describing 
biological phenomena.  We will focus on a few of the major ones. 
 
Recall that a variable can be either discrete or continuous in its 
distribution, which creates some important differences in the 
probability distributions: 
 

1. For discrete variables, the probability distribution will include 
measurable probabilities for each possible outcome 

2. For continuous variables, there are an infinite number of possible 
outcomes.  Thus, the probability distribution is what we call a 
probability density function (pdf), and it is used to estimate 
the probability associated with a range of values since the 
probability of any single value = 0. 
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Discrete probability distributions 
 
Bernoulli random variables represent the simplest type of discrete 
variables because each event or trial can only have two outcomes 
 
A collection of n independent Bernoulli trials results in a Binomial 
random variable (i.e., we perform many replicate Bernoulli trials) 
 
A Binomial random variable, X, is defined by the number of successful 
results in n independent Bernoulli trials 
 

X ~ Bin(n,p) 
 

where n = number of independent Bernoulli trials and p = the 
probability of a successful outcome in any single trial 
 
The Binomial probability distribution is calculated as: 
 

XnX pp
XnX

nXP −−
−

= )1(
)!(!

!)(
 

 
Where n = number of trials and X = the number of successes, and n! 
= n factorial = n × (n-1) × (n-2) ×…..× 3 × 2 × 1 
 
pX = probability of obtaining X independent successes each with 
probability p 
 
(1-p)n-X = probability of obtaining n-X failures each with probability 1-p 
 
n!/X!(n-X)! = the binomial coefficient, which calculates the number of 
possible ways to get X successes, minus any double counting 
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Example:  Suppose you are interested in 
estimating the probability that brown recluse 
spiders inhabit the UNCW campus.  Based on 
previous research in the region, you know that the probability of a 
brown recluse being present (X = 1) in any single site in this region of 
the country is 0.04, so P(X = 1) = p = 0.04.  So, if we search each of 
the buildings on campus there is only a 4% chance of a brown recluse 
spider being present in any one building.  So, you set out and search 
each of the campus buildings and find that brown recluse spiders are 
present in 8 of the buildings on campus among a total of 64 buildings.  
You want to know the probability of this outcome given the probability 
of finding a spider in any one building is only 4%. 
 
Based on the binomial distribution, our probability would be estimated 
as: 
 

003.0)04.1(04.
)!864(!8

!64)8( 8648 =−
−

= −P
 

 
 
Thus, there is only a 0.3% probability that we would find brown 
recluse spiders in 8 campus buildings given that the probability of 
finding a spider in any single building was 4%.  I would be inclined to 
conclude that there are an unusually high number of brown recluse 
spiders on the UNCW campus. 
 
Using the equation for the binomial distribution, we can estimate the 
probabilities for any value of X (up to n = 64 in this case) and plot 
them as a frequency distribution 
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Spider presence/absence probabilities 
 

X P(X) X P(X) X P(X)
0 0.07334304 22 2.54498E-15 44 2.68384E-46
1 0.19558144 23 1.93639E-16 45 4.97008E-48
2 0.25670064 24 1.37834E-17 46 8.55358E-50
3 0.22104778 25 9.18891E-19 47 1.36493E-51
4 0.14045744 26 5.74307E-20 48 2.01422E-53
5 0.07022872 27 3.36785E-21 49 2.74044E-55
6 0.02877427 28 1.85432E-22 50 3.42555E-57
7 0.00993397 29 9.59132E-24 51 3.91811E-59
8 0.00294915 30 4.66245E-25 52 4.08137E-61
9 0.00076459 31 2.13069E-26 53 3.85035E-63

10 0.00017522 32 9.1553E-28 54 3.26804E-65
11 3.584E-05 33 3.69911E-29 55 2.47579E-67
12 6.5956E-06 34 1.4053E-30 56 1.65789E-69
13 1.0993E-06 35 5.01893E-32 57 9.69529E-72
14 1.6685E-07 36 1.68459E-33 58 4.87551E-74
15 2.3174E-08 37 5.31178E-35 59 2.06589E-76
16 2.9571E-09 38 1.57257E-36 60 7.17324E-79
17 3.479E-10 39 4.36824E-38 61 1.9599E-81
18 3.785E-11 40 1.13756E-39 62 3.95141E-84
19 3.8182E-12 41 2.77454E-41 63 5.22674E-87
20 3.5795E-13 42 6.3308E-43 64 3.40282E-90
21 3.125E-14 43 1.34959E-44  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Probability of finding spiders at UNCW
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Poisson random variables represent another discrete random 
variable and are ideal for situations when p is very small and n is large.  
Therefore, we are talking about rare events in space or time.  Often, 
biologists use the Poisson distribution to describe patterns resulting 
from counts or occurrences of plants or animals.  This is because 
normally, within any single defined sample space or time interval, the 
most common count is 0. 
 
A Poisson random variable is defined as the number of occurrences of 
an event in a fixed area or time interval.  The probability of any value 
x is calculated as: 

λλ −= e
x

xP
x

!
)(

 

 
where λ = the average value of the number of occurrences of an event 
in each sample (space or time).  The shape of the distribution depends 
only on λ, which differs from the binomial distribution that depended 
on both n and p. 
 
Example:  Suppose we surveyed multiple college campuses in the 
southeast US (in this case the sample space is each campus, not a 
building) and found that the average number of occurrences (λ) of 
brown recluse spiders was 2.56, then we can use the Poisson 
distribution to estimate the probability of having 8 occurrences on the 
UNCW campus as: 

0035.0
!8

56.2)8( 56.2
8

== −eP
 

 
Recall, that our estimate using the binomial distribution = 0.00295 
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Changes in the shape of the Poisson distribution with changes in λ 

 
 
Continuous probability distributions 
 
As we mentioned earlier, continuous variables are not limited to take 
on integer values, but instead can take on an infinite number of 
values.  Therefore, we can’t estimate the probability of any single 
outcome and instead estimate the probability than an outcome will fall 
within a specific interval.   
 
The probability distribution is now termed a probability density 
function (pdf), and we use it to estimate the probability of a variable 
falling within a certain range of values.  Through integration, we can 
estimate the area under the curve (the curve is the pdf) for any range 
of values.  Generally the pdf is normalized so that the area under the 
curve representing the total probability is approximately 1. 
 
We can also generate cumulative density functions (cdf) to 
examine the probability of a variable being less than or greater than 
some value (Yi < Y).  These represent tail probabilities, which is where 
our familiar P-values come from. 
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The continuous distribution that fits the most patterns in nature is the 
Normal (or Gaussian) distribution, which has the familiar bell-
shaped pattern.  The normal distribution is symmetrical about the 
mean and is defined by the mean (μ) and the variance (σ2).  The 
probability density function for the normal distribution is: 
 

2

2
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The general shape of a normally distributed variable  
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Many of the most common statistical models that are used in biology 
(e.g., linear models such as regression and ANOVA) have the 
assumption that the variables being analyzed (or their statistical errors 
= residuals about a fitted model) are normally distributed. 
 
You can easily make a visual comparison between a normal 
distribution and your data just using your estimates of the mean and 
variance and the normal pdf 
 
Example: Several years of sampling by the North Carolina Division of 
Marine Fisheries has produced a large amount of body size data for 
juvenile red drum collected near Permuda Island in Topsail Sound, NC.  
The sample size (n) = 409 with total lengths ranging from 13 – 76mm. 
The mean (x⎯) = 31.4 and the SD (s) = 9.68.  Below is a histogram of 
the raw data along with a normal distribution (probabilities estimated 
using the mean, the SD, and equation for a normal pdf).   
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You can see that there are a few more fish between 15-30mm TL and 
a few less fish between 35-50mm TL than we would expect if TL were 
distributed exactly normally.  Despite this, the data appear to follow an 
expected normal distribution fairly well.  We will talk about methods to 
test for deviations from normality a bit later. 
 
Properties of the Normal distribution 
 

1. The normal distribution is symmetrical about the mean and its 
shape is determined only by the mean and variance 

2. Normal distributions are additive (if A and B are normally 
distributed random variables, then their sum (A + B = C) is also 
normally distributed 

3. Normal distributions can be easily transformed using shift 
(addition of a constant) and scale (multiplication by a constant) 
operations.  Addition (shift) of a constant (a) to a normally 
distributed variable increases the mean by the value of the 
constant a, with no change to the variance.  Multiplication (scale) 
of a normally distributed variable by a constant (a) multiplies the 
mean by a and the variance by a2  

4. An important combination of a scale (X * 1/σ) and shift (X - μ) 
operation results in what we call a standard normal random 
variable 

σ
μ−

=
X

 

 
A standard normal distribution (called the z distribution) has a mean 
= 0 and a standard deviation = 1, and is expressed (X~N(0,1)).  The 
conversion of any normal random variable to a standard normal 
random variable is what enables us to test hypotheses about the 
mean, which will be the first hypothesis tests that we perform 
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The standard normal distribution 
 
 
 
 
 
 
 
 
 
Continuous variables are not always distributed symmetrically.  Many 
biological variables show right- or positive skewness, with long tails 
that include larger observations that occur with less frequency.  The 
lognormal distribution, in which the log transformation of the 
variable is normally distributed, describes many biological data of this 
sort (i.e., measurement data that cannot be negative such as lengths 
and weights).  Another asymmetric distribution observed, although less 
frequently in biology, for continuous random variables is the 
Exponential distribution 
 
Examples of lognormal and exponential distributions 

  
Lognormal distribution      Exponential distribution 
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We will encounter several other mathematical probability distributions 
throughout the course.  There are several that are used to estimate 
the probabilities of sampling statistics and model parameters, as well 
as for hypothesis testing.  We will briefly introduce a few of these 
here, and will devote more time to each later. 
 
We have already mentioned the z-distribution that results when we 
standardize a normal random variable.  It is used to test hypotheses 
concerning differences between sample statistics and population 
parameters when we know the standard deviation of the population 
parameter (which we never do). 
 
The t-distribution (or student’s t-distribution) is also used to test 
hypotheses concerning differences between sample statistics and 
population parameters.  However, it accounts for the fact that we are 
estimating the standard deviation of the population parameter using 
our sample data (this is where the standard error becomes important 
as we will see soon). 
 
The χ2 (chi-square) distribution is used for a variable that is 
distributed as the square of values from a standard normal 
distribution.  Variances tend to follow a χ2 distribution and we use the 
distribution to test for differences between observed and expected 
outcomes from a model (Categorical Data Analysis). 
 
The F-distribution is a probability distribution for a variable that is 
distributed as the ratio of two χ2 distributions and is used for testing 
hypotheses about the ratio of variances (this is a very important 
distribution for testing hypotheses using linear models, e.g., regression 
and ANOVA). 
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Examples of distributions used for statistical tests (for varying degrees 
of freedom): 

 
 

 
 

t - distribution     χ2 - distribution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

F - distribution 
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Framing and Testing Hypotheses 
(Based largely on Gotelli and Ellison (2004) chapters 4-7; as well as 
Underwood 1997 and Ecological Methodology by Krebs 1999) 
 
Hypotheses can be simply defined as possible explanations for our 
observations.  They often stem directly from our observations, the 
existing scientific literature, theoretical model predictions, intuition and 
reasoning, or all of the above 
 
Good hypotheses: 

1) Must be testable 
2) Should generate unique predictions 
 

 
In the biological sciences, we have two broad types of study designs 
that are fundamentally different.  Manipulative studies involve the 
application of some treatment to a group of experimental units (e.g., 
one plot is burned and another is not, before measuring insect 
abundance).  Observational (or mensurative) studies do not involve 
manipulative treatments, but only measurements (e.g., you might 
measure insect abundance in marsh vs. upland plots). 
 
It is important to note that the statistical treatment of data is generally 
the same for each type of study.  The difference is in the confidence 
we place in the inferences we make. 
 
 
Comparing scientific methods 
 
There are several methods of scientific reasoning that are used to 
make decisions about the hypotheses that we have formed.  
Deduction is one such method.  The logic of deductive reasoning 
proceeds from the general case to the specific case. 
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An example of deduction: 
 
Statement 1 - All students at UNCW are from NC (major premise) 
Statement 2 - I sampled this one student at UNCW (minor premise) 
Statement 3 - This student is from NC (conclusion) 
 
The three statements proceed logically so that the last must be true if 
the first two are true. 
 
Inductive reasoning (Induction), in contrast, proceeds from the 
specific case to the general case. 
 
Example of inductive reasoning: 
 
Statement 1 – All 50 of these students are from NC 
Statement 2 – All 50 of these students were sampled at UNCW 
Statement 3 – All students at UNCW are from NC 
 
Statement 3 represents a “probable inference” – it is likely to be true 
based on statements 1 and 2, but may be false 
 
 
Statistics by its nature is an inductive process; we try to reach 
conclusions based on a sample of data (i.e., we very rarely have all of 
the data from the population of interest) 
 
Inductive reasoning proceeds from (1) the development of models and 
hypotheses, to (2) predictions, and lastly to (3) observations which 
affirm the hypotheses 
  
Advantages of the inductive method 
1. Close link between data and theory 
2. Modification of hypotheses based on data 
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Disadvantages of the inductive method 
1. Only a single starting hypothesis (can be led down the wrong path) 
2. Can encourage pet hypotheses 
3. Derives theory only from empirical data, rather than theoretical 

models or intuition 
 
Hypothetico-Deductive Method 
 

 Begins with multiple working hypotheses to explain a set of observations 
 Each makes unique predictions that can be tested 
 Goal is not confirmation, but to falsify as many alternatives as possible 
 Accepted explanation withstands repeated attempts to falsify it 

 
Advantages of the H-D method 
1. Simple explanations (parsimony) considered first 
2. Forces consideration of multiple hypotheses from the start  
 
Disadvantages of the H-D method 
1. May not be multiple hypotheses available in all cases 
2. The “correct” hypothesis must be among those at start 
 
Platt (1964) attributed the success of molecular biology this century 
due to the widespread use of hypothetico-deductive logic trees 
 
 
Statistical vs. Scientific Hypotheses 
 
A statistical hypothesis tests for pattern in the data.  The statistical 
null hypothesis would be one of “no pattern”, meaning no difference 
between parameter estimates or no relationship between a variable 
and some measured factor.  The statistical alternative hypothesis 
would be that “some pattern exists” 
 
***But, how do these patterns relate to the scientific hypothesis? 
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If the statistical null hypothesis is rejected, it only tells us that there is 
pattern in the data.  It doesn’t automatically mean that we reject the 
scientific null hypothesis. 
 
For example, the ‘Bigger is better’ hypothesis has the expectation that, 
at a given age, larger fish will survive at higher rates than smaller fish 
during early life.  If we conducted an experiment and found no 
differences in our estimates of survival, we would fail to reject the 
statistical null hypothesis.  This does not support the scientific 
hypothesis. 
 
Alternatively, the ‘Ideal Free Distribution’ hypothesis predicts that 
densities of animals in given habitats will be adjusted to result in equal 
fitness.  If we measured some component of fitness, say growth rate, 
among habitats and detected no differences, we would also fail to 
reject the statistical null hypothesis.  However, in this example, failure 
to reject the statistical null actually supports the scientific hypothesis. 
  
 
Statistical Significance and the P-value 
 
A Conceptual example: Comparing two means 
 
Suppose we measure fat content of squirrels in urban versus rural 
habitats (plots) and find the following: 
 
Fat content of urban squirrels = 340 g of lipid per kg body weight 
Fat content of rural squirrels = 810 g of lipid per kg body weight 
 
How do we know if this difference is large enough to be attributable to 
the different environments? 
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First, we must define the statistical null hypothesis: that the difference 
represents random variation 
 
HO = some specific mechanism does not operate to produce the 
observed differences 
     
We can then define one or more statistical alternative hypotheses 
            
HA = observed difference is too large to be due to random variation 
alone 
 

The set of HA’s can be broadly defined as “not HO” 
 
The statistical hypotheses are focused on pattern or no pattern in the 
data.  Any inference of environmental effect is made later (mechanism 
inferred).  This will depend separately on the quality of our design 
(e.g., if squirrels living in urban habitats were also smaller and we 
didn’t account for it, then environmental and body size effects would 
be confounded).  It would then be hard to infer that the difference in 
environment was the primary mechanism for the difference in fat 
content. 

 
The P-value 
 
The P-value that you see reported when data analyses are summarized 
in the papers you read has a clear definition. 
 
P-value = The probability of observing a pattern as extreme or more 
extreme than the one observed if the null hypothesis is true. 
 
The probability is stated P(data/HO) = the probability of observing the 
data given the null hypothesis 

***It is not the probability of the null hypothesis given the data*** 
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Thus, when P is low, we are saying that the probability of the observed 
pattern is very small if the null hypothesis were true, so we reject the 
null. 
 
If we reject the null hypothesis of no pattern, we can “accept” HA 
when our alternative hypothesis is stated broadly as:  
 

HA = pattern exists = observed variation is not just random 
 
However, in most cases we are interested in a specific alternative 
hypothesis, such as: 
 

HA = difference in fat content due to environment 
 
Often, and depending on the quality of our experimental design, we 
can’t simply accept this type of HA, which is stated more narrowly. 
 
For example, suppose our null hypothesis was that all students at 
UNCW are from North Carolina, and our alternative hypothesis was 
that at least 10 students at UNCW are not from North Carolina 
 

HO: All students at UNCW from NC 
HA: ≥10 students at UNCW not from NC 

 
After surveying several students around campus, we encounter 1 
student from New Jersey.  We can reject HO, but we can’t draw any 
conclusions about HA.  Had our HA been less specific (e.g., all students 
at UNCW are not from North Carolina), then we could “accept” it.  
However, “acceptance” of a broadly stated HA doesn’t provide us with 
any information about the distribution of the home states of UNCW 
students. 
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How do we interpret a P-value that is very large (i.e., close to 1)? 
      

***Note that since P is a probability it is bound between 0 and 1*** 
 

A large P-value signifies that there is a high probability that observed 
differences could have occurred simply due to random variation given 
that the null hypothesis is true.  So, we cannot reject the null. 

 
What determines the P-value? 
  

1. The number of sample observations (n) 
2. The differences between sample means (Yi- Yj) 
3. The level of variation among individuals (s2) 

 
1. Higher n = lower P-value 

The Law of Large Numbers states that as n increases, the more 
likely we are estimating the true population parameters 
(means, medians, regression coefficients, etc.) and can detect 
a real difference between them. 
 

2. Greater difference between Yi and Yj = lower P-value 
This is termed the effect size, and it is often what we are 
really interested in estimating.  We want to know how different 
things are or how much of an effect a certain factor has on our 
response.  

 
3. Smaller s2 within each group (i & j) = lower P-value 

If the variance within each group we are comparing, or the 
variance associated with an estimate of a parameter, is small, 
then we are more likely to detect differences or factor effects. 
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How small does P need to be? 
      
Suppose in our squirrel example P = 0.03 
 
This can be interpreted that, if the null hypothesis were true (no 

pattern, instead only random variation), the probability of observing 
a difference in fat content as large or larger than 470g per kg body 
weight is 3 in 100 

 
Stated another way, if we conducted this experiment 100 times, only 
three times would we expect to see a difference this large 
 
This seems highly unlikely, so we reject the null hypothesis and 
conclude that there is a pattern related to environment. 
 
 
Why P < 0.05? 
 
It turns out that there is no threshold critical value for P, but the 
traditional operational value is 0.05 
 
Keep in mind that P is distributed as a continuous variable that can 
take on an infinite number of values between 0 and 1.  We have set 
up these dichotomous decision rules (reject, do not reject) that are so 
widely applied.  There are different approaches, which we will discuss 
soon. 
 
Restricting hypothesis rejection to P < 0.05 is actually very 
conservative (so, why do we choose to be so conservative?).  If ocean 
conditions caused forecasters to predict that there was a 70% chance 
of drowning if you went surfing that day, you would probably stay 
home and work on your Biostats assignment. 
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For science, however, a 30% chance that you would have been 
incorrect in your rejection of the null hypothesis is too big a risk.  
Scientific progress, which builds on the previous work of others, 
depends on conservative decision making to keep false rejections low.  
In addition, psychology experiments have long noted that humans are 
predisposed to recognizing patterns, often seeing patterns where none 
exist. 
 

***A note of caution***: A low P-value is not a guarantee of good 
science, you can still get low P-values with poor experimental design. 
 
Remember: 

 A scientific hypothesis poses a formal mechanism to account for 
patterns in the data 

 A statistical hypothesis just establishes pattern  
 
Refer back to manipulative vs. observational designs and our squirrel 
example (which is observational).  If the differences in fat content 
between small and large squirrels are not accounted for, then our 
inferences related to environmental effects will not be strong 

 
 
Errors in Hypothesis Testing 
 
In all cases, the null hypothesis is either true or false (and we would 
know which if we had all possible information).  Instead, our data is 
incomplete and represents a sample of the population.  We are left to 
rely on methods of statistical inference to reject the null or not.  This 
means that we are going to make mistakes sometimes and reject a 
null hypothesis that is actually true and fail to reject a null hypothesis 
that is in reality, false. 
 
 



 56

These possibilities generate a 2x2 table of potential outcomes: 
 
        Do not reject HO                        Reject HO______ 

HO True                   Correct                    Type I error (α) 
HO False             Type II error (β)                 Correct 
 
Type I Error 

 Incorrectly reject a true null hypothesis 
 Draw an incorrect inference that some factor beyond random 

variation is causing patterns in our data 
 Denoted by alpha (α) 
 Calculation of P is actually an estimation of alpha 
 Smaller P = lower chance of Type I error 
 We set rejection rule at P < 0.05 to minimize chances of 

committing a Type I error 
 
Type II Error 

 Fail to reject a false null hypothesis (can remember by double-F ) 
 Concluded incorrectly that only random variation is present 
 Denoted by beta (β) 

 
 
The power of a statistical test is calculated as 1-β, which equals the 
probability of correctly rejecting the null when it is false 
 
Generally, the probability of committing a Type I and II error is 
inversely related.  But, there is no general formula, the relationship for 
any specific test depends on the effect size, the sample size, and the 
quality of the experimental design 
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The basic process of parametric statistical analyses 
 
The most commonly applied statistical analyses (t-tests, ANOVA, 
regression) assume that the data were sampled from a specific 
distribution (usually the normal).  Parameters (μ and σ2) of this 
distribution are estimated and are then used to calculate tail 
probabilities of a true null hypothesis.  Remember, we are estimating 
the probability of our observations given the null, P (data|null) 
 
There are 3 general steps in parametric analyses: 

1. Specify the test statistic 
2. Specify the null distribution 
3. Calculate the tail probability 
 
 

1.Test statistic 
Example: Testing for a difference between two sample means 
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The null hypothesis (HO) is that both groups of data are drawn from a 
single normal distribution.  What we mean is that a single mean and 
variance (μ,σ2) best represents both groups 
 
The alternative hypothesis (HA) is that the sample data for the groups 
is drawn from two different populations, each with its own mean and 
variance (although we assume variances are similar) 
 
The closer the 2 curves are together, the more likely the data would 
have been collected under a true null 
 
The more separate the 2 curves are, the less likely the data would be 
observed under a true null 
 
The test statistic that is used is specific to different kinds of tests and 
we will cover them all in detail.  When using Analysis of Variance 
(ANOVA), a test statistic was developed to quantify the overlap in the 
distributions as a ratio of the variances 
 
F-statistic = the ratio of the variance among groups to the variance 
within groups.  We have already introduced the F-distribution which is 
the null distribution used to estimate tail probabilities in ANOVA, and 
we will cover it in more detail soon. 
 
 
2. Specify the null hypothesis 
 
The null hypothesis is that all samples are drawn from one population.  
For this case specifically, the observed differences between group 
means are no larger than expected by chance (i.e., random variation) 
 
If the null is true, then variation among groups should be small relative 
to variation within groups and the F-ratio should be close to 1.0 
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3. Calculating the tail probability 
 
The P-value is an estimate of the probability of obtaining a specific F-
ratio given a true null hypothesis [Remember, P(data|null)] 

 
For the F-distribution, the P-value is calculated as the proportion (%) 
of the area under the curve to the right of the observed F-ratio 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
To interpret this plot, we would expect that our observed F-ratio of 8.7 
would only occur with probability 0.012 if the null were true.  In this 
case, we would reject the null hypothesis and conclude that the two 
groups were sampled from two different populations 
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Assumptions of parametric statistical analyses 
 

1. Data represent random, independent samples 
2. Data sampled from a specific distribution 

 
The first assumption is common to all statistical approaches (e.g., 
Bayesian, Monte Carlo, Information-theoretic).  It is the second 
assumption that is unique to parametric approaches.  Specific tests 
have additional assumptions (e. g., ANOVA requires homogeneity 
(equality) of variances) 
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Sampling and Experimental Design 
 
What’s the question? 
 
Simple survey data can be used to address questions such as: 
Q: Are there spatial or temporal differences in variable Y? 
 
When conducting biological field research, a well designed survey can 
answer many questions of interest, but still often represents the initial 
step in a line of research that ultimately intends to address mechanistic 
questions (identifying important processes)  
 
A more specific question might be: 
Q: What is the effect of factor X on variable Y? 
 
To address this question using a manipulative experiment, the 
investigator would establish different levels of factor X and then 
measure the response of variable Y (and then proceed to calculate a P-
value and decide whether to reject the null hypothesis) 
 
***Ultimately we want to ask if responses of variable Y are consistent 
with some Hypothesis H (our scientific hypothesis) 
 
 
Design of manipulative experiments 
 
Investigator alters levels of one or more factors (X) and measures the 
response of one or more variables (Y). 
 
An example: Does predation by large predatory fish control the density 
of newly recruiting fishes on coral reefs? 
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One approach  alter predatory fish density and measure the density 
of new recruits (Plot X vs. Y) 
                                                                
          
 
                     
 
 
 
 
 
 
 
 
Investigator could use a regression approach.  If so, the slope would 
be an indication of the strength of relationship 
 
 
Challenges of manipulative experiments (specifically field experiments) 
 

1. The spatial scale often limited (80% of field experiments in 
biology conducted at scales less than 1 m2) 

2. The results of even well-replicated small-scale experiments may 
not scale up well 

3. If spatial scale is made large, replication is sacrificed 
4. Often restricted to small-bodied, short-lived organisms 
5. Difficult to manipulate one and only one factor (confounding 

problem) 
6. Space, time, labor, cost, all limit # of replicates 
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Natural Experiments 
 
Observational studies generally take advantage of the natural variation 
that is present in a variable of interest.  They generate the same kind 
of data as manipulative experiments and are analyzed using the same 
statistical approaches.  However, they lack the controls that we have 
when we conduct manipulative experiments and their interpretation is 
therefore, more difficult.  It is harder to identify cause and effect 
relationships and identify the factors most responsible for an observed 
response. 
 
There are two general types of natural experiments.  Snapshot 
experiments are broad in spatial coverage, but limited to short time 
intervals (e.g., surveying multiple rivers in a single year).  Trajectory 
experiments are broad in temporal coverage, but have limited spatial 
scope (e.g., surveying a single river for a decade). 
 
 
Replication 
 
How much replication do we need? 
 
It depends………… on variation present in our sample data and the 
effect size we wish to be able to detect 
 
***Remember, the P-value of any statistical test depends on n, s2, and 
the effect size (the differences you can detect) 
  
But, how do we estimate variance (s2) before we begin sampling? 
 
Answer is that you can’t, but investigators will often collect pilot data 
for this purpose or an estimate can be obtained from previously 
published studies that have measured the same response variable 
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Often the number of replicates we eventually measure comes down to 
affordability.  Time, labor, and money often combine to dictate the 
number of replicates that is reasonable.  Therefore, it is important that 
we estimate these costs up front when designing any experiment to 
ensure that we are realistic in what we can accomplish. 
 
Gotelli and Ellison (2004, p. 150) suggest using a Rule of 10 when 
deciding how many replicates to measure.  As are all ‘rules of thumb’, 
this is subjective, but it’s not a bad starting point.  There are certainly 
many cases, as they point out, when less than 10 will be very much 
sufficient and others that will require many more than 10.  What is 
most important is that you spend time thinking hard about your 
question, your effect size, and how much data you can reasonably 
expect to collect in a fixed time interval.  And always anticipate and 
plan for data loss. 
 
 
Independence of replicates 
 
Definition of statistical independence: observations collected in one 
replicate do not have an influence on the observations collected in 
other replicates 
 
Stated another way, replicates are statistically independent when 
residual errors are independent (meaning that a high residual for 
one observation doesn’t necessarily cause a low/high residual for a 
separate observation)  
 
Nearly all statistical analyses assume replicates are independent of one 
another.  Pseudoreplication = statistical treatment of experimental 
units as independent when they are not (see Hurlbert 1984, Ecol. 
Mono. 54:187-211 for a detailed treatment of the subject). 
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An experimental example:  Consider an experiment to examine 
salamander use of manipulated versus unmanipulated stream habitats.  
You set up several manipulated sections of stream bottom from which 
you’ve removed a fraction of the benthic invertebrate prey community.  
You also monitor several unmanipulated sections of stream bottom.  
 
While snorkeling, you measure the number of salamanders using each 
section per hour and find: 
     20 salamander per hour to unmanipulated habitat 
     10 salamander per hour to manipulated habitat 
 
However, you notice that salamanders that visited the manipulated 
habitat leave quickly and move to an unmanipulated section.  Now, 
your observations are not independent.  If the habitat treatments were 
farther apart, the pattern you observed would likely have been 
different. 
 
A statistical test would likely produce a low P-value that could be 
spurious (Type I error).  Non-independence could also result in a Type 
II error (failure to reject a false null).  The exact effects on P-values 
and statistical power are unknown and will be specific to each 
experimental design. 
 
In a case such as this, replicate treatments should be separated by 
enough space/time to ensure that they don’t affect each other.  
However, this generates several problems.  First, we often don’t know 
the extent of spatial/temporal separation necessary to achieve 
independence.  Second, it is usually expensive to separate samples in 
space/time.  And third, a large degree of separation can ensure 
independence but may introduce new sources of variation. 
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Another example: Suppose you are interested in measuring the 
condition of bird fledglings in fragmented versus non-fragmented 
forests.  You design a survey and sample 4 sites in each forest type, 
randomly select 20 trees per site, 5 nests per tree, and measure 
condition (weight per unit length) of 3 fledglings per nest.  
 
What is the true replicate?  Is it the fledgling, the nest, the tree, or the 
site?  It will depend on how their residual errors are related.  Clearly, 
fledglings within the same nest are not independent (their residuals 
may be positively or negatively correlated).  The 5 nests have the 
same external factor (the tree) in common, but this can be accounted 
for in the statistical model so long as the residual errors of the 5 nests 
are independent. 
 
 
Confounding factors 
 
If we return to the salamander-stream habitat example, suppose that 
our habitat spatial separation was good, but one habitat treatment was 
located adjacent to deep pools and the other wasn’t.  Deep pools in 
streams likely contain more predators, which salamanders would do 
well to avoid.  Now, we cannot separate the effects of our habitat 
treatment from the effects of deep pools. 
 
The point is that although we think we understand the biology of the 
organism we are studying, there are likely unmeasured or unknown 
variables that can affect the response.  In non-manipulated natural 
experiments, we often cannot avoid the presence of confounding 
variables that operate during our study. 
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Replication and Randomization 
 
Through proper replication and randomization, we can offset problems 
introduced by confounding factors and non-independence 
 
Replication = establishment of multiple plots or observations within 
the same treatment group 
 
Randomization = random assignment of treatments or random 
selection of samples 
 
Gotelli and Ellison (2004) point out that many samples or sites are 
really haphazardly chosen rather than being truly random (which 
implies using some mechanism to generate a random number). 
Haphazard means to follow some general criteria to achieve a 
homogeneous distribution of samples or sites. 
 
If we return again to our salamander example, a properly replicated 
and randomized design would have a sufficient number of replicates 
(say 10, based on ‘rule of 10’) of each habitat treatment (manipulated 
and non-manipulated).  The location of the habitat sites would be 
random and assignment of habitat treatment to the different sites 
would be random. 
 
Proper replication and randomization (must have both) reduces the 
problems caused by confounding factors because all treatment levels 
occur within all levels of confounding factor (e.g., both manipulated 
and non-manipulated stream sections would be located adjacent to 
deep pools and shallow riffles) 
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We can now test for the effect of deep pools as a covariate 
(independent of our habitat treatment).  The presence of deep pools 
adds more variation, but it is not biased because it is not systematic.  
We have randomized the placement of our habitat treatments to avoid 
any bias associated with deep pools. 
 
***Clearly, if we knew the proximity to deep pools was important 
ahead of time, we would have controlled for it*** 
 
Proper randomization can also reduce the chance of bias due to non-
independence.  By locating our habitat treatments at random distances 
from each other (beyond some minimum distance) the effects of non-
independence will vary with distance and may cancel each other out. 
 
Again, we must both randomize and replicate to reduce the 
influence of confounding factors and non-independence 
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Questions to ask when designing a field experiment 
(from Gotelli and Ellison pp. 158-161) 
 
1. Are plots or enclosures large enough to ensure realistic results? 
 
Your design should ensure that the spatial scale of your experiment is 
appropriate relative to animal movement and behavior 
 
2. What is the Grain and Extent of the study? 
 
Grain = the size of the smallest unit of study (usually the size of a 
single replicate or plot) 
 
Extent = the total spatial area encompassed by all sampling units 
             
Often, it is hard to know which is best.  An experiment with small grain 
and large extent is generally a good combination.  Small grain allows 
manipulations and observations at the spatial scale of the organism 
you’re interested in, and large extent expands your domain of 
interference. 
 
3. Does the range of treatments span the range of possible 
environmental conditions? 
 
For example, if you are testing the effects of temperature on an 
organism you should be sure to test temperatures near the extremes 
experienced by the organism, not just those close to the mean 
 
4. Have appropriate controls been established? 
 
In many cases, having simply unmanipulated plots to go along with 
your manipulated plots is not a sufficient control. 
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For example, caging experiments often include other effects due solely 
to the cages.  A cage to exclude predators might also affect other 
processes, such as foraging by the treatment animal/plant. 
 
If your response variable was the growth rate of salamanders, you 
would need to use: 
 
1. Non-manipulated plots 
2. Cage control (predators can enter, but simulates other cage effects)  
3. No predator cage (full cage) 
 
Then you can make all pairwise comparisons:  
 
1 vs. 2 = cage effects 
2 vs. 3 = predator effects 
1 vs. 3 = combined effect of cages and predators 
 
5. Have all replicates been manipulated in the same way except for the 
treatment application? 
 
For example, transport and handling effects during a hooking mortality 
experiment for recreationally caught fishes.  One needs to separate 
the effects on mortality rate of the hooking treatment and the 
transport and handling effects.  Solution = a transport and handling 
treatment. 
 
6. Have appropriate covariates been measured in each replicate? 
 
Covariate = a continuous variable not under control of investigator 
that may affect response 
***Measuring covariates is not a substitute for randomization and 
replication*** 
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Types of Experimental Designs 
(Gotelli and Ellison 2004, chap. 7) 
 
In the broadest sense, our experimental design simply reflects our 
decisions about how our replicates will be physically arranged in space, 
and how they will be sampled through time.  These decisions rest on 
the definition of our replicate, and our earlier decisions about the 
number of replicates we can realistically expect to collect, spatial and 
temporal independence of our replicates, and our strategy to 
randomize.  
 
When we collect data, the variables that we measure are one of two 
general types: 

Categorical vs. Continuous variables 
 
Categorical variables = take on 2 or more discrete categories and are 
modeled as discrete random variables        
 
Continuous variables = measured on a continuous numerical scale; can 
take on a range of real and integer values and are modeled as 
continuous random variables 
 
 
We then designate our measured variables as dependent or 
independent: 
 
The dependent (response) variable is the variable whose response we 
are interested in measuring and understanding (cause) 
 
The independent (predictor) variable is the variable that is manipulated 
experimentally or varies naturally, and which we hypothesize may 
cause a response in our dependent variable 
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Four different design classes 
 
 
              Independent variable (X) 

Dependent 
variable (Y) 

 
Continuous 

 
Categorical 

 
Continuous 

 
Regression 

 
ANOVA 

 
Categorical 

 
Logistic regression 

 
Tabular 

 
*note that not all designs fit neatly into one of these categories (e.g., 
ANCOVA used when you have both categorical and continuous 
independent variables) 
                                                                                              
 

Regression designs 
 
When the independent variable (X) is measured on a continuous scale, 
regression designs are appropriate.  If the dependent variable (Y) is 
also continuous, then we use linear or non-linear regression models.  
If the dependent variable (Y) is categorical, then we can use logistic 
regression. 
 
Single factor regression design example 
 
Returning to our reef fish recruitment example.  We wish to know if 
the density of predatory fish affects the number of reef fish recruits. 
 
Dependent or response variable = number of reef fishes 
Independent or predictor variable = predator density 
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In an experimental study, we control or manipulate X and measure Y.  
In a natural experiment, we use the range in X that exists naturally, 
and measure Y along that range. 
 
Regression assumes that variation in X causes variation in Y, i.e., that 
there exists a functional relationship between X and Y (Y~f(X)).  This 
is different from correlation which does not specify cause and effect, 
but only tests for the strength of the association between two 
variables (X and Y). 
 
 
2 Principles of regression designs: 
 

1. We should ensure that the range of X is large enough to capture 
the full range of responses in Y (this helps to avoid Type II 
errors). 

2. We should ensure that the distribution of X values is 
approximately uniform to minimize the influence of outliers or 
leverage points (the helps to avoid Type I errors). 
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Multiple regression designs 
 
When we measure 2 or more predictor (X) variables, we need to use a 
multiple regression design.  For example, suppose that our reef fishes 
were found in habitats that differed in their structural complexity.  
Now, in addition to the density of predatory fishes, differences in 
habitat may also affect the number of reef fishes that we measure.  
 
An assumption is that the predictor (X) variables are independent of 
one another.  However, in many natural experiments (observational), 
the predictors are often confounded (e.g., high predatory fish density 
with high structural complexity).  This is referred to as collinearity, and 
it makes it hard to determine how much variation in our response is 
due to each predictor variable. 
 
***We should be careful not to measure everything without adding 
more independent replicates.  Instead, we should try to use only 
variables that we think may be biologically meaningful. 
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Stated differently, we shouldn’t depend entirely on some statistical 
approach to select important variables for us after the fact, we should 
spend some time thinking hard about what we measure and why 
before we collect the data. 
 
 

ANOVA designs 
 
ANOVA = Analysis of Variance 
 
These designs are widely applied throughout the biological sciences 
and are appropriate when the independent (predictor) variable is 
categorical and the dependent (response) variable is continuous. 
 
In ANOVA, the categorical predictor variables are often referred to as 
factors.  The different categories (or levels) of the predictor variable 
are referred to as treatments or treatment levels.  Within each 
treatment, we will make multiple observations (replicates).  
 
 

Single-factor and multi-factor ANOVA designs 
               
You will often see researchers refer to a test as a one-way, two-way, 
or three-way ANOVA.  These represent single- and multi-factor 
designs. 
 
In a single treatment or single-factor design, we will have one 
predictor variable that acts as our factor of interest.  We then test a 
response variable at several levels of our predictor variable.  Each 
factor value = a treatment level (e.g., O2 consumption by mice at 
different treadmill rates; the treatment = treadmill rate) 
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In a multi-factor design, we have 2 or more predictor variables 
(factors).  Ideally then, each factor is applied with all levels of the 
other factors in a fully crossed design (n increases) 
  
Example of 2-way ANOVA design: 
We want to test the effects of treadmill rate and body size on the 
respiration rate of mice. 
  
Single-factor design for treadmill rate 

 Treadmill rate (cm per second) Total 

Level 1 2 3 4  

n 10 10 10 10 40 

 
Single-factor design for body size 

 Body size (g) Total 

Level 2 4 6 8  

n 10 10 10 10 40 

 
2-Factor Design 

Body 
size 

 
Treadmill rate 

level 1 2 3 4 

2 10 10 10 10 

4 10 10 10 10 

6 10 10 10 10 

8 10 10 10 10 

               n= 160 (using “rule of ten”) 
 
 
Why not just run two separate single-factor designs with half the reps? 
 
The advantage of the multi-factor design is that you can test for main 
effects and the interaction of factors 



 78 

The main effect of any single factor in a multi-factor design is the 
response to each level of that factor averaged over all levels of other 
factors.  In our example, the main effect of treadmill rate is examined 
by calculating the respiration rate at each speed, averaged over all 
body sizes. 
 
The problem is that interaction terms cannot be predicted 
from simply adding up the main effects.  Interactions represent 
unique responses to specific treatment combinations, and they may be 
greater (synergistic) or less (antagonistic) than expected from just the 
addition of main effects (e.g., all mice might respire at higher rates at 
faster treadmill speeds, but bigger mice may have higher respiratory 
costs than smaller mice only at high speeds). 
 
 

Various single-factor ANOVA designs 
 
Single-factor ANOVA is used to compare means among 2 or more 
levels of a factor or treatment.  When we set up a single-factor 
ANOVA, there are various designs we can use.  These include basic, 
randomized block, and nested designs.  The randomized block and 
nested designs include a second factor.  We are generally not 
interested in the response associated with that factor, it is included 
only to help control for sampling variation. 
 
 
Example: Effect of substrate type on flatfish settlement; 3 substrate 
types: mud, sand, rock 
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To proceed, we identify “equal” sample sites for each substrate type.  
By “equal” we mean that other than differences in substrate type, the 
sites are similar in all other attributes that we think might affect 
flounder settlement.  If we use the “rule of 10”, we would have 10 
replicate sites for each substrate type, and we would measure flatfish 
settlers in some way. 
 
We end up with a table of our data: 
 

Treatment Replicate # of flatfish 

Mud  1 12 

Sand 1 6 

Rock 1 0 

Mud 2 9 

Sand 2 4 

Rock 2 1 

Mud 3 11 

 
 
It turns out that this simple design is very powerful for detecting the 
effects of our treatment.  It can accommodate unequal sample sizes 
(n) among treatment levels and we can perform “post-hoc” or “a 
posteriori” tests to determine which treatment means are different 
from which others. 
 
The primary disadvantage  the completely randomized design 
doesn’t explicitly account for differences in the environment 
(heterogeneity) among our sites.  If our replicate sites are completely 
randomized, they should be distributed across a broad array of 
environmental conditions (which is good!), allowing our results to be 
generalized across many environments. 
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But…..if the environmental “noise” is stronger than the treatment 
“signal”, our experiment will have low power (our ability to detect a 
pattern when one exists). 
 
We can deal with this environmental “noise” in several ways……. 
 
 

Randomized block design 
 
In this type of design, we place our replicate sites within blocks, which 
are areas (space) or time periods within which the environmental 
conditions are relatively similar (homogenous).  Our blocks should be 
arranged so that environments are more similar within a block than 
between blocks.  Then, our replicate sites are assigned randomly 
within the blocks.  In a simple randomized block design, each block 
contains exactly 1 replicate of each treatment level 
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This type of design helps us to deal with unknown environmental 
heterogeneity.  If we know or suspect that an environmental gradient 
exists (e.g., depth) we would arrange our blocks along that gradient to 
ensure equal replication at each level of the suspected gradient. 
 
      

Deep                                            Deep    
 
                                                                 
Correct       Incorrect  
                                                          
 

   Shallow                                         Shallow                
 
 
 
We can also create blocks in patchy habitats, if we know the 
distribution of patches in the environment, or block through time 
(good for situations when you can’t run all of your replicates 
simultaneously). 
 
The randomized block design is more efficient than a completely 
randomized single-factor layout when there is sufficient environmental 
noise.  The design reduces n while achieving the same power. 
 
There are some disadvantages of the randomized block design: 
1. Power is reduced if n is low and “noise” is weak 
2. Potential for non-independence of replicates 
3. If any replicates are lost, block is lost 
4. Assumes no interaction between block and treatment 
 
Underwood (1997) argues for replication within blocks to allow testing 
for the interaction (this would now be a 2-factor layout). 
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Nested ANOVA designs 
 
Nested designs are those that include subsampling within the 
replicates.  For instance, suppose that we measured the number of 
flatfish recruiting to each mud, sand, or rock site 3 times instead of 
just once.  The total number of observations has increased from 30 to 
90, but the number of independent replicates is still 30. 
 
Subsampling within the replicates increases the precision with which 
we are able to estimate the response for each replicate.  This is 
because the Law of Large Numbers tells us that higher n = more 
precise parameter estimates.  In general, this will increase the power 
of our test. 
 
Advantages of nested designs 
1. Increased precision for each replicate (greater power) 
2. We can test 2 hypotheses related to variation among treatments 
(using subsample averages) and variation among replicates 
 
Nested designs lend themselves to a hierarchical sampling design.  For 
example, in a single study of flatfish settlement you could look at 
subsamples nested within replicates, replicates nested within salinity 
zones, salinity zones nested within rivers, rivers nested within regions, 
etc.  The variance in the response can be partitioned into components 
that represent each of the nested levels.  We might find that most of 
the variation in flatfish settlement is found at the regional level.  This 
will help us to identify important mechanisms as we move forward. 
 
Some pitfalls of nested designs 
1. Investigators may be tempted to treat subsamples as independent  
   replicates (an example of pseudoreplication).  This practice artificially    
   boosts sample size and the probability of making a Type I error. 
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2. Complex nested designs can be hard to analyze if sample sizes are       
   unequal  
3. Subsampling often represents misplaced sampling effort 

-the power of ANOVA depends much more on true n than 
precision of replicates 
-subsampling is not a solution to inadequate replication 
-good if subsampling is cheap & easy or is necessary to avoid loss 
of replication (e.g., when using live animals) 

 
 

Multi-factor ANOVA designs (2-factor layout) 
 
In multi-factor designs, we examine the response to 2 or more factors 
simultaneously instead of just one.  In terms of sampling and 
randomization, our approach is similar to a one-way layout. 
 
Returning to the flatfish settlement example, suppose that in addition 
to substrate type, you want to test for the effects of predation by sea 
robins (an important predator of flatfish) on settlement rates. 
 
We might come up with 3 levels of our predation treatment: 
1. unmanipulated (this allows predation to occur naturally) 
2. predator exclusion (substrate plots are surrounded with cages that  
   allow flatfish to enter, but keep predators out) 
3. cage control (a cage mimic, but predators move freely) 
 
This is an example of a factorial design - testing 2 or more factors 
simultaneously.  
 
*** A major key is that treatments are fully crossed or orthogonal  
= all treatment levels of each factor are represented with all treatment 
levels of each other factor 
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We now have 3 substrate treatments x 3 predator treatments = 9 
treatment combinations 
 
***If any of our 9 treatment combinations are missing, our design will 
be confounded (i.e., we won’t be able to determine if our response is 
due to substrate or predator effects) 
 
The main advantage of multi-factor designs, as mentioned earlier, is 
that we now have the ability to separate the main effects and estimate 
the non-additive interactions.  Remember, treatment combinations 
may act additively, synergistically, or antagonistically.  If we get a non-
significant interaction term, it means that our main effects are simply 
additive (e.g., the effect of substrate type on flatfish settlement is the 
same whether sea robin predators are present or not). 
 
The main disadvantage of multi-factor designs is that the treatment 
combination number can get large quickly, preventing adequate 
replication.  Also, sometimes it is difficult to establish all orthogonal 
combinations. 
 
 

Split-plot ANOVA designs 
 
Split-plot designs represent an extension of the randomized block 
design for a two-factor layout, and were originally used mostly in 
agricultural experiments.  A single block or plot is split into subplots 
and the second treatment factor is applied to the whole block or plot. 
 
Returning again to our flatfish settlement example, we would block on 
substrate type just as in a simple randomized block design, but then 
we would apply one of our predator treatments to whole blocks 
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Predator treatment = whole plot factor 
Substrate type = subplot factor 
 
Primary advantage is efficiency of the use of blocks: 
 
For a 2-way layout, we would need: 
30 cages for predator exclusion 
30 simulated cages for cage controls 
30 unmanipulated sites (no cages needed at these sites) 
 
Alternatively, for a split-plot design, we only need: 
10 cages for predator exclusion (each covers a block of 3 substrates)                                    
10 simulated cages for cage controls (again, each covers a block)                         
10 unmanipulated blocks 
 
 
 

Completely randomized 2-way layout 
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Split-plot design 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Split-plot designs enable efficient use of blocks that may reduce labor 
and materials costs.  We can test for the two main effects (whole plot 
factor and subplot factor) and their interaction, but similar to the 
randomized block design, we still cannot test for the interaction 
between blocks and the subplot main effect unless we replicate within 
blocks. 
 
***Similar to randomized block designs, it is a mistake to analyze a 
split-plot design as a 2-way orthogonal layout (this increases the 
probability of committing a Type I error) 
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ANOVA designs for 3 or more factors 
 
Not recommended because the treatment combinations get high 
quickly 
 
For instance, 3 treatments each with 4 levels = 43 = 64 treatment 
combinations x 10 replicates = 640 replicates 
 
Field experiments with 3 factors are rare due to logistical problems 
 
 

Repeated measures designs 
 
Repeated measures designs incorporate the temporal variation that is 
introduced when multiple observations are made on the same replicate 
at different times.  Thus, the observations are not independent. 
 
Advantages: 
1. Efficient – eliminates the need for unique replicates at each time  
    interval 
2. Each replicate serves as its own block or control - removes  
    influence of individual variation 
3. Allows one to test for time x treatment interaction (often most   
    interesting term) 
 
Both randomized block and repeated measures designs assume  
Circularity = variances of the differences between any 2 treatment 
levels within a block are the same across blocks (block design) or 
across time (repeated measures design) 
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Regression vs. ANOVA designs 
 
Both regression and ANOVA represent powerful experimental designs 
that are based on the general linear model.  But, how do we decide to 
use one or the other to address our question?  
 
The use of ANOVA is widespread in the sciences and there are more 
books devoted to the design of experiments using ANOVA than one 
can count, let alone read.  There are many investigators that feel that 
ANOVA is overused and that researchers are often constrained to think 
of their question in ANOVA terms.  In many instances, a regression 
design may be more appropriate. 
 
Considering that the independent variable in many ANOVA designs is, 
in reality, a continuous variable that has been grouped into categories.  
Rather than using 4-5 fixed levels of X, one can measure X across a 
range of values and measure the response in Y.  This is the typical 
approach when we conduct an observational study, but is being more 
widely applied to controlled experimental situations (e.g., reef fish 
example). 
 
Regression designs can identify thresholds and dynamic (non-linear) 
relationships between variables that could not be detected with 
ANOVA.  Ideally, we would have some replication at each level of X, 
but often this isn’t possible.  We still obtain an unbiased estimate of 
the regression parameters (slope, intercept), we can construct 
confidence intervals around those estimates, and draw inferences 
about the relationship between X and Y. 
 
In addition to the advantages in efficiency of regression designs, the 
resulting parameter estimates can be used for comparison with 
theoretical models (which are built mainly as differential equations). 
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One- and two-sample hypothesis tests 
(Chapter 6 in Zar) 

 
Recall our normal distribution with the property of symmetry and 
our ability to standardize any Xi value using: 
 




 iX

Z
 

 
We refer to Z as a normal deviate and it tells us how many 
standard deviations (σ) any value Xi is away from the mean.  
Therefore, if we know the mean and standard deviation of a 
normal distribution, we can calculate the proportions of that 
distribution. 
 
 
Using Table B.2 in Zar, we obtain the following: 
 
68.27% of observations lie within μ±1σ 
95.44% of observations lie within μ±2σ  
99.73% of observations lie within μ±3σ  
 
50% of observations lie within μ±0.67σ  
95% of observations lie within μ±1.96σ  
97.5% of observations lie within μ±2.24σ  
99% of observations lie within μ±2.58σ  
99.5% of observations lie within μ±2.81σ  
99.9% of observations lie within μ±3.29σ  
 
We can use Table B.2 to calculate the proportion of a normal 
distribution that lies beyond any value Z.   
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For example, we have measured the heights of students in this 
room and have calculated μ = 70 inches and σ = 5 inches.  The 
proportion of the distribution greater than or equal to Xi = 70 
inches would be calculated as Z = (70 – 70)/5 = 0.  From Table 
B.2, we see that P(Xi ≥ 70) = P(Z ≥ 0) = 0.5000 or 50%.  To 
determine the proportion greater than or equal to 75 inches, Z = 
(75-70)/5 = 1.  Therefore, from Table B.2, P(Z ≥ 1) = 0.1587, so 
P(Xi ≥ 75) = 0.1587 or 15.87%. 
 
To estimate the probability of obtaining a height less than 75 
inches, we simply subtract the probability of Xi ≥ 75 from 1.  P(Xi 
< 75) = 1 – P(Xi ≥ 75) = 1 – 0.1587 = 0.8413.   
 
***Remember, that the shape of a normal distribution is 
determined only by the mean and the standard deviation.  For 
any mean (μ), there are an infinite number of normal 
distributions, each with a different standard deviation (σ), and 
vice versa. 
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mean = 70, sd = 10
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mean = 70, sd = 2
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***Review examples 6.3a and 6.3b in Zar here*** 
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The standard error and hypothesis tests concerning the mean 
 
Remember that the Central Limit Theorem states that the 
distribution of sample means taken from a non-normal population 
will tend toward normality as n increases.  In addition, the 
variance of this distribution of means will decrease as n increases.   
 
We end up with a parameter that we call the variance of the 
mean, denoted as: 

n
x

2
2 

 
 

 
We can then obtain another parameter, the standard deviation of 
the mean, denoted as: 

n
x


 

 

 
The standard deviation of a statistic (the mean) is referred to as 
the standard error, so σx̄  is often called the standard error of 

the mean, or just simply the standard error. 
 
Now we can create a normal deviate for our x̄ values just like the 

one we had for our Xi values. 

x

x
Z






 

And we can ask questions about the probability of obtaining a 
sample mean as large or larger than x̄ from a population with a 

known mean (μ) and standard deviation (σ).   
***Review examples 6.4 and 6.6 in Zar here*** 
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The t-distribution (or Student’s t-distribution) 
(chapter 7 in Zar) 
 
In the previous section using normal deviates to test hypotheses 
about the mean, recall that our calculation of Z required us to 
know the value of σx̄  (the standard error of the mean) which we 

won’t unless we have data from all members of the population of 
interest.  Instead, we calculate sx̄  as an estimate of the standard 

error.  When n is very large, we can use sx̄  in our calculation of 

Z.  However, in most cases, n isn’t large enough to allow us to do 
this and we must turn instead to a distribution different from the 
standard normal. 
 
The t-distribution (or Student’s t-distribution) was 
developed by Gossett at the turn of the century.  The distribution 
is leptokurtic relative to a normal distribution, but becomes 
normal as n approaches infinity.  In general, the tails are slightly 
broader and flatter than a normal, and thus contain more of the 
probability density.  This accounts for the 
extra variation that stems from our 
estimating the standard error of the mean 
as well as the mean using our sample 
data, so the tail probabilities are a little 
thicker.  The test statistic is calculated as: 
 

x
s

x
t




 

 
The shape of the t-distribution is affected by the degrees of 
freedom v = n-1. 
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Example: 
Suppose I am interested in the mean January temperature in the 
lower Cape Fear River.  I have data on the temperature every two 
days in January 2008. 
 
Temperature (degrees C) = 3,2,6,2,1,4,4,5,1,5,1,3,4,2,5 
 
My null hypothesis (H0) is that the mean is five degrees: H0: μ=5 
My alternative hypothesis (HA) is that the mean is not five: HA: 
μ≠5 
 
I set my alpha level (α) a priori to 0.05 and my n = 15. 
 
 
Steps: 

1. Calculate the sample mean: x̄ = 3.20 

2. Calculate the sample variance: s2 = 2.74 
3. Calculate the standard error: sx̄ = 0.43  

4. Calculate the test-statistic: 

17.4
43.0

520.3








x
s

x
t



 

5. Calculate the degrees of freedom (v) = n-1 = 14. 
6. Look up the critical value (Table B.3) = t0.05(2), 14 = 2.145. 

 
 
Since |t| = 4.17 > 2.145, we would reject H0 and conclude that 
the mean January temperature is not five. 
 
Based on the values in Table B.3, our P-value is less than 0.001 
(P < 0.001). 
 
 



 95 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The critical regions account for 5% (2.5% in each tail) of the 
probability density of the t-distribution.  Thus, any x̄  that 

generates a t-value that lies in either of the shaded areas would 
be expected to occur less than 5% of the time, if the null 
hypothesis of μ = 5 were true.   
 
In this case, we have completed a ‘two-tailed’ test.  This means 
that an extreme value of x̄  in either direction will cause us to 

reject H0.  We obtain the critical value for t (tα(2), v) from Table B.3 
and compare it to the absolute value of our calculated t-value.  
For a two-tailed test: 
 

If |t| ≥ tα(2), v, then we reject H0 

 
 
***Review examples 7.1 and 7.2 in Zar here*** 

3        2 1 0        1       2       3

t-distribution

Critical regions for v = 14, α = 0.05 (2)

scharff
Sticky Note
ended here 2/18/2013
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One-tailed hypotheses 
 
Often, we may only be interested in a mean that is different from 
zero or a hypothesized value in one direction.  For such a ‘one-
tailed’ test, our hypotheses are stated differently: 
 

H0: μ ≥ 0 or μ ≥ μ0 
and 

HA: μ < 0 or μ < μ0 
 
Now, we only examine the critical region on one side of the t-
distribution.  In general: 
 

if t ≤ -tα(1), v, then reject H0 
or 

if t ≥ tα(1), v, then reject H0 
 
 
Example: 
Suppose I am interested in the mean number of absences by 
students in my Biostats class.  I have data on the number of 
absences each day since the start of the semester. 
 
Number of absences = 0,1,0,0,2,1,0,2,1,1,0,1,0,4 
 
My null hypothesis (H0) is that the mean is zero: H0: μ = 0 
My alternative hypothesis (HA) is that the mean is greater than 
zero: HA: μ > 0 
 
I set my alpha level (α) a priori to 0.05 and my n = 14. 
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Steps: 
1. Calculate the sample mean: x̄ = 0.93 

2. Calculate the sample variance: s2 = 1.30 
3. Calculate the standard error: sx̄ = 0.31  

4. Calculate the test-statistic: 

0.3
31.0

093.0








x
s

x
t



 

5. Calculate the degrees of freedom (v) = n-1 = 13. 
6. Look up the critical value (Table B.3) = t0.05(1), 13 = 1.771. 

 
 
Since t = 3.0 > 1.771, we would reject H0 and conclude that the 
mean number of absences is greater than zero. 
 
Based on the values in Table B.3, our P-value is somewhere 
between 0.005 and 0.01 (0.005 < P < 0.01). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
***Review examples 7.3 and 7.4 in Zar here*** 

3        2 1 0        1       2       3

t-distribution

Upper critical region for v = 13, α = 0.05 (1)
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Confidence limits for the mean 
 
We can now use the critical values from our t-distribution to 
obtain the level of precision with which we are estimating the 
population mean.  Our critical values told us that 5% of all 
possible sample means drawn from a population of mean μ will 
generate t-values that are either greater than t0.05(2), v or less than 
–t0.05(2), v (i.e., |t| > t0.05(2), v).  This tells us that 95% of t-values 
will lie between these critical values. 
 

95.0),2(05.0),2(05.0 











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x
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We can rearrange to obtain: 
 

  95.0),2(05.0),2(05.0 
xvxv stxstxP   

 
 
This is called the confidence interval.  The general equation is: 
 

     1),2(),2( xvxv stxstxP  

 

 

A confidence interval gives an estimated range of values which is 
likely to include an unknown population parameter, the estimated 
range being calculated from a given set of sample data.   
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If independent samples are taken repeatedly from the same 
population, and a confidence interval calculated for each sample, 
then a certain percentage (confidence level) of the intervals will 
include the unknown population parameter.  In other words, the 
parameter is either in or out of any calculated confidence interval 
(so we can’t say we are 95% confident that this single interval 
contains μ).  We usually calculate confidence intervals so that this 
percentage is 95%, but we can produce 90%, 99%, 99.9% (or 
whatever) confidence intervals we wish for the unknown 
parameter.  

The width of the confidence interval gives us some idea about 
how uncertain we are about the unknown parameter 
(precision).  A very wide interval may indicate that more data 
should be collected before anything very definite can be said 
about the parameter.  Confidence intervals are more informative 
than the simple results of hypothesis tests (where we decide 
"reject H0" or "don't reject H0") since they provide a range of 
plausible values for the unknown parameter. 

 
Example: 
Returning to our January water temperature data in the Cape 
Fear River: 
 
Sample mean: x̄ = 3.20 

Standard error: sx̄ = 0.43  

The degrees of freedom (v) = n-1 = 14 
The critical t-value (Table B.3) = t0.05(2), 14 = 2.145 
 
95% CI = x̄ ± t0.05(2), 14sx̄   

95% CI = 3.20 ± (2.145)(0.43) 
95% CI = 3.20 ± 0.92 
Lower CI limit = 2.28 Upper CI limit = 4.12 
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Power and sample size for one-sample t-tests 
 
A common question voiced by researchers in biology is how many 
samples do I need to test a hypothesis related to the mean?  This 
question can be answered before the samples are collected, but it 
requires several pieces of information to be specified first.  We 
need to set acceptable levels of error probabilities (both Type I 
and Type II errors), we need to set our detection level (how small 
a difference between μ and μ0 do we want to be able to detect), 
and we also need to have an idea about our sampling variance. 
 
For a t-test, the formula to calculate sample size needed is: 
 

2

),1(,2

2

)( vv tt
s

n 



 

 
Where s2 = an estimate of the sampling variance, and δ = the 
difference between μ and μ0 that you want to be able to detect.  
The tα can be tα(1) or tα(2), depending on whether you are 
conducting a one-tailed or a two-tailed test. 
 
***Review example 7.7 in Zar here*** 
 
For a given sample size (n), we can also determine our minimum 
detectable difference (δ) using: 
 

)( ),1(,

2

vv tt
n

s
 

 

 
***Review example 7.8 in Zar here*** 
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Lastly, the power of the test can be estimated for a given sample 
size (n) and minimum detectable difference (δ) using: 
 

vv t

n

s
t ,

2
),1( 


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***Review example 7.9 in Zar here*** 
 
The two main issues when conducting a priori power analyses are 
obtaining an estimate of the variance (s2) and deciding what the 
minimum detectable difference (δ) should be.  Reasonable 
variance estimates can generally be obtained through literature 
searches or the collection of pilot data.  Selecting a minimum 
detectable difference requires some hard thinking! 
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Two-sample and paired-sample tests 
(chapters 8 and 9 in Zar) 
 
In the previous section, we were focused on one-sample 
hypotheses such as whether the mean was or was not a specified 
value (i.e., μ = 0 or μ = 5).  However, we are often more 
interested in comparing the parameters of two distributions and 
for this we need to use two-sample tests.  We will again make 
use of the t-distribution. 
 
Example: 
We divide our Biostats class by gender and measure heights.  We 
have 14 females and 10 males and their heights are listed below. 
 
Female heights in inches (n=14) 
62,65,66,68,65,66,65,67,65,64,64,62,65,66 
 
Male heights in inches (n=10) 
68,70,76,75,72,73,70,71,69,70 
 
We wish to test the hypothesis that the mean height is different 
between the gender groups.  The H0 and HA statements can be 
written in different ways. 
 

H0: μ1 – μ2 = 0     and    HA: μ1 – μ2 ≠ 0 
 

or 
 

H0: μ1 = μ2  and      HA: μ1 ≠ μ2 
 
 
We assume that the two samples were drawn from normal 
distributions with equal variances.   
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The t-statistic for a two-sample test is calculated as: 
 

21

21

XXs
XXt

−

−
=

 

 
The denominator is the standard error of the difference between 
the sample means.  We calculate this quantity using our sample 
data.  It depends on the fact that the variance of the difference 
between two variables is equal to the sum of the variances of the 
two variables.   

2121
222

XXXX σσσ +=−  
 
Since σ2

x⎯ = σ2/n, then 
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And since we assume equal variances for a two-sample test,  

σ1
2 = σ2

2 = σ2 

 
Now, we need an estimate of σ2.  We have two estimates of σ2 
from our calculated sample variances (s1

2 and s2
2).  Since they 

are both assumed to estimate σ2, we calculate a pooled variance 
sp

2 using: 
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Then we can calculate the standard error of the difference 
between the sample means as: 

2
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s pp
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Now, our calculation of the t-statistic becomes: 
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Returning to our example, 
 
Female heights   Male heights 
n = 14    n = 10 
v = 13    v = 9 
x⎯ = 65 inches   x⎯ = 71.4 inches 
SS = 36 inches2  SS = 60.4 inches2 
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38.7
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t0.05(2),v = t0.05(2), 22 = 2.074 
 
Since |t| > 2.074, we would reject H0; P < 0.001 
 
We would conclude that the mean heights differed between the 
gender groups, with males being taller than females. 
 
***Review examples 8.1 and 8.2 in Zar here 
 
 
Assumptions of the two-sample t-test 
The two-sample t-test assumes that both samples were drawn 
from normal populations with equal variances.  However, unless 
departures from these assumptions are severe, the t-test is quite 
robust.  One-tailed tests are affected to a greater degree than 
two-tailed tests by departures from normality (i.e., skewed 
distributions).  In general, the probability of committing a type I 
error will be inflated by non-normality and non-equality 
(heterogeneity) of variances, but the amount of increased error 
probability is lessened greatly by larger sample sizes.  See Table 
8.1 in Zar for type I error probabilities under assumption 
violations.  There is also a modified t-test (Welch’s approximate t) 
that is an improved test when the assumptions of normality and 
variance homogeneity have been violated.  One can also use a 
non-parametric approach, which we will discuss shortly.  In most 
cases, however, the researcher will be justified in simply 
employing the standard t-test. 
 
 

scharff
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Confidence intervals for two-sample tests 
 
Since we assume that the variances are equal when we test for 
differences between two means, the confidence interval for either 
of the means is calculated using the pooled variance (sp

2) to 
estimate the standard error.  For either u1 or u2, the confidence 
interval is calculated as: 
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In our height example: 
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Since tα(2), v = t0.05(2), 22 = 2.074, the 95% CI would be 65 ± 
(2.074) * (0.559 inches) = 65 ± 1.16 inches 
 
For males, the 95% CI would be 71.4 ± (2.074) * (0.662) = 71.4 
± 1.37 inches 
 
 
A confidence interval for the difference between two means (x⎯1 – 
x⎯2) can also be calculated.  The equation is: 

21),2(21 XXv stXX
−

±− α  
 
For our example this would be:  

71.4 – 65 ± (2.074) * (0.867) = 6.4 ± 1.80 inches 
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Power and sample size for two-sample tests 
 
Similar to the procedures we used for one-sample tests, we can 
estimate the required sample size, minimum detectable 
difference, and/or power of our two-sample test.  To estimate the 
sample size (n) required to detect a specific difference between 
two means we can use: 
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Here, Sp

2 is our pooled variance estimate and δ is the minimum 
difference we want to be able to detect.  The tα,v value can be for 
either a one-tailed (1) or a two-tailed (2) test.  As we noted 
before, the required sample size (n) will be dependent on the 
difference we wish to be able to detect, our variance, the α-level, 
and the power (1-β) we wish to achieve. 
 
*Note that if we are constrained to have unequal sample sizes, 
we will generally need a higher overall n to detect a specified 
difference with the same type I and type II error probabilities. 
 
***Review example 8.4 in Zar here 
 
For a given sample size (n), α-level, and power (1-β), we can 
estimate the minimum detectable difference (δ) using: 
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***Review example 8.5 in Zar here 
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The power (1-β) of the test can be estimated for a given sample 
size (n), α-level, and minimum detectable difference (δ) using: 
 

v
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n
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2
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δ

−=
 

 
 
***Review example 8.6 in Zar here 
 
When estimating minimum detectable difference (δ) and power 
(1-β) for two-sample tests with unequal samples sizes (n1 ≠ n2), 
the single n that is called for in the formulae above can be 
calculated as: 

21

212
nn
nn

n
+

=
 

 
Although Zar outlines the estimation of a posteriori (= after the 
test) power in example 8.7, this is not recommended.  Obviously, 
if you failed to reject H0 then you didn’t have enough power to 
detect a difference.  We will discuss this in more detail when we 
cover power analysis for ANOVA. 
 
 
Testing for differences between two variances 
 
In addition to comparing means from two samples, we can also 
ask questions about the variances.  Hypotheses about differences 
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between variances can be addressed using a variance ratio test.  
The test-statistic is F and is calculated using: 
 

2
2

2
1

s
sF =

 

 
The larger of the two variances is positioned in the numerator, so 
F can range from 1.0 to ∞.  If the calculated ratio for any two 
variances deviates greatly from 1.0, then we reject the null 
hypothesis H0: s1

2 = s2
2 and conclude that they are different.  We 

use table B.4 in Zar to obtain critical values for the F-distribution 
using the α-level and the degrees of freedom (n-1) for the 
numerator and denominator (in that order). 
 
***Review example 8.8 in Zar here 
 
 
Nonparametric tests for two samples 
 
If a researcher believes that the assumptions of normality and 
equality of variance have been severely violated they may choose 
to use a nonparametric approach to test their hypothesis of 
interest.  These approaches don’t require us to estimate the 
mean and variance, and don’t assume normality.  Keep in mind, 
that whenever a parametric test can be used, it will be more 
powerful (lower probability of making a type II error) compared 
to a nonparametric test. 
 
A common nonparametric test for comparing two means is the 
Mann-Whitney test.  In this test, the actual measurements are 
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not used, but instead they are converted to ranks (either from 
highest to lowest or vice versa).  We rank all the data together, 
not separately within the groups we wish to compare.  The test 
statistic (U) is: 

1
11

21 2
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R
nn

nnU −
+

+=
 

 
where n1 and n2 are the sample sizes in each group and R1 is the 
sum of the ranks for group 1.  Alternatively, we can calculate U’: 
 

2
22

12 2
)1(' RnnnnU −

+
+=

 

 
If we have already calculated U or U’, the other can be calculated 
more simply using: 

U’ = n1n2 – U 
or 

U = n1n2 – U’ 
 
For a two-tailed test, both U and U’ are computed and we use 
whichever is larger to compare to the critical value Uα(2)n1,n2 in 
table B.11 
 
Example: 
We are interested in comparing the ground speeds of lizards 
(Anolis spp.) and skinks (Eumeces spp.) as we chase them during 
capture attempts.  We measure the speeds (cm/s) of 6 of each: 
 
Lizard: 3.1, 4.2, 3.7, 3.6, 4.0, 3.3 
Skink: 4.3, 4.8, 4.9, 4.1, 3.9, 5.0 
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If we rank these from fastest to slowest we have: 

1. 5.0 (skink)  7. 4.0 (lizard) 
2. 4.9 (skink)  8. 3.9 (skink)  
3. 4.8 (skink)  9. 3.7 (lizard)  
4. 4.3 (skink)  10. 3.6 (lizard) 
5. 4.2 (lizard)  11. 3.3 (lizard) 
6. 4.1 (skink)  12. 3.1 (lizard) 

 
We can sum the ranks of the skinks = (1+2+3+4+6+8) = 24, 
and calculate our test statistic (U): 
 

3324
2

)16(66*6 =−
+

+=U
 

 
Then U’ = 6*6 – 33 = 3.  Since U > U’, we use U to test our 
hypothesis.  From table B.11, we obtain U0.05(2)6,6 = 31.  Since our 
calculated U > Ucritical, we would reject the null hypothesis that 
lizards and skinks demonstrate the same ground speed when 
being chased, and conclude that skinks should be harder to catch 
than lizards. 
 
*Note that when two observations would receive the same rank 
(i.e., they are tied), each observation is assigned the mean of the 
ranks that would have been assigned if they weren’t tied (e.g., if 
the 3rd and 4th observation are tied, they each are assigned a 
rank of 3.5). 
 
***Review example 8.13 in Zar here 
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Paired-sample tests 
 
There are occasions when the observations from the two samples 
we wish to compare are not independent.  This precludes us from 
using the two-sample testing procedures described above and 
requires us to use paired-sample tests instead. 
 
Paired-sample tests evaluate hypotheses using only the 
differences between paired observations (not the actual values 
themselves).  Therefore, instead of the null hypothesis being 
expressed as: 

H0: μ1 – μ2 = 0 
 
it is expressed as: 

H0: μd = 0 
 
where μd = μ1 – μ2.  And the test statistic is calculated as: 
 

d
s
dt =

 

where d̄ = the mean of the differences between paired 
observations and sd̄ = the standard error of the mean differences 
between paired observations.   It is similar to a one-sample t-test, 
with n = number of observation pairs and v = n-1. 
 
The paired t-test necessitates that each observation in one group 
is correlated with only one other observation from the second 
group.  The observations for each sample do not need to be 
normally distributed, nor do the samples need to display 
homogeneous variances.  However, it is assumed that the 
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differences (d’s) are drawn from a normally distributed 
population. 
 
 
Example: 
Suppose we were interested in the effect of sediment grain size 
on the burrowing depth of an intertidal shrimp.  Previous data 
suggests that individual variation in burrowing depth is large, 
such that detecting small differences due to sediment grain size 
would be difficult (low signal to noise ratio) if we used a standard 
two-sample design.  If, however, we set up experimental tanks 
that had coarse sediment on one side and fine sediment on the 
other, we could measure the burrowing depth of the same 
individual shrimp in both sediment types and analyze the paired 
differences using a paired-sample test.  This will be more 
powerful than a standard two-sample t-test because we have 
eliminated the noise due to individual shrimp variation. 
 
H0: ud = 0 
HA: ud ≠ 0 
n = 10 paired observations, thus v = n-1 = 9 
 
Observation (ind. shrimp) coarse  fine  diff. 
1      2.4cm  3.6cm 1.2cm 
2      1.4cm  1.9cm 0.5cm 
3      3.4cm  4.0cm 0.6cm 
4      2.2cm  2.5cm 0.3cm 
5      5.1cm  5.4cm 0.3cm 
6      1.8cm  2.8cm 1.0cm 
7      3.0cm  4.7cm 1.7cm 
8      1.3cm  2.0cm 0.7cm 
9      4.2cm  4.8cm 0.6cm 
10      4.9cm  5.4cm 0.5cm 
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We first calculate the mean of the paired differences d̄ = 
7.4cm/10 = 0.74cm.  We then calculate the variance sd

2 = 0.194 
cm2, the standard deviation sd= 0.44cm, and lastly, the standard 
error of the mean of the differences sd̄ = 0.139.  The test statistic 
is calculated as: 

32.5
139.0
74.0

==t
 

 
We compare this t-value to our critical value t0.05(2), 9 = 2.262 and 
we would then reject H0 and conclude that sediment grain size 
affects burrowing depth.  Our P-value < 0.001 
 
***Review examples 9.1 and 9.2 in Zar here 
 
 
Confidence intervals and power for paired-sample tests 
 
Since we have estimated the mean of a sample of differences, d̄ , 
the confidence intervals for a paired-sample test are estimated 
similarly to those for a one-sample t-test of the mean.  The 
interval is calculated using: 
 

dvstd ),2(α±
 

For our example, the 95% CI would be 0.74 cm ± 
(2.262)*(0.139) = 0.74 cm ± 0.31 cm 
 
To calculate required sample size (n) and power (1 – β), we also 
can use the approaches for a one-sample t-test.  We just need to 
replace x̄ with d̄ and s2 with sd

2. 
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Paired-sample testing by ranks 
 
We introduced the Mann-Whitney rank test earlier when 
assumptions of the two-sample t-test were violated to such a 
large degree to prevent its use.  When performing paired-sample 
tests where the sample of paired differences severely violates the 
assumption of normality, we can use a similar test known as the 
Wilcoxon paired-sample test (aka Wilcoxon rank sum test or 
Wilcoxon signed rank test). 
 
The procedure ranks the absolute values of the differences then 
assigns the sign (+ or -) of each difference to the ranks.  All of 
the positive ranks are summed (T+) and all of the negative ranks 
are summed (T-).  If we are conducting a two-tailed test, then if 
either T+ or T- is less than the critical value from Table B.12, we 
reject H0.  The procedure for tied ranks is the same as that 
outlined for the Mann-Whitney test. 
 
In our example of burrowing depths of shrimp in different 
sediment grain sizes, all of our differences were in the same 
direction (either all positive or negative).  Our T+ total would be 
55 (the sum of all ten ranks) and our T- total would be 0 (or vice 
versa).  Since 0 is far lower than the critical value T0.05(2), 10 = 8, 
we would reject the null hypothesis of no difference in burrowing 
depth. 
 
***Review example 9.3 in Zar here 
 

scharff
Sticky Note
ended here 2/25/13
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Evaluating multi-sample hypotheses with ANOVA 
 
Up to this point, we’ve concerned ourselves with only one- and 
two-sample hypothesis tests.  However, as biologists, we are 
often interested in questions that involve more than two samples.  
It would be incorrect to apply a large number of separate two-
sample t-tests to a multi-sample problem due to the inflation of 
the probability of making a Type I error (incorrectly rejecting a 
true null).  As the number of tests increases, the α-level increases 
as 1 - (1-α)n (see Table 10.1 in Zar).  This is because our multiple 
t-tests used on the same data set do not represent truly 
independent tests of our hypotheses. 
 
For example, suppose we want to know if there are differences in 
bacteria present in five different types of frozen vegetables.  We 
could go to the store and randomly select 5 boxes of each type of 
vegetable and measure the bacteria levels present. 
 

Peas Carrots Broccoli Beans Spinach 
- - - - - 
- - - - - 
- - - - - 
- - - - - 
- - - - - 
x⎯1 x⎯2 x⎯3 x⎯4 x⎯5 

  
H0: μ1 = μ2 = μ3 = μ4 = μ5  
HA: At least one of the vegetables is different. 
 
If we were forced to use our two-sample procedures, we would 
examine the samples two at a time and compare the means.  This 
would require ten separate tests. 
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(1) H01: μ1 = μ2  (5) H05: μ2 = μ3 (8) H08: μ3 = μ4 

(2) H02: μ1 = μ3 (6) H05: μ2 = μ4 (9) H09: μ3 = μ5 

(3) H03: μ1 = μ4 (7) H07: μ2 = μ5 (10) H010: μ4 = μ5 

(4) H04: μ1 = μ5  

 

If we didn’t reject any of these hypotheses then we would not 
reject H0: μ1 = μ2 = μ3 = μ4 = μ5  
  
Besides being inappropriate, this approach would be very 
inefficient.  Instead, we should design our experiment or study to 
enable us to an appropriate multi-sample test. 
 
 
The Analysis of Variance (ANOVA) is a multi-sample test that 
allows us to test the null hypothesis: 
 

H0: μ1 = μ2 = μ3 = …. = μk 
 
where k is the number of sample or experimental groups we wish 
to compare.  For our vegetable example, we can now use a single 
test to evaluate the likelihood that the 5 vegetables were drawn 
from a population having the same mean bacteria level. 
 
Note: Just like our t-tests, we don’t really think the 5 means are 
precisely equal (they are certainly not).  However, if an ANOVA 
fails to reject H0, then we may conclude that the differences are 
relatively small and don’t warrant any further study (i.e., the 
effect size isn’t big enough to be of interest to us).  If we reject 
H0, then we will look further to see why the hypothesis was 
rejected.  To study the means, and evaluate whether meaningful 
differences exist, it is necessary to “analyze the variance”. 
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Keep in mind that despite the fact that our focus will be on 
examining the variance, the goal of ANOVA is still simply to 
compare means among randomly sampled groups.  The ANOVA 
model is a special case of a more generalized linear model.   
 
Let’s start with a simple example:  We have measured the diving 
depth of three groups of turtles exposed to different stress levels 
(our single treatment) before hand.  The data are as follows: 
 

Treatment level 
1 2 3 
75 25 100 
80 75 80 
75 25 100 
50 75 40 

 
H0: There is no difference in diving depth among the three 
treatments (H0: μ1= μ2 = μ3) 
HA: The diving depths are not all equal 
 
Notation 
 
Each observation (X) is denoted with a number for the treatment 
level (i) and a number for the observation (j) within the treatment 
level.  Different factors or treatments are denoted with capital 
letters (A, B, C,…).  In our case, we have a single treatment, 
which would receive the symbol A.  When we refer to the 
summation of items across levels of the treatment, we sum from i 
to k.  So our summation totals look like: 
 

∑
=

n

j
ijX

1    or  ∑∑
= =

k

i

n

j
ijX

1 1  
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For our example of turtle diving depths we have: 
 

Treatment level 
1 2 3 

X11 X21 X31 
X12 X22 X32 
X13 X23 X33 
X14 X24 X34 

 

 ∑
=

4

1j
ijX

   and ∑∑
= =

3

1

4

1i j
ijX

 

 
 
Partitioning the Sums of Squares 
Recall that we have been computing sums of squares for our 
variance estimates all along.  Now, we will separate the variance 
into different components.  That is, we will partition the sums of 
squares into variation due to randomness (simply error) and 
variation due to our treatments. 
 
Our ANOVA model depends on the same assumption of 
homogeneity of variance that our two-sample t-test did.  We 
calculated a pooled variance by pooling the sums of squares and 
dividing by the pooled degrees of freedom.  We will do the same 
for our ANOVA model.  We start by pooling the sums of squares 
within each of our groups across all the groups and we obtain: 
 

within-groups SS = 
( )∑∑

= =

−
k

i

n

j
iij XX

1 1

2
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Then we pool the degrees of freedom to obtain: 
 

within-groups DF = ( )∑
=

−
k

i
in

1

1  = N – k 

 
In addition to within-groups SS and within-groups DF, these two 
quantities are also often referred to as the error sums of squares 
and the error degrees of freedom, as well as the residual sums of 
squares and the residual degrees of freedom.  When we divide 
the within-groups SS by the within-groups DF, we obtain the best 
estimate of the variance that is common to all k groups. 
 
Next, we calculate the amount of variation among each of our k 
groups.  This is represented by the differences among the means 
of each of the groups.  This source of variation is calculated as: 
 

among-groups SS = 
( )∑

=

−
k

i
ii XXn

1

2

 

 
where the X̄ with no subscript is equal to the Grand Mean, 
which is calculated as: 
 

N

X
k

i

n

j
ij∑∑

= =1 1

 

 
We also need our among-groups DF, which is simply k-1.  The 
among-groups SS and DF are often referred to simply as groups 
sums of squares and groups degrees of freedom. 
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We also calculate the total sums of squares of the data, which is 
the sum of the squared deviations of each observation (Xi) from 
the grand mean (X̄).  This is done using: 
 

total SS = 
( )

2

1 1
∑∑
= =

−
k

i

n

j
ij XX

 

 
And our total degrees of freedom (total DF) = N – 1.   
 
 
We have now partitioned the total variance into two components.  
We can summarize this process by noting that each deviation of 
an observation from the grand mean represents the total of the 
deviation of that observation from its group mean plus the 
deviation of that group mean from the grand mean. 
 

( ) ( ) ( )XXXXXX iiijij −+−=−
 

 
 
Both the sums of squares and the degrees of freedom are 
additive, so 
 

total SS = among-groups SS + within-groups SS 
 

and 
 

total DF = among-groups DF + within-groups DF 
 
You should practice calculating the different sums of squares by 
hand (you’ll have to for some upcoming assignments).  There are 
several machine formulas on p. 182 in Zar to speed things up. 
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Let’s show that this principle of additivity holds for our turtle 
example: 
 
Obs Xij X̄ (grand) (Xij - X̄)2 X̄i (group) (Xij – X̄i)

2 (X̄i – X̄)2 
X11 75 66.67 69.44 70 25 11.11 
X12 80 66.67 177.78 70 100 11.11 
X13 75 66.67 69.44 70 25 11.11 
X14 50 66.67 277.78 70 400 11.11 
X21 25 66.67 1736.11 50 625 277.78 
X22 75 66.67 69.44 50 625 277.78 
X23 25 66.67 1736.11 50 625 277.78 
X24 75 66.67 69.44 50 625 277.78 
X31 100 66.67 1111.11 80 400 177.78 
X32 80 66.67 177.78 80 0 177.78 
X33 100 66.67 1111.11 80 400 177.78 
X34 40 66.67 711.11 80 1600 177.78 

   7316.67  5450 1866.67
 
 
We have, 
 

( ) ( ) ( )2
1

2

1 11 1
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XXnXXXX i
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== == =
 

 

total SS    =   within-groups SS    +   among-groups SS 
 
7316.67    =     5450       + 1866.67 
 
 
Hence, our principle of additivity holds. 
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The division of the sums of squared deviations (SS) by their 
respective degrees of freedom (DF) generates a variance 
estimate.  In ANOVA, each of these variances is generally 
referred to as a mean square (MS), which is short for mean 
squared deviation from the mean.  Therefore we can calculate 
the within-groups MS and the among-groups MS. 
 

groupsDFwithin
groupsSSwithingroupsMSwithin

−
−

=−  
 

and 
 

groupsDFamong
groupsSSamonggroupsMSamong

−
−

=−  

 
Sometimes you will see the within-groups MS referred to as MSE 
(mean square error) or residual MS.  All of these basic 
calculations are usually summarized in a particular order using a 
table (the ANOVA table). 
 
Typical ANOVA table for a single factor design 

Source 
of variation 

Sum 
of squares 

 
df 

Mean 
square (MS) 

 
F 

 
among ( )∑

=

−
k

i
ii XXn

1

2

 
 

k-1 1−k
amongSS

 withinMS
amongMS

 
within ( )∑∑

− =

−
k

i

n

j
iij XX

1 1

2

 
 

N-k kN
withinSS

−  
 

 
total ( )

2

1 1
∑∑
= =

−
k

i

n

j
ij XX  

 
N-1

  

 
***Note: we could calculate a MS for the total SS, but there is no 
need. 
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For our turtle example, the table would be generated as: 
 
Source 
of variation 

Sum 
of squares 

 
df 

Mean 
square (MS) 

 
F 

among 1866.67 2 933.33 1.54 
within 5450.00 9 605.56  
total 7316.67 11   
 
 
To test the null hypothesis (H0: u1= μ2 = μ3).  We compare the 
variances (MS values) among and within our groups.  If the 
groups were drawn from a population with a single mean, then 
the among-groups MS and the within-groups MS should each be 
an unbiased estimate of the population variance (σ2).  However, if 
the k group means are not the same, then the among-groups MS 
will be greater than the within-groups MS.  The test for equality 
of means is then a one-tailed variance ratio test.  The among-
groups MS is placed in the numerator and we calculate F. 
 

groupsMSwithin
groupsMSamongF

−
−

=
 

 
The critical value is Fα(1), (k-1), (N-k).  If the calculated F is ≥ Fcritical, 
then we reject H0.  Keep in mind that the order of the degrees of 
freedom matters (numerator df 1st, denominator df 2nd). 
 
In our turtle diving depth example, the calculated F = 1.54 and 
the critical value, F0.05(1), 2, 9 = 4.26.  We would fail to reject H0 
and our P-value > 0.25.  It appears that our stress treatment 
levels did not significantly affect turtle diving depth. 
 
***Review example 10.1 in Zar here 
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The assumptions of ANOVA 
 

1. The samples are random and independent 
-as always, this assumption forms the basis for all statistical 
tests 

2. The variances are homogeneous among groups 
-similar to our two-sample t-test, we assume the groups 
were drawn from a population with the same variance, and 
each treatment group contributes equally to our within-
groups sums of squares 

3. The residuals are normally distributed 
-the deviations follow a normal distribution with mean = 0.  
As long as n is fairly large, the Central Limit Theorem 
minimizes the problems caused by violation of this 
assumption 

4. The samples are classified correctly 
-each of the samples that are assigned to a particular 
treatment or treatment level are treated identically 

 
Just like our t-test, the ANOVA model is robust with respect to 
violations of the assumptions of homogeneity of variances and 
normal error distributions.  So long as our n is relatively large 
and we have close to equal n’s among our groups, we need not 
worry except for the most severe departures.  Similar to 
normality tests, there are several tests to ensure homogeneity 
of variances (i.e., F-max test, Bartlett’s test, Cochran’s test, 
Levene’s test).  None are very powerful, and we can often 
homogenize our variances through data transformations (we 
will cover those soon).  If we fear we have severe departures 
from our assumptions, we can employ a non-parametric 
ANOVA. 

 

scharff
Sticky Note
ended here 3/11/13
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Power analysis and ANOVA 
 
We introduced the concept of power previously in our discussions 
of t-tests, and it is important to revisit again now that we have 
started examining ANOVA designs.  Zar includes several formulae 
for calculating required sample size, effect size, and power 
presuming we have an idea about the size of our expected within 
sample variance (s2).  For ANOVA, the formulae each involve 
calculation of the quantity phi (φ), which we also briefly 
introduced earlier.  When our H0 is false, our variance ratio 
follows what we call a noncentral F-distribution, and phi (φ) 
simply represents the amount of noncentrality in the distribution 
(which depends mostly on the effect size). 
 
The power of an ANOVA is estimated using: 
 

2

2

2ks
nδφ =  

 
 
where k = number of groups, δ = minimum detectable difference, 
s2 is our estimate of the variance, and n is the sample size per 
group.  After we calculate the value of phi (φ), we use Appendix 
Fig. B.1 to determine the power. 
 
***Review example 10.4 in Zar here 
 
 
We can use the same formula above to estimate the required 
sample size for a given level of power and effect size through an 
iterative process similar to the one we used for the t-test.  We 
can also rearrange the equation to estimate the minimum 
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detectable difference of an experiment for a given level of power 
and sample size: 
 

n
ks 222 φδ =

 

 
***Review examples 10.6 and 10.7 in Zar here 
 
 
Zar provides an example (10.5) to estimate the power of an 
ANOVA after is has been performed.  This represents flawed logic 
and should not be followed.  As we have spoken about, many 
journals began a push for researchers to provide information 
about the power of their tests after failing to reject null 
hypotheses.  This was, in essence, an inappropriate way for 
authors to defend their experimental design or to cling to some 
notion that a pattern existed where it did not.  Phrases such as 
“we did not reject the null hypothesis, however a posteriori power 
analysis revealed that the test had low power to detect the 
observed difference.  Therefore, a different design that lowered 
the variance or an increase in sample size may have succeeded in 
detecting the difference.”  This represents incorrect thinking.  If 
you didn’t reject the null, clearly your test wasn’t powerful 
enough.  The a posteriori power analysis doesn’t add anything 
new to our interpretation of the results.  All power analyses 
should be performed a priori as a guide to setting up the 
experimental design. 
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This figure shows the relationship between observed power and the P-
value of a performed test.  Notice that non-significant P-values always 
correspond to low power.  This confirms that computing the power after 
the test tells us nothing new about the results of our test that we didn’t 
already know from our P-value. 
 
It is important to remember the major contributors to power when you are 
making decisions about your experiment: 
 

1. sample size (n) 
2. effect size (δ) 
3. variance (s2) 
4. alpha (α) level 
5. details of the design (one or two tailed hypothesis, equal variances) 

 
 
***Each of these will affect the power of your test*** 
 
 
 
 
 

P-value

O
bs

er
ve

d 
po

w
er

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 From Hoenig and Heisey 2001

P-value

O
bs

er
ve

d 
po

w
er

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 From Hoenig and Heisey 2001



 129

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Effect size
0 2 4 6 8 10 12 14 16 18 20 22

0.00

0.20

0.40

0.60

0.80

1.00

n = 20
cv = 0.15
alpha = 0.05

Sample size
0 10 20 30 40 50

0.00

0.20

0.40

0.60

0.80

1.00

Effect size = 10
cv = 0.15
alpha = 0.05

CV
0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00

0.20

0.40

0.60

0.80

1.00

n = 20
Effect size = 10
alpha = 0.05

Alpha
0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00

0.20

0.40

0.60

0.80

1.00

n = 20
Effect size = 10
cv = 0.15

Effect size
0 2 4 6 8 10 12 14 16 18 20 22

0.00

0.20

0.40

0.60

0.80

1.00

n = 10 
n = 20 
n = 30 
n = 50 
n = 100 

CV
0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00

0.20

0.40

0.60

0.80

1.00

n = 10 
n = 20 
n = 30 
n = 50 
n = 100 



 130

 
Recent literature on experimental power and sample size: 
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Underwood, A.J., and Chapman, M.G. 2003. Power, precaution, Type II 
error and sampling design in assessment of environmental impacts. Journal 
of Experimental Marine Biology and Ecology 296: 49-70. 
 
 
 
 
 
 
 
 



 131

Nonparametric ANOVA 
 
Just like for our t-tests, we can perform analysis of variance 
without having to worry about distributional assumptions if we 
feel that our data are severely departed from normality.  The 
nonparametric ANOVA is known as the Kruskal-Wallis test, and 
it is essentially an analysis of variance by ranks.  Just like our 
other nonparametric tests, we don’t compute parameter 
estimates (means and variances) to use in our test.  Instead, we 
calculate the Kruskal-Wallis test statistic: 
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Where ni = the number of observations in group i, N = the total 
number of observations in all k groups, and Ri is the sum of the 
ranks of the ni observations in group i.  The test doesn’t explicitly 
assume homogeneity of variances among groups, but does 
assume the groups have generally the same shape and 
dispersion.  However, the test is not very sensitive to violations of 
this assumption.  As with the Mann-Whitney test, we can rank 
either from low to high or high to low, and we use the same 
procedures for tied ranks. 
 
Example:  A chemical analysis of three kinds of candy yields 
values of sugar content as shown below.  We wish to determine 
whether the candy types differ in this trait, but the data are 
highly nonnormal and the group variances are heterogeneous.  
We have 5 observations for each candy type and we rank the 
data from low to high. 
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Runts Jawbreakers Gobstoppers 
4.5 (5) 3.2 (1) 7.3 (13) 
3.9 (2) 4.6 (6) 8.4 (15) 
5.0 (9) 5.1 (10) 6.9 (12) 
4.8 (7) 4.9 (8) 8.2 (14) 
4.1 (3) 4.3 (4) 6.2 (11) 
R1 = 26 R2 = 29 R3 = 65 

 
 
H0: the three candy types are identical in sugar content 
HA: at least one of the candy types has a different sugar content 
 
We compute H: 
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We can look up the critical value for H (Hα, n1, n2, n3) using Table 
B.13 in Zar.  For our example, H.05, 5, 5, 5 = 5.780.  Since our 
calculated H > Hcritical, we reject H0 and conclude that at least one 
of the candy types has a different sugar content.  
 
***Review examples 10.10 and 10.11 in Zar here  
 
*Note that if the number of observations is greater than 8, you 
can compare H to a chi-square distribution or you can use the 
rank data to generate an approximate F-value and compare to an 
F-distribution.  Also, if there are tied ranks, Zar presents a 
correction factor that is used in example 10.11.  However, unless 
there are a very large number of ties, it doesn’t amount to much. 
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Multiple comparisons 
 
If we perform an ANOVA and reject our H0, we now want to know 
why!  Several multiple comparison procedures have been 
developed to enable us to find out which of the means are 
different from others.  We will examine a few of these 
procedures.  One thing that many have in common is that the 
overall alpha (α) level is controlled (i.e., our probability of making 
a Type I error isn’t inflated by performing multiple tests).  In 
these cases, we refer to α as an experimentwise error rate. 
 
There are two general approaches: (1) a posteriori multiple 
comparison tests where we make unplanned comparisons after 
the main test and (2) a priori contrasts in which we have 
specified beforehand (before performing the ANOVA) which 
hypotheses we want to test.  There are advantages to each 
approach.  We will outline some of the procedures for a posteriori 
multiple comparison tests first. 
 
 
A posteriori multiple comparisons 
There are many procedures for testing all pair-wise combinations 
of means after an ANOVA has rejected the overall null hypothesis.  
You will often see these procedures referred to as ‘post-hoc’ 
tests, which just refers to the fact that they are unplanned 
comparisons that are performed after the main test.  We will use 
an example to illustrate three of the more commonly used 
multiple comparison procedures. 
 
Example:  We have data on the calling frequency (#/hour) of 
three different species of frogs (*male frogs make calls to attract 
females, in case you didn’t know).  The data are below. 
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Species 1 Species 2 Species 3 
10 4 2 
8 6 0 
6 2 2 
8 5 4 
8 3 2 

x⎯ = 8 x⎯ = 4 x⎯ = 2 
s2 = 2.0 s2 = 2.5 s2 = 2.0 

 
Our estimate of sp

2 = 2.167 = within groups MS 
Our grand mean X̄ = 4.67 
Our among groups SS = 93.335 
Our among groups MS = 93.335/2 = 46.665 
 
F = 46.665/2.167 = 21.53 and since F0.05, 2, 12 = 3.89, we reject 
the overall H0 of our ANOVA. 
 
In ANOVA table form, we have: 
Source SS df MS F 
Among 93.335 2 46.665 21.53 
Within 26.004 12 2.167  
Total 119.339 14   
 
We can say that at least one of the frog species is different in its 
calling frequency, but we can’t say which are different from which 
others. 
 
The Tukey HSD (honestly significant difference) test considers 
the null hypothesis H0: μa = μb, where the subscripts denote any 
possible pair of means.  For k groups, k(k-1)/2 comparisons are 
possible.  First, all group means are arranged in order of 
magnitude, then the test proceeds by comparing the largest vs. 
the smallest, followed by the largest vs. the next smallest and so 
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on, until all comparisons have been made.  The test statistic is q 
(known as a Studentized range), which is calculated by dividing 
the mean differences by 
 

n
sSE

2

=  

 
where s2 = the within groups (error) MS and n = the number of 
observations in each group (if all ni are the same, then n = ni; if 
the ni’s are different, there are several approximations that are 
used to calculate SE; Zar uses the Tukey-Kramer approximation, 
which many times is the most powerful).  The calculated q is then 
 

SE
XXq ab −=  

 
If q is equal to or greater than the critical value, qα,v,k (found in 
Table B.5 in Zar) then we reject the H0.  Alpha (α) is the 
significance level of the test, v = the within groups (error) df from 
the ANOVA, and k = the total number of means being tested.  
The alpha (α) level in the case of the Tukey HSD test is now 
referred to as the experimentwise error rate and is the probability 
of encountering at least one Type I error among all mean 
comparisons. 
 
For our frog calling example, we would have: 
comparison difference SE q qcritical conclusion 
1 vs. 3 8 - 2 = 6 0.658 9.11 3.77 Reject H0  
1 vs. 2 8 - 4 = 4 0.658 6.08 3.77 Reject H0 
2 vs. 3 4 – 2 = 2 0.658 3.04 3.77 Fail to reject
*SE = (2.167/5)0.5; q0.05, 12, 3 = 3.773 
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We conclude that frog species 1 calls with greater frequency than 
species 2 or 3, which aren’t different from each other. 
 
***Review examples 11.1 and 11.2 in Zar here 
 
There will be times when your multiple comparison tests will 
generate results that seem confusing.  For instance, we could 
have found that the means for frog species 1 and 2 were similar, 
the means for species 2 and 3 were similar, but the means for 
species 1 and 3 were different.  This simply tells us that the test 
wasn’t powerful enough to determine which population species 2 
belonged to (either grouped with 1 or 3, or by itself).  You can 
also have the situation where your overall ANOVA is significant, 
but the multiple comparison tests don’t detect any pairwise 
differences.  This can arise because the ANOVA is a more 
powerful test than any of the post-hoc tests. 
 
The Newman-Keuls test (aka Student-Newman-Keuls test or 
SNK test) is another a posteriori multiple comparison approach.  
The test is performed exactly the same as the Tukey HSD test 
until the end.  We first rank the means, determine the differences 
between the means, and calculate a SE and a q-value.  However, 
the critical value of q is based on alpha (α), v, and p (instead of 
k), where p = the number of means in the range of means being 
compared.  If we have three means and are comparing means 1 
and 3, then p = 3; but if we are comparing means 1 and 2, then 
p = 2.   
 
For our frog calling example, we would have: 
comparison difference SE q qcritical conclusion 
1 vs. 3 8 - 2 = 6 0.658 9.11 3.77 Reject H0  
1 vs. 2 8 - 4 = 4 0.658 6.08 3.08 Reject H0 
2 vs. 3 4 – 2 = 2 0.658 3.04 3.08 Fail to reject

scharff
Sticky Note
ended 3/13/13
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Now our difference between the means of species 2 and 3 is 
borderline (we are very close to the critical value).  In general, 
the Newman-Keuls test will be more powerful compared to the 
Tukey HSD test (which is more conservative).  Again, these are 
just two of many a posteriori multiple comparison procedures and 
there is no clear answer as to which is best.  I tend to use the 
Tukey HSD test routinely, but it’s comforting when other 
procedures detect the same differences. 
 
***Review example 11.3 in Zar here 
 
Another multiple comparison procedure known as Scheffe’s test 
can also perform many pairwise tests, but it is generally less 
powerful than the tests we described above.  The Scheffe’s test 
is, however, more appropriate for testing what are referred to as 
‘multiple contrasts’ a posteriori.   Such contrasts are when we test 
groups of means against either a single mean or another set of 
means among our sample.  For instance, in our frog calling 
example, we might wish to test whether species 1 is different 
from the average for species 2 and 3.  In this case, H0 would be 
stated: (μ2 + μ3)/2 - μ1 = 0.  The Scheffe’s test then expresses 
(μ2 + μ3)/2 as μ2/2 + μ3/2 and tests H0: μ2/2 + μ3/2 - μ1 = 0.  
Now the ui’s are preceded by coefficients, ci, of c2 = ½, c3 = ½, 
and c1 = -1.  Note that the sum of the coefficients = 0.  The test 
statistic, S, is calculated as: 
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The critical value for hypothesis tests is: 
 

kNkFkS −−−= ,1),1()1( αα  
 

For the SE calculations and the critical value, s2 = within groups 
(error) MS, and k-1 and N-k are the among groups and within 
groups df, respectively.  Keep in mind that our sets of means 
should have some logic behind their formation.  For instance, in 
our frog calling example, maybe species 2 and 3 are smaller than 
species 1 and we expect that body size might affect calling 
frequency. 
 
Example: 
The critical value for our frog example would use α = 0.05, k-1 = 
2, N-k = 12. 
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Reject H0 

 
 
***Review example 11.7 
 
For cases when we have a control group that we wish to compare 
with all other sets of means, we can use a similar procedure 
called Dunnett’s test.  There are also multiple comparison 
procedures that follow nonparametric ANOVA (sections 11.6-7). 
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A priori contrasts 
 
Unlike the procedures for unplanned ‘post-hoc’ comparisons 
outlined above, we use different methods when we have specified 
the contrasts we are interested in ahead of time (before running 
the ANOVA).  These tests are more powerful because they don’t 
require us to use the special tests of significance that were built 
into the above a posteriori procedures to protect against 
committing Type I errors. 
 
First, we must decide how many and which planned comparisons 
to make.  Technically, we can make as many as we would like, 
but many statisticians recommend that our planned contrasts be 
orthogonal to one another to ensure independence of results 
(i.e., that each contrast tests an independent relationship among 
the means).  This way our P-values for each contrast are not 
correlated with one another.  If there are k groups, then, at most, 
there can be k-1 orthogonal contrasts (although we can create 
the k-1 contrasts in multiple ways).  We use an approach similar 
to the one outlined above for the Scheffe’s test, in that we 
generate coefficients for each of the means in the contrast.  The 
rules for building contrasts and assigning coefficients are 
presented by Gotelli and Ellison 2004 (pp. 339-341): 
 

1. The sum of the coefficients for any contrast must equal 0 
2. Sets of means averaged together have the same coefficient 
3. Means not included in a contrast have a coefficient of 0 
4. A maximum of k-1 orthogonal contrasts are possible 
5. All of the pair-wise cross products must sum to 0 

 
Rules 4 and 5 apply only when we want to limit our comparisons 
to orthogonal contrasts.  If we chose to test non-orthogonal 
contrasts, we must adjust our alpha (α) level since the non-
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independence of our tests will inflate our probability of making a 
Type I error.  These types of adjustments to our alpha level are 
collectively referred to as Bonferroni adjustments and there 
are several types.  The simplest is the Bonferroni method which 
sets alpha = α/k, where k = the number of tests performed. 
 
To test planned contrasts, we construct a new mean square (MS): 
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This mean square has 1 df and we test it directly against the 
within-groups (error) MS from our ANOVA to determine if the 
contrast is significant. 
 
Planned contrast example: 
Returning to our frog calling example, suppose that we set up 
two contrasts beforehand that we are interested in testing.  One 
involves comparing species 1 to the average of species 2 and 3, 
and the second involves testing whether species 2 and 3 are 
different from each other. 
 
Contrast coefficients MScontrast F 
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Fred Scharf
Sticky Note
use harmonic mean when n's are not equal (reciprocal of the average of reciprocals)




 141

To test the significance of the contrasts, we compare our 
calculated F-ratios to Fcritical = F0.05,1,12 = 4.75.  We would 
conclude that frog species 1 is different than species 2 and 3, but 
that species 2 and 3 could not be distinguished.  These 
conclusions are similar to those for our unplanned a posteriori 
comparisons, but this will not always be the case.  The planned 
contrasts represent more powerful tests of differences between 
means or sets of means, but they must be identified before the 
ANOVA is run to be valid.  Otherwise, we would be greatly 
inflating our probability of making a Type I error. 
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Two-factor ANOVA models 
 
If we wish to examine the simultaneous effect of more than one 
factor on our response variable, then we must conduct what is 
referred to as a factorial analysis of variance.  We introduced 
factorial designs earlier in our discussion of various experimental 
designs and noted that they were more efficient (time, labor, 
money) than conducting several single-factor ANOVAs.  More 
importantly, they allow us to examine the interactive effects of 
multiple factors.  Interactive effects are those that cannot be 
predicted from the additive effect of individual factors.  We will 
begin with the layout for the two-factor model. 
 
If we return to our example looking at the diving depths of 
turtles, recall that we had a single factor (exposure to stress) that 
we were interested in.  Now suppose that in addition to exposure 
to stress, we have data on the body sizes of the turtles.  We now 
want to run a 2-factor ANOVA examining the effect of stress, 
body size, and their interaction on diving depth.  Therefore, we 
will have 3 null hypotheses related to the effects of each of our 
two factors and their interaction (see example 12.1 in Zar). 
 
Also recall our ANOVA notation.  We will make one change here, 
and refer to the number of levels of each treatment using 
subscripts a and b, instead of k.  Each observation (X) is still 
denoted with a number for the treatment level (i or j) and a 
number for the observation within the treatment level (l up to n).  
We use l so we don’t reuse k.  Different factors or treatments are 
denoted with capital letters (A, B, C,…).  In our case, we have 
two factors, which would receive the symbols A and B.  When we 
refer to the summation of items across levels of the treatment, 
we sum from i to a or j to b.  So our summation totals will now 
look like:  
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For our example of turtle diving depths we would have: 
 

Small Large 
1 2 3 1 2 3 

X111 X121 X131 X211 X221 X231 
X112 X122 X132 X212 X222 X232 
X113 X123 X133 X213 X223 X233 
X114 X124 X134 X214 X224 X234 

 
We have two levels (a = 1 for small and 2 for large) of factor A 
(body size) and three levels (b = 1, 2, or 3) of factor B (stress 
level).  So we have a × b = 2 × 3 = 6 unique treatment 
combinations and a × b × n = 2 × 3 × 4 = 24 total replicates. 
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For our example of turtle diving depths the raw data is: 
 

Small Large 
1 2 3 1 2 3 
75 25 100 120 75 130 
80 75 80 100 100 100 
75 25 100 100 75 90 
50 75 40 80 100 110 
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Instead of just one mean square (MS) to represent the treatment 
effect like we had in a single-factor ANOVA, we will now partition 
the treatment effect into three mean squares that represent the 
effects of Factor A, Factor B, and their interaction.  The factors 
are known as the main effects and the sum of squares (and 
mean square) for each main effect is calculated by averaging 
across all of the levels of the other factor.  In our one-way 
design, we either controlled for the second factor (e.g., only 
examining small turtles) or its effect will simply contribute to the 
residual variation (our within-groups MS). 
 
 
For our two-factor model: 
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Then we pool the degrees of freedom to obtain: 
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Next, we calculate the amount of variation due to each of our 
factors.  This is represented by the differences between each of 
the factor means (averaged over all values of the other factor) 
and the grand mean.  This source of variation is calculated as: 
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Factor B SS = 
( )∑∑∑
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The degrees of freedom for factor A and B sums of squares are a-
1 and b-1, respectively. 
 
Lastly, in addition to the variation due to the main effects, we 
need to calculate the variation due to their interaction.  
Remember, the interaction term represents the differences in the 
response that can’t be predicted by simply adding up the two 
main factor effects. 
 
The sum of squares for the interaction term is calculated using: 
 

Interaction (A × B) SS =  
( )∑∑∑

= = =

+−−
a

i

b

j

n

l
jiij XXXX

1 1 1

2

 

 
The interaction term has (a-1)(b-1) degrees of freedom. 
 
 
As in the one-way layout, the division of the sums of squared 
deviations (SS) by their respective degrees of freedom (DF) 
generates a mean square (MS).  We can calculate our within-
groups (error) MS, Factor A MS, Factor B MS, and Interaction MS 
in this way.   
 
Then we can test each of our null hypotheses by comparing the 
variances (MS values) for factor A, B, and their interaction to our 
within-groups MS and calculating F-ratios for each test. 
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The ANOVA table for a two-factor design will be: 
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Recall our turtle diving depth data: 
 
Factor A Small Large 
Factor B 1 2 3 1 2 3 

Xij 75 25 100 120 75 130 
Xij 80 75 80 100 100 100 
Xij 75 25 100 100 75 90 
Xij 50 75 40 80 100 110 

 x̄ ij  70 50 80 100 87.5 107.5
 
x̄  (grand mean) = 82.5 
 
x̄ small = 66.67  } 
x̄ large = 98.33  } each of these 5 factor means is calculated 
x̄ stress 1 = 85  } by averaging over all the values of the 
x̄ stress 2 = 68.75 } other factor 
x̄ stress 3 = 93.75 } 
 
To calculate our within-groups SS, we subtract each Xij value from 
its corresponding x̄ ij, square the differences and add them.  For 
the 1st column: {(75-70)2 + (80-70)2 + (75-70)2 + (50-70)2}, and 
repeat for all 6 columns.  Our within-groups SS = 7750.00. 
 
For each of our main factors, the SS is calculated by subtracting 
each of our 5 factor means listed above from the grand mean, 
squaring the differences, multiplying by the n used to estimate 
each mean, and adding them up.  For the turtle data we have: 
 
Factor A SS = {(66.67-82.5)2 + (98.33-82.5)2}*12 = 6016.67 
 
Factor B SS = {(85-82.5)2 + (68.75-82.5)2 + (93.75-82.5)2}*8  

2575.00 
 

scharff
Sticky Note
ended here 3/18/13
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For the Interaction SS, we start with each x̄ ij and substract the 
appropriate factor A mean and factor B mean, and then add the 
grand mean, square the result and multiply by the n that 
contributed to the x̄ ij.  We do this for each x̄ ij and add them up.  
For the turtle data we have: 
 
Int SS11 = (70.00 - 66.67 – 85.00 + 82.5)2*4 = 2.78 
Int SS12 = (50.00 - 66.67 – 68.75 + 82.5)2*4 = 34.03 
Int SS13 = (80.00 - 66.67 – 93.75 + 82.5)2*4 = 17.36 
Int SS21 = (100.0 – 98.33 – 85.00 + 82.5)2*4 = 2.78 
Int SS22 = (87.50 – 98.33 – 68.75 + 82.5)2*4 = 34.03 
Int SS23 = (107.5 – 98.33 – 93.75 + 82.5)2*4 = 17.36 
 
Our Interaction SS is then = 108.33 
 
 
The 2-factor ANOVA table would appear as: 

 
Source of variation 

Sum 
of squares 

 
df 

Mean 
square (MS) 

 
F 

Body size 6016.67 1 6016.67 13.97 

Stress 2575.00 2 1287.50 2.99 

Interaction (A x B) 108.33 2 54.17 0.13 

Within-groups 7750.00 18 430.56  

Total 16450.00 23   

The P-values are 0.002 for the body size effect, 0.076 for the 
Stress effect, and 0.883 for the interaction. 
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***Review example 12.2 in Zar here 
 
 
Interpreting main effects and interactions 
 
Many times you will read in your stats textbooks that if your 
factorial ANOVA detects a significant interaction effect, then you 
cannot interpret the main effects (Zar says something to this 
effect at the bottom of p. 242).  In other words, the effect of 
each of your main factors will depend on the level of the other 
factor.  This statement is generally, but not always, true.  There 
are cases when you will find a significant interaction term, but are 
still able to draw inferences about the main effects.  The best way 
to interpret your effects is to plot them.  One-way ANOVA 
results can be easily interpreted using simple bar graphs to 
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represent the treatment means along with some measure of error 
(SD whiskers).  For 2-factor ANOVA’s, bar graphs don’t work as 
well.  Gotelli and Ellison (2004) recommend the following: 
 
 
For plotting 2-way ANOVA results: 

1. Plot the response variable on the y-axis and Factor A on the 
x-axis 

2. For Factor B, plot the means of factor B at the corresponding 
level of factor A using symbols with different shapes or 
colors.  Each symbol will represent a unique treatment 
combination (all a x b) 

3. Connect the symbols with lines 
4. Add error bars as an option 
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Factor A is stress treatment (3 levels along the X-axis) and Factor B is body 
size represented by the two different lines (white and black symbols) 
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Factor A: NS
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Interaction: NS

Factor A: P<0.05
Factor B: NS
Interaction: NS
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Interaction: NS
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Interaction: NS
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Interaction: P<0.05

Factor A: NS
Factor B: P<0.05
Interaction: P<0.05
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Calculating effect sizes after ANOVA 
   
After we have conducted our ANOVA, completed any contrast or 
multiple comparison testing, and plotted the treatment means, 
we may wish to supplement the results of our hypothesis test by 
determining the proportion of the variance that can be attributed 
to each of our factors.  We can further partition our variance after 
ANOVA by looking at the expected mean squares. 
 
For a 1-way ANOVA, we know that our within-groups MS 
estimates the variation within groups (or residual error) and that 
our among-groups MS estimates the treatment effect plus the 
residual error: 

σe
2 = MSwithin-groups 

  
σe

2 + n σA
2 = MSamong-groups 

 
We can rearrange to isolate the treatment effect: 
 

σA
2 = (MSamong-groups - MSwithin-groups)/n 

 
One minor adjustment to account for the fact that we are 
estimating the variance from a finite sample when our factors are 
fixed and we have: 

 
σA

2 = (MSamong-groups - MSwithin-groups)*(a-1)/na 
 

We can now estimate the proportion of explained variance 
(PEV) for our treatment using: 

eA

A
APEV 22

2

σσ
σ
+

=
 



 153

For a 2-factor ANOVA, the variance components are calculated 
using the following: 
 

Factor A = (MSfactor A - MSwithin-groups)*(a-1)/nab 
 

Factor B = (MSfactor B - MSwithin-groups)*(b-1)/nab 
 

Interaction = (MSinteraction - MSwithin-groups)*(a-1)*(b-1)/nab 
 

We then calculate our PEV’s by dividing each variance component 
by the sum of all variance components. 
 
For our turtle diving depth example we would have: 
 

Factor A = (6016.67 – 430.56)*(2-1)/24 = 232.75 
 

Factor B = (1287.50 – 430.56)*(3-1)/24 = 71.41 
 

Interaction = (54.17 – 430.56)*(2-1)*(3-1)/24 = -94.10 (0) 
 

Residual variance component = 430.56 
 

 
Then, our PEV’s are calculated as: 
 
Factor A = 232.75/(232.75 + 71.41 + 0 + 430.56) = 0.317 
 
Factor B = 71.41/(232.75 + 71.41 + 0 + 430.56) = 0.097 
 
Interaction = 0 
 
Residual = 430.56/(232.75 + 71.41 + 0 + 430.56) = 0.586 
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Thus, 31.7% of the variance is attributed to body size, 9.7% of 
the variance is attributed to stress level, and 58.6% of the 
variance remains attributed to random error.  Overall, 41.4% of 
the variance can be attributed to our treatment effects. 
 
Keep in mind that this variance partitioning only applies to the 
factors that we actually measured.  Any variation in unmeasured 
(or uncontrolled) factors will be contained in the residual MS or 
the treatment MS if the unmeasured factors interact with our 
treatment factors.  Also, the importance of any factor will depend 
on the levels of that factor that we included in our model.  These 
limitations make it difficult to compare PEV’s across studies. 
 
 
Alternative ways to measure effect size 
 
In performing ANOVA using statistical software packages, many 
will include some measure of effect size similar to the PEV’s that 
we calculated above.  I will introduce a couple of them of here 
just so you know what they are when you see them. 
 
Eta squared (η2) and partial Eta squared (ηp

2) are two 
measures of effect size that are routinely included in ANOVA 
output or available as an option in the output.  The calculations 
for each are very simple.  For Eta squared we have: 
 

total

factor

SS
SS

=2η
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And, for partial Eta squared we have: 
 

errorfactor

factor
p SSSS

SS
+

=2η
 

 
 
For our turtle diving depth example we would have: 
 
Factor SSfactor SSerror SStotal η2 ηp

2 
Body size 6016.67 7750.00 16450.00 0.366 0.437 
Stress 2575.00 7750.00 16450.00 0.157 0.249 
Interaction 108.33 7750.00 16450.00 0.007 0.014 
 
The Eta squared values are additive, meaning that we can 
interpret that about 53% of the total variance was due to our 
measured factors and their interaction (with about 47% 
remaining in unexplained residual error).   
 
The partial Eta squared values are not additive, they should only 
be interpreted relative to each other (not the overall model).  The 
partial in the name is because partial Eta squared values reflect 
effect size while controlling for all other variables in the model (in 
essence, effect in the absence of all other effects).  Partial eta-
squared values can thus be interpreted as the percent of variance 
in the dependent variable uniquely attributable to the factor.  A 
general rule of thumb is that a partial Eta squared value above 
0.2 is considered a large effect, above 0.1 (but less than 0.2) 
would be a moderate effect, and below 0.1 would be a small 
effect. 
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Omega squared (ω2) is another measure of the proportion of 
variance in the response accounted for by a factor.  It is 
estimated as: 
 

)(
)]*([2

totalerror

errorfactorfactor

SSMS
MSdfSS

+
−

=ω
 

 
 
For our turtle diving depth example we would have: 
 
Factor SSfactor SSerror SStotal ω2 
Body size 6016.67 7750.00 16450.00 0.331 
Stress 2575.00 7750.00 16450.00 0.102 
Interaction 108.33 7750.00 16450.00 -0.045 
 
Omega squared (ω2) is one of the most commonly used measures 
of the magnitude of the factor effects.  Like partial Eta squared 
values, omega squared values are not additive.  As a general rule, 
the effect can be interpreted as "large" when over 0.15, 
"medium" when 0.06 to 0.15, and "small" when 0.05 or less.   
 
Note that our results for Omega squared values are more 
conservative than the Eta squared or partial Eta squared values 
that we obtained, and also agree more closely with our original 
PEV values.  To be conservative and avoid overstating the results 
of the test, I tend to favor the use of Omega squared values for 
reporting effect sizes, but there is no single best approach. 
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Fixed vs. Random effects in ANOVA models 
 
So far, all the tests we have covered have assumed that our 
factors are fixed.  This is the standard (or default) assumption in 
statistical software packages (and also Excel) when we run a 
factorial analysis.  However, we may also wish to analyze factors 
that we would define as random.  The distinction lies in our 
interest (and thus, our scope of inference) about the levels of the 
factors we are testing.  For a fixed factor, the levels that are 
being tested are the only ones of interest and our inferences are 
thus, restricted to those particular levels.  For a random factor, 
the levels tested represent a random subset of many possible 
levels of that factor and we wish to be able to extend our 
inferences to all levels of the factor, not just the ones that we 
tested.  In a mixed model design, some of our factors are fixed 
and some are random (e.g., one each in a 2-factor mixed model).  
 
Determining whether a factor is fixed or random is not always 
simple, but as we will see, it has important implications for our 
sampling design and the calculation of our F-ratios.  If our factor 
is a set of locations or times (usually randomly or systematically 
chosen), then it should generally be treated as a random factor.  
Similarly, if one of our factors represents a categorization of a 
continuous variable (e.g., body size), and we wish to extend our 
inferences across the range of that variable, we should also treat 
the factor as random.  Alternatively, if the factor represents a 
defined set of categories that is limited in number (e.g., sex or 
species), we would treat it as a fixed factor.  Gotelli and Ellison 
(2004) present a general ‘rule of thumb’ on p. 321 which 
suggests considering the ratio x/X where x is the number of levels 
of a factor you are testing and X is the number of possible levels 
of that factor.  If the ratio is close to 0, then you probably should 
treat the factor as random.  However, if the ratio is close to 1, 
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you can treat the factor as fixed.  There is no clear answer, it will 
depend on your question and the scope of inference you desire. 
 
The difference is critical because it affects how we calculate our 
F-ratios.  Instead of dividing the factor MS by the error MS like we 
did in our fixed effects 2-factor model, a model with 2 random 
factors requires us to divide the factor MS values by the 
interaction MS.  Similarly, in a mixed model, one of our factor 
MS terms is divided by the error MS and one is divided by the 
interaction MS.  In both cases, the F-ratio for the interaction term 
is still calculated as it was for the fixed factor model, by dividing 
the interaction MS by the error MS.  This distinction only matters 
for factorial designs; the calculations in a 1-way ANOVA are the 
same whether the single factor is random or fixed. 
 
The ANOVA table for a two-factor random effects design: 
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The ANOVA table for a two-factor mixed model design: 
Source of 
variation 

Sum 
of squares 
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For our turtle diving depth example, body size should be 
considered a random factor since it is a continuous variable that 
we categorized.  If we used a mixed model design, the F-ratio for 
body size would be calculated the same as for our fixed effects 
model, but the F-ratio for our stress factor would now use the 
interaction MS in the denominator.  This results in a calculated F 
= 23.77, which is much higher than the F = 2.99 we had before.  
However, the critical F-value from Table B.4 is now based on the 
interaction df of 2, not the error df of 18, and is Fcrit = 19.0.  
Therefore, we would reject the null hypothesis and conclude that 
our stress factor significantly affected diving depth, but the P-
value would be about 0.045, not that much different than our P 
of 0.076 from the fixed effects model. 
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In addition to affecting the calculation of our F-ratios, models that 
include random factors require some additional thinking about our 
sampling design.  For our fixed effects model, we wanted to 
replicate as much as possible for each factor level to increase our 
degrees of freedom in the within-groups (error) MS.  This would 
increase our statistical power.  For random factors, however, 
replicating within each factor level isn’t as important as testing 
many factor levels.  This is because the number of treatment 
levels determines the degrees of freedom for the interaction 
term.  If we boost the df for the interaction term, we increase our 
power to detect main effects. 
 
 
Variance components for random effects and mixed models 
 
Whether we have fixed, random, or both types of factors in our 
design also affects how we calculate the proportion of explained 
variance (PEV) for each factor.   
 

Component 
of variance 

Fixed effects model       
(A fixed, B fixed) 

Random effects model  
(A random, B random) 

Mixed effects model    
(A fixed, B random) 

 
Factor A 

 

abn
aMSMS errorA )1)(( −−  
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MSMS AxBA )( −  
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Once we have computed the variance components, the PEV for 
each factor is then calculated as before (the ratio of the variance 
component of interest to the sum of all variance components). 
 
PEV calculations 
 
Factor A = σA

2/( σA
2 + σB

2 + σAxB
2 + σe

2) 
 
Factor B = σB

2/( σA
2 + σB

2 + σAxB
2 + σe

2) 
 
Interaction = σAxB

2/( σA
2 + σB

2 + σAxB
2 + σe

2) 
 
Residual = σe

2/( σA
2 + σB

2 + σAxB
2 + σe

2) 
 
 
Other multifactor ANOVA designs 
 
In addition to the standard 2-factor design, there are many other 
factorial ANOVA designs that can be employed.  We will introduce 
a few of them here. 
 
The randomized block design is employed when we place our 
factor levels within blocks, which are areas (space) or time 
periods within which the environmental conditions are relatively 
similar.  Our blocks are generally arranged so that environments 
are more similar within a block than between blocks.  Then, our 
factor levels are assigned randomly within the blocks.  In a simple 
randomized block design, each block contains exactly 1 replicate 
of each factor level (i.e., no replication within blocks).  Recall our 
example of flatfish recruitment in different habitat types.  The 
different habitat types would represent different levels of the 
factor of interest and the block would represent a second factor. 
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The randomized block design is essentially a mixed model 2-
factor design with no replication.  The factor of interest is 
the fixed factor and the block is considered as a random factor.  
We will be able to estimate the factor effect, the block effect, and 
the error term, but no interaction term (since we have no 
replication within blocks).  Note that we will lose some degrees of 
freedom for the error MS relative to a 1-way layout (we have 
used these df to estimate the block effect).  If the block effect is 
large, we will have reduced the error SS enough to offset the loss 
of some df, and this design will be more powerful for detecting 
the effect of our factor of interest relative to a 1-way layout.  
However, if the block effect is weak, the reduction in our error SS 
will not offset the loss of the error MS df that we used to estimate 
the block effect, and we will have sacrificed some power.  
 
The ANOVA table for a randomized block design: 
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Note that although we consider the block as a random factor, we 
still construct our F-ratio for Factor A using the error MS in the 
denominator.  This is because there is no interaction term (i.e., 
we assume no interaction between the block and our factor) since 
we have no replicates within each block.  Keep in mind that we 
can test for the block effect, but it is usually not of interest.  We 
expect there to be a large block effect or we wouldn’t have 
blocked in the first place.  The design allows us to adjust for the 
differences in our response across blocks to more clearly see the 
effects of our factor of interest.   
 
 
Nested designs 
Another type of ANOVA design that we have discussed is a 
nested ANOVA model.  These designs involve subsampling 
within our replicates (i.e., we are not adding any more 
independent replicates, but are increasing the precision with 
which we estimate each replicate).  The design allows us to test 
for differences among our replicates in addition to testing for the 
main effect of our factor.  These types of designs also are 
appropriate when we wish to partition the variance in a 
hierarchical fashion (e.g., stations within sectors, sectors within 
regions, etc.).  We need to identify where the nesting occurs to 
calculate the F-ratios properly (we don’t use the error MS in the 
denominator for all calculations). 
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The ANOVA table for a nested design: 
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As an example of a hierarchical nested design, suppose we were 
going to measure flatfish recruitment in an estuary.  The estuary 
is divided spatially into two large regions, each with 3 sectors, 
and we randomly select 6 stations within each sector.  We have 3 
replicate cages to capture settling fish at each station.  We can 
analyze the data using a nested design to partition variance at 
our station level, our sector level, and our region level.  To 
calculate the F-ratios for the region effect and the sector(region) 
effect [read sector nested within region effect], we use the 
station(sector(region)) MS and df rather than the error MS and df 
in the denominator.  Then, the station(sector(region)) effect is 
calculated using the error MS and df.  
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The split-plot design 
 
Recall that in a split-plot design, we have a randomized block 
design and then a second treatment is applied to the blocks (our 
whole-plot factor).  So, we have our within-plot or subplot factor, 
our blocks (or plots), and our whole-plot factor.  If you remember 
our flatfish recruitment example, habitat type was our within-plot 
or subplot factor, we had blocks with each of the 3 habitat types 
in each block, then we applied a predation treatment (caged, 
uncaged, control caged) to the blocks. 
 
The ANOVA table for a split-plot design: 
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Note that there is no error term; that is because we can’t isolate 
it since we have no replication within our blocks, and we assume 
we have no interaction between our within-plot factor and the 
plots nested within A.  Therefore, the B(A) x C interaction MS 
serves as our measure of residual error for the model and is used 
as the denominator to calculate the F-ratios for Factor C and the 
A x C interaction.  To test for the effects of the whole-plot 
treatment (Factor A), we use the MS for Factor B(A) in the 
denominator since the plots serve as independent replicates for 
the whole-plot factor.   
 
 
Repeated measures designs 
There are two main types of repeated measures ANOVA designs.  
The first is when each replicate is exposed to different 
experimental treatment levels applied at different times and 
generally in some randomized order.  The second type is when 
the treatment is applied only once, but each replicate is measured 
for a response multiple times over the course of time.  The first 
type of repeated measures design is simply analyzed as a 
randomized block design (see ANOVA table in previous section p. 
162), and we assume no interaction between replicates and 
treatments.  Randomization of the application of the different 
treatment levels reduces the effects of confoundedness between 
treatment and time.  The second type of repeated measures 
design is analyzed as a split-plot design (see ANOVA table in 
previous section p. 165) with each replicate being equivalent to a 
plot.  The treatment is the whole-plot factor and time is the 
within-plot factor.  Again, we assume no interaction between 
replicates and time (our plot and within-plot factor).  We can now 
estimate the effects of our treatment, time, and treatment x time 
interaction (which is often the most interesting).   
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Three-factor or multi-factor designs 
Theoretically, we can analyze as many factors simultaneously as 
we wish, but the data demands begin to get enormous for a fully 
crossed design.  Three-factor designs are not uncommon to see 
in the literature, but interpretation can get complex, particularly 
for the interaction of all three factors.  The test for the three-
factor interaction term asks if the interaction between any two of 
the factors is the same at all levels of the third factor. 
 
***Review example 14.1 in Zar here 
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Regression and correlation 

Recall from our previous introduction of different types of 
experimental designs that we use regression analysis to examine 
the relationship between continuous variables (i.e., our X variable 
is now continuous as opposed to categorical in ANOVA).  Simple 
linear regression is used to determine the equation of the 
straight line that best describes the functional relationship 
between X and Y.  Correlation describes the association 
between two random variables and its use implies that we don’t 
know which variable is dependent on which, but rather that they 
simply vary together in some predictable way.  Regression 
assumes that one variable is dependent on the other (Y 
dependent on X) in a cause-and-effect relationship.  However, the 
same statistical models can be used in both cases. 

The simplest function that describes the relationship between two 
variables is the linear model: 

XY 10 ββ +=  
 

This equation describes a straight line with two parameters, the 
intercept (β0) and the slope (β1).  The intercept is the value of 
the function when X = 0, and the slope measures the change in 
variable Y for each unit change in variable X.   

Y

X

ß1

ß0

1 unit of X
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Our data will consist of a series of paired observations that each 
includes an X value (Xi) and a Y value (Yi).  The model we use to 
fit our data is: 

iii XY εββ ++= 10  
 

The term εi is the error term, which is a normal random variable 
with an expected value = 0 and a variance equal to σ2.  The 
larger the value of σ2, the more noise there will be about the 
regression line.  Once we have three or more data points, there 
will nearly always be some noise about the regression line. 

 

Our first step when we plan to perform regression analysis should 
be to plot our data.  We may be able to see a clear pattern.  
But how do we determine where the line is placed within our 
pattern?  The regression line must pass through the single point 
defined by our mean X and our mean Y ( X̄,Ȳ ).  But, to 
determine which way the line pivots on this point, we need 
another quantity.  We call this quantity the residual, di, and it is 
defined as the difference between the observed Yi and the Yi that 
is predicted by the regression equation (Yhat = Ŷi).  It is calculated 
as: 

)ˆ( iii YYd −=  
We sum the squares of all of the residuals to create the residual 
sum of squares (ResSS), and the best fit regression line is the 
one that minimizes the ResSS.  Our line then results in the 
smallest average difference between each observed Yi value and 
the predicted Ŷi value. 
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To illustrate this concept, we use what is called a bivariate 
scatter diagram: 

 

Y

X

d1

d2

 

 

Each observation from i to n will generate a residual.  The model 
parameters (β0 and β1) are then chosen such that ResSS is 
minimized: 

∑
=

n

i
id

1

2

 

 

 

***Keep in mind that bivariate scatter diagrams can take many 
shapes besides a linear relationship: 
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X

YY

X

Y

X

Linear relationship No relationship

Non-linear relationship

 

 

We will generally always start by assuming a simple linear 
relationship unless we have previous empirical or theoretical 
support for something more complex.  We will deal with how to 
test for “lack of fit” of the linear model after we have finished 
describing the model and tested our hypothesis. 
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Let’s illustrate these ideas using an example:  Suppose we have 
some data on blood pressure and age for a random sample of 30 
individuals. 

 

Individual BP Age Individual BP Age 
(i) (Y) (X) (i) (Y) (X) 
1 144 39 16 130 48 
2 220 47 17 135 45 
3 138 45 18 114 17 
4 145 47 19 116 20 
5 162 65 20 124 19 
6 142 46 21 136 36 
7 170 67 22 142 50 
8 124 42 23 120 39 
9 158 67 24 120 21 
10 154 56 25 160 44 
11 162 64 26 158 53 
12 150 56 27 144 63 
13 140 59 28 130 29 
14 110 34 29 125 25 
15 128 42 30 175 69 

 

We have 30 pairs (Xi, Yi) of observations that may be considered 
points in two dimensional space, so we can plot them as a 
bivariate scatter diagram. 
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Scatter diagram of blood pressure vs. age
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***Note that we have one observation that is quite different from 
the rest, we will deal with the influence of this observation later. 

 

In order to choose the parameters (intercept and slope) that 
generate the ‘best fit’ line, we need to introduce the idea of 
covariance.  Recall our standard variance formula for one 
variable: 
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If we now consider two variables X and Y, we can define the sum 
of the cross products (SSXY) as: 

∑
=

−−=
n

i
iiXY YYXXSS

1
))((
 

And the sample covariance (SXY) is then: 

1

))((
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n

i
ii

XY  

Unlike the variance for a single variable, the sample covariance 
can be either positive or negative depending on how the pairs of 
observations are organized (i.e., if large X’s are paired with large 
Y’s the covariance will be positive, but if large X’s are paired with 
small Y’s, the covariance will be negative).  We can use our 
estimate of covariance to calculate our slope parameter (which 
should make intuitive sense). 
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To use the computational formula: 
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Since our regression line must pass through ( X̄,Ȳ ), we can 
calculate the intercept as: 

XY 10
ˆˆ ββ −=  

 

Lastly, we need to estimate the error term (εi) for our linear 
model.  Recall that εi has a normal distribution with a mean = 0 
and a variance = σ2.  We use our estimate of the residual sums of 
squares (ResSS) to estimate the regression variance (σ2). 
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***Note that the denominator is (n-2) instead of the usual (n-1).  
This is because we have used 2 degrees of freedom already to 
estimate the slope and the intercept.  

 

The square root of the quantity above (σ) is referred to as the 
standard error of the regression, and is often reported as 
part of the regression output by many statistical software 
packages. 
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Returning to our blood pressure vs. age example: 

Individual BP Age    
(i) (Y) (X) (Y2) (X2) (XY) 
1 144 39 20736 1521 5616 
2 220 47 48400 2209 10340 
3 138 45 19044 2025 6210 
4 145 47 21025 2209 6815 
5 162 65 26244 4225 10530 
6 142 46 20164 2116 6532 
7 170 67 28900 4489 11390 
8 124 42 15376 1764 5208 
9 158 67 24964 4489 10586 
10 154 56 23716 3136 8624 
11 162 64 26244 4096 10368 
12 150 56 22500 3136 8400 
13 140 59 19600 3481 8260 
14 110 34 12100 1156 3740 
15 128 42 16384 1764 5376 
16 130 48 16900 2304 6240 
17 135 45 18225 2025 6075 
18 114 17 12996 289 1938 
19 116 20 13456 400 2320 
20 124 19 15376 361 2356 
21 136 36 18496 1296 4896 
22 142 50 20164 2500 7100 
23 120 39 14400 1521 4680 
24 120 21 14400 441 2520 
25 160 44 25600 1936 7040 
26 158 53 24964 2809 8374 
27 144 63 20736 3969 9072 
28 130 29 16900 841 3770 
29 125 25 15625 625 3125 
30 175 69 30625 4761 12075 
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(i) (Y) (X) (Y2) (X2) (XY) 
Sum 4276 1354 624260 67894 199576 

Mean 142.53 45.13    

Variance 509.91 233.91    

Std Dev 22.58 15.29    

   n= 30  

   slope= 0.97  

   intercept= 98.75  

 

The slope is calculated using: 
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The intercept is then: 

75.98)13.45)(97.0(53.142ˆˆ
10 =−=−= XY ββ  

 

The equation for the straight line is: 

XY 97.075.98ˆ +=  
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For every X then, we can calculate a value for Ŷ and calculate our 
ResSS. 

Individual BP Age    
(i) (Y) (X) (Ŷ) (di) (di)2 
1 144 39 136.54 7.46 55.65 
2 220 47 144.30 75.70 5730.49 
3 138 45 142.36 -4.36 19.01 
4 145 47 144.30 0.70 0.49 
5 162 65 161.76 0.24 0.06 
6 142 46 143.33 -1.33 1.77 
7 170 67 163.70 6.30 39.69 
8 124 42 139.45 -15.45 238.70 
9 158 67 163.70 -5.70 32.49 
10 154 56 153.03 0.97 0.94 
11 162 64 160.79 1.21 1.46 
12 150 56 153.03 -3.03 9.18 
13 140 59 155.94 -15.94 254.08 
14 110 34 131.69 -21.69 470.46 
15 128 42 139.45 -11.45 131.10 
16 130 48 145.27 -15.27 233.17 
17 135 45 142.36 -7.36 54.17 
18 114 17 115.20 -1.20 1.44 
19 116 20 118.11 -2.11 4.45 
20 124 19 117.14 6.86 47.06 
21 136 36 133.63 2.37 5.62 
22 142 50 147.21 -5.21 27.14 
23 120 39 136.54 -16.54 273.57 
24 120 21 119.08 0.92 0.85 
25 160 44 141.39 18.61 346.33 
26 158 53 150.12 7.88 62.09 
27 144 63 159.82 -15.82 250.27 
28 130 29 126.84 3.16 9.99 
29 125 25 122.96 2.04 4.16 
30 175 69 165.64 9.36 87.61 

Sum     8393.51 
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Our ResSS = 8393.51 and if we divide this by n-2 = 28, we get 
299.77 for our estimate of the residual variance (mean square). 

Our estimate of the standard error of the regression is then 
the square root of this quantity = 17.31. 

 

Partitioning the variance in regression 

In the regression model, the total variation is defined by the sum 
of the squares of the Y variable (TotalSS or SSY): 

∑
−

−=
n

i
i YYTotalSS
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We wish to partition this variance into its components.  One of 
these components is pure (or random) error just due to random 
sampling from a normal distribution.  This component of error is 
simply εi and we can estimate it using ResSS.  The other 
component is not random error, but instead is systematic.  The 
source of this variation is the regression relationship Yi = β0 + 
β1Xi and is estimated as RegSS.  We can estimate it from: 

RegSS = TotalSS – ResSS 
In our example, the TotalSS = 14787.53 and our ResSS was 
8393.51, so our RegSS = 6394.02. 

An index that reflects the relative contribution of regression 
versus residual variation to the overall variance is r2, the 
coefficient of determination, which is calculated as: 

TotalSS
gSSr Re2 =
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The r2 value tells you the proportion of the variation in Y that can 
be attributed to variation in X, and it varies from 0 to 1.  For our 
blood pressure vs. age example, r2 = 0.43.  The square root of r2 
= r = the product-moment correlation coefficient.  The 
sign of r can be either positive or negative, depending on the 
covariance between X and Y, and it can range between -1 and 1.  
It is calculated as: 

))(( YX

XY

SSSS
SSr =

 

 

Hypothesis testing with regression models 

Recall that we assume a cause-and-effect relationship between X 
and Y when we perform a regression analysis.  The test of the 
existence of such a relationship is contained in the slope 
parameter, and whether it differs from 0.  Therefore, our null 
hypothesis is that β1 = 0.  If we fail to reject this null, then we 
have no evidence for the functional dependence of Y on X. 

 

First, we can organize our regression data into an ANOVA table. 

Source df SS MS F-ratio P-value 
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For our blood pressure vs. age data, we have: 

Source df SS MS F-ratio P-value 

Regression 1 6394.02 6394.02 21.33 F(0.05)1,28= 

4.20 

Residual 28 8393.51 299.77  P<0.0005 

Total 29 14787.53    

 

***Keep in mind that ANOVA tables for regression analyses are 
usually not included in published manuscripts.  Generally, the F-
ratio, its degrees of freedom, and the P-value are reported in the 
text of the paper.   

The significance of both our slope and intercept can each be 
tested using our familiar t-test.  Recall that t = our parameter 
estimate minus our hypothesized value divided by the standard 
error of the parameter estimate.  We need standard error 
estimates for our slope and intercept to calculate t. 

For the slope, the variance is estimated from: 

XSS

2σ̂
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For the intercept, the variance is estimated from: 
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The standard errors are just the square roots of those terms. 
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For our example, the t-value for the slope is: 
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097.0
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and the t-value for the intercept is: 
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The critical t-value (t0.05 (2), 28) = 2.048, so both null hypotheses 
would be rejected.  The hypothesis test for the significance of the 
slope is the same as the overall F-test for the entire regression 
model. 
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Regression Confidence and Prediction Intervals 
 
Recall that we used estimates of the standard error for the slope 
and intercept to calculate t-statistics and test hypotheses about 
those parameters.  We use the same standard error estimates to 
generate confidence intervals for the regression.  
 
For the slope we had: 
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For the intercept we had: 
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The confidence interval for the slope is then: 
 

11
ˆ)2,(11ˆ)2,(1 ˆˆˆˆ
βαβα σββσβ −− +≤≤− nn tt  

 
A 95% CI for the slope in our example is: 
 

21.0*048.297.021.0*048.297.0 1 +≤≤− β  
 

400.1540.0 1 ≤≤ β  
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Similarly, the confidence interval for the intercept is: 
 

00
ˆ)2,(00ˆ)2,(0 ˆˆˆˆ
βαβα σββσβ −− +≤≤− nn tt  

 
A 95% CI for the intercept in our example is: 
 

99.9*048.275.9899.9*048.275.98 0 +≤≤− β  
 

21.11929.78 0 ≤≤ β  
 
 
 
For any value X, we can also create confidence intervals for 
the mean of the fitted Y values using the standard error for a 
fitted Y: 
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The confidence interval is then calculated as: 
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For any value X, we can also create what is referred to as a 
prediction interval using the standard error of the prediction 
for a single fitted Y: 
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The prediction interval is then calculated as: 
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Note that prediction interval is wider than the confidence interval 
because we are predicting the variance we might expect in our 
predictions given new sample data (and the variance that is 
associated with that new data has to be accounted for).  We can 
think of our confidence interval as measuring our confidence in 
estimates based on the available data, and the prediction interval 
as measuring confidence in estimates based on new data.  Also 
note that both get wider the farther we get from X̄.  This should 
make sense, our confidence should decrease as we move away 
from the center of the distribution of our sample data. 
 
 
 
Assumptions of regression 
 

1. The functional relationship between X and Y is described by 
a linear model 

• If this assumption is violated, the residual error will be 
inflated by a ‘lack of fit’ component. 

 
2. The X variable is measured without error 

• If this assumption is violated, our estimates of the 
slope and intercept will be biased.  We can use a Model 
II regression model if we suspect a severe violation. 

 
3. For any given X, the sampled Y values are independent and 

normally distributed 
• The assumption of independence is always present, 

and normality allows use of parametric hypothesis 
tests.  These are generally ignored unless violations are 
severe. 
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4. Variances in Y are homogeneous for the range of X values 
• This assumption allows us to use the same estimate of 

residual error for the variance of the regression line.  
Ordinarily, some type of transformation is used to 
minimize heteroscedasticity, or we can use other 
regression models (e.g., nonlinear, quantile regression). 

 
 
Testing for ‘lack of fit’ 
 
Up to this point, we have assumed that the relationship between 
X and Y is linear.  However, we will often encounter bivariate 
relationships that are nonlinear.  We can assess the 
appropriateness of the straight-line model using an ANOVA 
technique.  Essentially, we will test for ‘lack of fit’ of our assumed 
straight-line model. 
 
The key statistic is the residual SS (ResSS).  This quantity can 
be large for two reasons: (1) σ2 is large (i.e., we have lots of 
variability in our sample data, or (2) the straight-line model is not 
appropriate.  So, our residual SS can be partitioned into two 
components, one that describes pure error and the other that 
describes the extent of lack of fit of the straight-line model.  We 
can estimate the pure error component by taking advantage of 
‘replicate observations’ (i.e., multiple observations of Y taken at 
the same X). 
 
Returning to our BP vs. Age example: We have two observations 
of Y at six values of X (X = 39, 42, 45, 47, 56, 67).  The 
remaining 18 Y’s are paired with a unique X value.  We can then 
estimate a sum of squares (SS) for each of our X values that has 
more than a single Y. 
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For example, at X = 42, we have Y = 124 and 128 and Ȳ = 126. 
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If we do this for all six values of X we have: 

X Y SS df = ni-1 
39 144; 120 288 1 
42 124; 128 8 1 
45 138; 135 4.5 1 
47 220; 145 2812.5 1 
56 154; 150 8 1 
67 170; 158 72 1 
  3193 6 

 
So our SSpure error = 3193 
 
The SSlack of fit now is just = ResSS – SSpure error 

 

In our example we have, 
 
SSlack of fit = 8393.51 – 3193 = 5200.51 
 
And dflack of fit now just = Resdf – dfpure error 

 
dflack of fit = 28 – 6 = 22 
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We then estimate the mean squares as: 
 
Pure error = SSpure error/dfpure error = 3193/6 = 532.17 
 
Lack of fit = SSlack of fit/dflack of fit = 5200.51/22 = 236.39 
 
Then, F = MSlack of fit/MSpure error = 236.39/532.17 = 0.44 
 
F0.05 (22,6) = 3.86, so we cannot reject H0 which stated that the 
straight-line model was appropriate. 
 
 
Let’s look at this graphically 
 
Recall that: TotalSS = RegSS + ResSS 
 

(Yi – Ȳ )2  =  (Ŷi – Ȳ )2 + (Yi – Ŷi)
2  

 

TotalSS = the total variability in Y before accounting for the effect 
of any independent variables (X) 
 
RegSS = the reduction in variability in Y (e.g., variability 
explained) due to the inclusion of independent variables (X) in the 
model 
 
ResSS = the amount of variability in Y left unexplained after 
accounting for the effect of any independent variables (X) 
 
We can partition ResSS into pure error and lack of fit components 

 
ResSS = pure error + lack of fit 

 
(Yi – Ŷi)

2 = (Yi – Ȳ Xi)
2 + (Ȳ Xi - Ŷi)

2 
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Differences between the Y observations and the mean Ȳ for that 
X arise from pure error.  Differences between each mean Ȳ and 
the regression estimate for that X are due to lack of fit.  So, we 
have a within-groups error and an among groups error. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can display this in an ANOVA table: 
 

Source df SS 
Regression 1 (Ŷi – Ȳ )2 

Lack of fit k-2 (Ȳ Xi - Ŷi)
2 

Pure error n-k (Yi – Ȳ Xi)
2 

Total n-1 (Yi – Ȳ )2 
 ***k = the number of unique groups 
 
If H0 is true then the E(Ȳ Xi - Ŷi)

2 = 0, but if the data isn’t linear, 
then the deviations due to lack of fit will get increasingly large. 

Y

X

total

pe

exp

lof

Group mean for particular X-value
(i.e., for multiple Y’s at this X)

unexp

unexp = SSresidual
exp = SSregression

scharff
Sticky Note
ended here 4/1/2013




 191

For our example: 
Source df SS MS F 
Regression 1 6394.02 6394.02 21.33 
Lack of fit 22 5200.51 236.39 0.44 
Pure error 6 3193.00 532.17  
Total 29 14787.53   

 
Another way to get an estimate of pure error is to arrange the 
data for all of your X’s as separate groups in a 1-way ANOVA (i.e., 
the Y-values for each X are placed in separate Excel columns).  
For our example data, we would have 24 groups (6 that each had 
2 Y-values and 18 that each only had 1 Y-value).  From the 
ANOVA, the within-groups SS will be your estimate of pure error 
for the regression model.  Then you can return to your ANOVA 
table output from the regression model and estimate your error 
due to lack of fit by subtracting the pure error from the residual 
SS term, and then conduct your lack of fit F-test. 
 
Regression diagnostics 
 
The very first step in performing diagnostic evaluation of your 
fitted regression model should be to plot the residuals (di’s) 
versus the fitted values (Ŷ’s).  Such a plot will provide clues about 
potential violations of several model assumptions including 
normality, homogeneity of variances, and the linearity of the 
model.  The plot will also illustrate observations that may have 
considerable influence on the parameter estimates (e.g., outliers 
and leverage points).   
 
If the linear fit is appropriate and the basic assumptions of 
normality of errors and homogeneity of variances are not severely 
violated, the residuals should be centered on 0 and demonstrate 
no clear pattern. 
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Some example residual plots 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Plot A above illustrates a pattern of residuals that indicates no 
violations of model assumptions or the presence of influential 
observations.  Plots B and C both indicate some degree of non-
linearity that would likely be detected during a ‘lack of fit’ test.  
Plot D indicates some degree of heterogeneity of variances, with 
the error increasing for larger fitted values.  In many cases, 
transformation (e.g., logarithmic or square root, see Chapter 
13 and sect. 17.10 in Zar) of the data may solve (or at least 
minimize) some of these problems and reduce the severity of 
violation of model assumptions.  We can also evaluate the 
normality assumption graphically by plotting the distribution of 
residuals versus a standard normal. 
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Residual plot for BP vs. Age example 
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Identifying influential observations 

A single observation that is substantially different from all other 
observations can make a large difference in the results of our 
regression analysis.  If a single observation (or small group of 
observations) considerably changes our results, it would be good 
to know about this and investigate further.  Keep in mind, there 
are three ways that an observation can be unusual. 

Outliers: In linear regression, an outlier is an observation with a 
large residual.  In other words, it is an observation whose 
response (Y-value) is unusual given its value (X) of the predictor 
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variable.  An outlier could indicate a sample peculiarity or a data 
entry error or some other problem.  

Leverage: An observation with an extreme value of the predictor 
variable (X) is called a point with high leverage.  Leverage is a 
measure of how far an independent variable deviates from its 
mean.  Leverage points can often have large effects on the 
estimate of regression coefficients (slope and intercept).  

Influence: An observation is said to be influential if removing 
the observation considerably changes the estimate of regression 
coefficients.  Conceptually, influence can be thought of as the 
product (not literally) of leverage and outlierness. 

A good way to identify potential outliers is to calculate what are 
called standardized and studentized residuals.  Many times 
you will see these two terms used interchangeably, implying that 
they are the same.  Alternatively, you may see them referred to 
as ‘internally’ studentized and ‘externally’ studentized residuals.  
For our purposes, we will refer to standardized residuals as those 
residuals that have been adjusted for the standard error of the 
regression and the leverage of the observation.  We will refer to 
studentized residuals as a standardized residual that has been 
calculated using a regression standard error generated by a 
model with that observation omitted.   

The standardized residual for each observation is: 
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where ei = residual, s and s(i) = standard error of the regression 
with and without the observation, and hi = leverage.  

 

We calculate leverage (hi) as: 
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We should generally inspect observations closely that have 
leverage > (2k+2)/n, where k = number of regression 
coefficients, and a studentized residual with an absolute 
value > 2.  The leverage essentially measures the influence of 
an observation due to its X-value, and the studentized residual 
measures its outlierness in the Y-direction. 

We can combine these to generate an overall measure of 
influence.  Some common statistics used to measure 
observation influence include Cook’s distance and DFITS.  
Each truly represents a combination of our measures of leverage 
and outlierness.   

We calculate DFITS as: 

i

i
i h

h
rDFITS

−
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where ri = the studentized residual and hi = leverage. 
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We calculate Cook’s distance (Di) as: 

2
2
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i DFITS
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s
k
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Where k = the number of regression coefficients estimated, s = 
the standard error of the regression with the observation, and s(i) 
= the standard error of the regression without the observation. 

As a general rule, we should examine observations carefully if 
they have DFITS values greater than 2 × the square root of 
k/n, and if they have Cook’s distance values greater than 4/n. 

Both DFITS and Cook’s distance are general measures of 
influence.  We can also consider more specific measures of 
influence that assess how each coefficient is changed by deleting 
individual observations.  Typically, this is only done for the slope 
parameter in a simple linear regression.  For convenience, we can 
call such a statistic VarBeta, and we should be concerned when 
removal of an observation causes greater than a 2 ÷ square 
root of n absolute change in the parameter estimate. 

The following table summarizes the general rules of thumb we 
can use for these statistics to identify observations worthy of 
further investigation (again, k is the number of coefficients (2 for 
a simple linear regression) and n is the number of observations).  

Statistic Value 

leverage > (2k+2)/n 

abs(rstudent) > 2 

Cook's D > 4/n 

abs(DFITS) > 2*sqrt(k/n) 

abs(VarBeta) > 2/sqrt(n) 
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Influential statistics for BP vs. Age example calculated in STATA 

Age BP predicted Y residual leverage standard student DFITS Cooks D VarBeta 
17 114 115.2195 -1.2195 0.1500 -0.0764 -0.0750 -0.0315 0.0005 0.0278 
19 124 117.1613 6.8387 0.1340 0.4245 0.4182 0.1645 0.0139 -0.1426 
20 116 118.1321 -2.1321 0.1265 -0.1318 -0.1294 -0.0492 0.0013 0.0423 
21 120 119.1030 0.8970 0.1192 0.0552 0.0542 0.0199 0.0002 -0.0169 
25 125 122.9865 2.0135 0.0931 0.1221 0.1200 0.0384 0.0008 -0.0308 
29 130 126.8700 3.1300 0.0717 0.1876 0.1844 0.0512 0.0014 -0.0375 
34 110 131.7243 -21.7243 0.0516 -1.2884 -1.3045 -0.3043 0.0452 0.1811 
36 136 133.6661 2.3339 0.0456 0.1380 0.1355 0.0296 0.0005 -0.0154 
39 144 136.5787 7.4213 0.0389 0.4372 0.4308 0.0866 0.0039 -0.0327 
39 120 136.5787 -16.5787 0.0389 -0.9767 -0.9759 -0.1963 0.0193 0.0741 
42 124 139.4913 -15.4913 0.0348 -0.9107 -0.9079 -0.1723 0.0149 0.0352 
42 128 139.4913 -11.4913 0.0348 -0.6756 -0.6689 -0.1270 0.0082 0.0259 
44 160 141.4330 18.5670 0.0335 1.0908 1.0947 0.2039 0.0206 -0.0153 
45 138 142.4039 -4.4039 0.0333 -0.2587 -0.2543 -0.0472 0.0012 0.0004 
45 135 142.4039 -7.4039 0.0333 -0.4349 -0.4286 -0.0796 0.0033 0.0007 
46 142 143.3748 -1.3748 0.0334 -0.0808 -0.0793 -0.0148 0.0001 -0.0008 
47 220 144.3456 75.6544 0.0338 4.4455 8.0483 1.5064 0.3462 0.1856 
47 145 144.3456 0.6544 0.0338 0.0385 0.0378 0.0071 0.0000 0.0009 
48 130 145.3165 -15.3165 0.0345 -0.9003 -0.8972 -0.1697 0.0145 -0.0318 
50 142 147.2582 -5.2582 0.0368 -0.3095 -0.3044 -0.0595 0.0018 -0.0183 
53 158 150.1708 7.8292 0.0425 0.4621 0.4555 0.0959 0.0047 0.0445 
56 154 153.0835 0.9165 0.0507 0.0543 0.0534 0.0123 0.0001 0.0072 
56 150 153.0835 -3.0835 0.0507 -0.1828 -0.1796 -0.0415 0.0009 -0.0243 
59 140 155.9961 -15.9961 0.0617 -0.9538 -0.9522 -0.2441 0.0299 -0.1655 
63 144 159.8796 -15.8796 0.0804 -0.9564 -0.9549 -0.2823 0.0400 -0.2160 
64 162 160.8504 1.1496 0.0858 0.0694 0.0682 0.0209 0.0002 0.0163 
65 162 161.8213 0.1787 0.0915 0.0108 0.0106 0.0034 0.0000 0.0027 
67 170 163.7630 6.2370 0.1038 0.3805 0.3746 0.1275 0.0084 0.1051 
67 158 163.7630 -5.7630 0.1038 -0.3516 -0.3460 -0.1178 0.0072 -0.0970 
69 175 165.7048 9.2952 0.1173 0.5714 0.5644 0.2058 0.0217 0.1741 

 

Statistic Value 
leverage > 0.200
abs(rstudent) > 2 
Cook's D > 0.133
abs(DFITS) > 0.516
abs(VarBeta) > 0.365
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For our example, we had no observations with high leverage.  We 
did have one observation (47, 220) with a studentized residual 
greater than 2 (= 8.0483), a DFITS with an absolute value 
greater than 0.516 (= 1.5064), and a Cook’s D greater than 0.133 
(= 0.3462).  However, note that the influence of this observation 
on our slope estimate was not that strong (VarBeta = 0.1856 < 
0.365) and that there were other observations with just as much 
or more influence on our slope.  The lesson from this finding is 
that leverage (distance from X̄) contributes the most to the 
influence of an observation on parameter estimation.  In our 
example, the large outlying observation had little leverage 
because it’s X-value was so close to X̄.   

Remember, that just because we identify observations with 
considerable influence on our model doesn’t mean we discard 
them, it just means we should examine those observations closely 
for errors or some reason for its departure from the others.  If we 
are unsure about an observation, we can always run the model 
with and without it and present the model output for both. 
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Analysis of Covariance (ANCOVA) 
 
There will often be times when we calculate two or more 
regression lines from a data set and want to know whether the 
functional relationships described by the equations are the same.  
Since we now have an X-variable (predictor) in addition to our Y-
variable (response) we need to use a type of joint analysis, the 
analysis of covariance between X and Y, to test our 
hypothesis. 
 
The analysis of covariance (ANCOVA) tests a dependent variable 
Y for homogeneity among group means that have been adjusted 
for the effect of the independent variable X, now referred to as 
the covariate.  A good way to visualize the structure of analysis 
of covariance it to picture each group being separately regressed 
on X, with all of the regression lines having a common slope 
(Sokal and Rohlf 1995, p. 499).  The primary significance test of 
ANCOVA is a test of homogeneity of the adjusted means, which 
boils down to a test of homogeneity of elevations (Y-intercepts) 
so long as the slopes are not different.  Thus, we need to test for 
a common slope first (technically parallelism of slopes among the 
groups is an assumption of ANCOVA, though most consider it part 
of the test itself). 
 
We are hypothesizing that the value of our covariate (X) also 
contributes to the variation we observe in our response variable 
(Y) (i.e., if we don’t measure the covariate, this source of 
variation would just be part of our pure error in the residual 
term).  If our covariate does have an important effect, then by 
partitioning out this source of variation we will reduce the size of 
our residual error and achieve greater power to detect our 
treatment effects (differences among groups, which is the 
primary question of interest). 
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The model for ANCOVA is: 
 

ijiijiiij XXAY εβμ +−++= )(  
 

where Ai is the treatment effect (i = 1 to a treatments or groups), 
βi is the slope term from the regression, Xij is the covariate value 
for observation Yij, and X̄i is the average value of the covariate for 
treatment group i.  εij is the error term.  The above model implies 
that each treatment group is described by its own unique 
regression line (i.e., unique slope and intercept).  If the slopes 
are not significantly different, then βC (common slope) can be 
substituted for βi.  If the slope terms are not significantly different 
from zero, the model just collapses to a single-factor ANOVA.  
Similarly, if there is no effect of the treatment and no interaction, 
the model just collapses to a simple linear regression.   
 

Y

X



 201

Let’s begin with a simple test of homogeneity of slopes for the 
case of two regression lines.  When we only have two slopes to 
compare, we can use a simple method that is analogous to a two-
sample t-test.  The test statistic is: 
 

21

21

bbs
bbt

−

−
=

 

 
and the standard error of the difference between regression 
coefficients is: 
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where s2

Y·X = ResMS = σ2 and the pooled ResMS is calculated as: 
 

21

212

ReRe
ReRe)(

sdfsdf
sSSsSSs pXY

+
+

=⋅  

 
 
As an example we’ll use some data on gape height measurements 
for juveniles of two fish species, bluefish and striped bass.  The 
height of the gape (when fully open) was measured and then 
regressed against body size for each species.  We want to know if 
the slopes are significantly different.  The ANOVA tables from the 
regression output for each data set are below along with some 
other quantities we will need. 
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For bluefish, we have: 
Source df SS MS F-ratio P-value 
Regression 1 4769.51 4769.51 1863.93 F(0.05)1,242= 

3.88 
Residual 242 619.24 2.56  P<0.0005 
Total 243 5388.76    
 
Other quantities: 
Slope = 0.131    X̄ = 121.72   
Intercept = 2.428   Ȳ = 18.37 

05.2781432∑ == SSxx  
61.36422∑ == SSxyxy  

76.53882∑ == SSyy  
 
 For striped bass, we have: 
Source df SS MS F-ratio P-value 
Regression 1 1175.50 1175.50 1939.27 F(0.05)1,20= 

4.35 
Residual 20 12.12 0.61  P<0.0005 
Total 21 1187.62    
 
Other quantities: 
Slope = 0.129    X̄ = 137.73  
Intercept = -1.273   Ȳ = 16.47 

36.708082∑ == SSxx  

34.9123∑ == SSxyxy  

62.11872∑ == SSyy  
 
So, it is clear to see that we have two highly significant 
regressions.  Now we will compare the slopes. 
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Recall that we need a pooled residual MS: 
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Then, our standard error of the difference between slopes is: 
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Our test statistic is then: 
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The critical value, t0.05(2), 262 ≈1.969, so do not reject H0, P > 0.50. 
 
 
We would conclude that the slopes are not significantly different.  
Given that a single common slope would adequately describe the 
rate of change in Y per unit X, we might next want to ask 
whether the elevations (Y-intercepts) of the lines are the same.  
Remember, this is really the main hypothesis test of ANCOVA.  
Since our regression lines are essentially parallel, we can compare 
Y for any single value of X to test our hypothesis, it is just 
simplest to use the Y-intercept (X = 0) since we have already 
calculated it. 
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Comparing two elevations 
 
For our t-test, we will need to calculate some new quantities for 
what we shall refer to as our ‘common’ regression line.  These 
include the following: 
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The residual df for our common regression = N – k – 1, where k 
= the number the regressions we are comparing (2 in this case). 
 
The residual MS is then ResSSc/Resdfc 
 
We can also now calculate our common slope since we’ve already 
found the slopes of our 2 groups to be statistically 
indistinguishable.  The common slope is calculated as: 
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For our gape height example we have: 
 

41.34895136.7080805.2781432 =+==∑ cc SSxx  

95.4554534.912361.36422 =+==∑ cc SSxyxy  

38.657662.118776.53882 =+==∑ cc SSyy  
 
 
The residual SS for our common regression =  
 

( ) 62.631
41.348951

95.4554538.6576Re
2

=−=csSS
 

 
 
The residual df for our common regression = 266 – 2 – 1 = 263 
 
 
The ResMSc is then 631.62/263 = 2.402 
 
 
 
Our common slope can now be calculated as: 
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The test statistic for comparing two elevations is calculated as: 
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For our example: 
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The critical value, t0.05(2), 263 ≈1.969, so reject H0, P < 0.001. 
 
We would conclude that the elevations were significantly 
different, with bluefish having a larger gape height for a given 
body size compared to striped bass. 
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***Review examples 18.1 and 18.2 in Zar 
 
Comparing more than two slopes and elevations 
 
When we wish to compare more than two slopes or elevations, 
we can no longer use a t-test.  Technically speaking, the ANCOVA 
procedures are only necessary once the number of groups we 
wish to compare exceeds 2.  But, just like we can apply an 
ANOVA to compare 2 means, we can use the ANCOVA procedures 
to compare only 2 slopes or intercepts.  We will use many of the 
quantities that we have already calculated above and then we will 
use an F-statistic instead of a t-test for hypothesis testing.   
 
We will illustrate the basic calculations of ANCOVA using data for 
bluefish capture success when feeding on four different prey fish 
species.  Capture success generally scales as a function of relative 
body size (prey size/predator size ratio), so relative body size will 
serve as our covariate.  We have four significant regressions that 
relate bluefish capture success to relative body size for each of 
the different prey fish species.  We wish to know if bluefish 
capture success differs among the prey types.   
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Here, we reproduce Table 18.1 from Zar to illustrate each of the 
quantities we need to carry out the ANCOVA procedures. 
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*The Total Reg row is computed after first combining the data from all k 
samples. 
 
For our bluefish foraging example we have: 
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For our slope comparisons, we calculate a ResMScommon and a 
ResMSpooled to use in our F-test. 
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Our F-ratio is then 0.0323/0.0153 = 2.11 and our critical value is 
F0.05(1), 3, 102 ≈ 2.70.  We would not reject H0: the slopes are 
homogeneous (0.10<P<0.25). 
 
For our elevation (Y-intercept) comparisons, we calculate a 
ResMStotal and a ResMScommon to use in our F-test (*note that this 
ResMScommon is not the same as the one we calculated above for 
the slope comparisons). 
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Our F-ratio is then 0.8467/0.0158 = 53.59 and our critical value is 
F0.05(1), 3, 105 ≈ 2.70.  We would reject H0: the elevations are 
homogeneous (P<0.0005).  Bluefish capture success differs 
significantly among the four prey fish species.  We could then 
proceed with multiple comparison tests (e.g., Tukey’s HSD) to 
determine pair-wise differences between elevations. 
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***Review example 18.4 in Zar 
 
Visualizing the ANCOVA 
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Alternative Regression Models 
 
Polynomial Models 
Beyond the simple linear model, the next group of models 
includes additional forms of the independent variable (X).  This 
class of models is referred to as polynomial models and includes 
familiar parabolic curves as well as other higher order functions.  
The models are formed by the addition of one or more X terms 
that result from taking the original X term to successive powers.  
The basic form of the model is: 
 

εβββββ +++++= k
k XXXXY 3

3
2

210  
 
The simplest is the 2nd order polynomial (parabola), written as: 
 

εβββ +++= 2
210 XXY  

 
As with our straight line model, we can use the same Least 
Squares methods to minimize the Residual Sums of Squares 
(ResSS) and estimate the parameters β0, β1, and β2.   
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We can illustrate how the addition of a second X term affects the 
parameter estimates and the overall explanatory power of the 
model using an example. 
 
We have some data on salamander weight gain (in grams) as a 
function of prey consumption (in numbers of prey eaten). 
 
X (prey eaten) =  1 2 3 4 5 6 7 8 
Y (weight gain) = 1 1.2 1.8 2.5 3.6 4.7 6.6 9.1 
 
Bivariate scatter plot 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If we fit a straight-line model, we would obtain: 
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The ANOVA table would be: 
Source df SS MS F-ratio P-value 
Regression 1 52.04 52.04 61.95 F(0.05)1,6= 

5.99 

Residual 6 5.03 0.84  P<0.0005 
Total 7 57.07    
The R2 value for the straight-line model = 0.912 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Not bad, but the data appear curvilinear rather than forming a 
straight line.  Since we don’t have multiple Y’s for any X, we 
cannot formally test for lack of fit.  However, we can fit a 2nd 
order polynomial and then test whether the additional X term 
significantly improves the predictive ability of the model. 
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The 2nd order equation is: 
 

217.041.035.1ˆ XXY +−=  
 
The ANOVA table would now be: 
Source df SS MS F-ratio P-value 
Regression 2 56.87 28.44 710.88 F(0.05)2,5= 

5.79 

Residual 5 0.20 0.04  P<0.0001 
Total 7 57.07    
The R2 value for the 2nd order polynomial = 0.997 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Much better, but the question now becomes whether the increase 
in R2 value from 0.912 to 0.997 represents a significant increase 
in the predictive ability of the model.  To answer this question, 
we can conduct what is known as a partial F-test. 
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First, we restructure the ANOVA table: 
Source df SS MS F 
Regression (X alone) 1 52.04 52.04 61.95 

Regression (addition of X2) 1 4.83 4.83 120.75 

Residual 5 0.20 0.04  

Total 7 57.07   
 
This partitions the SS explained by the regression (RegSS) into 
the SS explained by X alone and the additional SS explained by 
adding the X2 term to the model. 
 
The partial F-test is conducted as: 
 

F  =  (extra SS due to adding X2)/1 
       MS residual for 2nd order model 

 

75.120
04.0
83.4

==F
 

 
F (0.05, 1, 5) = 6.61, so we would reject H0 with P<0.0005.  
Hence, the addition of the X2 term to the model significantly 
improves the predictive ability of the model.  This means that this 
model is better than the straight-line model. 
 
We can do the same test to see if adding another X term (X3) 
improves the model further.  In our case it actually does slightly, 
but there are other reasons to stick with the 2nd order model 
(potential multicollinearity, the scatter plot suggests a 2nd order 
model, and it’s always best to use the simplest model to ease 
interpretation). 
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Nonlinear models 
Often times, you may find that the relationship between X and Y 
in your data is even more complex.  In other words, neither the 
straight-line model nor a simple polynomial model is going to be 
appropriate.  A lack of fit test after fitting the more simple models 
can certainly help point you in another direction, or you may have 
empirical or theoretical reasons to fit another model.  When 
computer availability was limited, great lengths were taken to try 
to fit nonlinear data using regression models that could be 
converted to a straight line model, typically by transforming the 
data (X, Y, or both).  We still do this when we can because it lets 
us use fairly simple models that are easy to explain biologically.  
However, since computer power is no longer an issue, any 
number of more complex models can be fit.  In addition to using 
the Least Squares fitting criteria, many modern techniques also 
use Maximum Likelihood fitting criteria.  Regardless of the fitting 
criteria, parameter estimates for more complex models cannot be 
solved for algebraically, and instead require iterative approaches 
(essentially trial and error until the residual MS has been 
minimized or the likelihood function has been maximized). 
 
 
Let’s look at an example.  We have data on weight (in grams) as 
a function of total length (in millimeters) for a fish (big surprise!).  
Some of the data is below and our n = 231. 
 
Total length (mm)  Weight (g) 

14 0.03 
15 0.04 
16 0.04 
19 0.04 
19 0.06 
…       …  
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The scatter plot looks like this: 
 
 
 
   
  
 
 
 
 
 
 
 
 
 
 
 

The data are clearly curvilinear, and a 2nd order polynomial 
probably wouldn’t be a bad fit.  However, empirical observations 
and allometric scaling theory tell us that we should fit a power 
function of the form: 
 

1
0

ˆ ββ XY =  
 
We can fit this model in one of two ways.  One way is to log-
transform both the X and Y variables to convert the power 
function to a straight-line relationship: 
 

XY lnlnˆln 10 ββ +=  
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Then we fit a straight-line model to estimate β0 and β1 
 

XY ln19.364.12ˆln +−=  
 
And our power function would then be: 
 

19.3*00000323.0 TLWeight =  
 
where βo = e-12.64 = 0.00000323 and β1 = 3.19 
 
The ANOVA table is: 
Source df SS MS F-ratio P-value 
Regression 1 1019.04 1019.04 28897.66 F(0.05)1,228= 

3.88 

Residual 228 8.04 0.04  P<0.0001 
Total 229 1027.08    
The R2 value = 0.992 
Clearly, a very strong relationship between length and weight! 
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The second way to obtain parameters for this relationship is to fit 
the raw untransformed data to the power function using a stats 
package with a nonlinear fitting algorithm.  Recall that this will 
involve an iterative process to minimize the ResSS or maximize 
the likelihood function (I’ll define this function later).  Usually, the 
default in most stats packages is to minimize ResSS, but you can 
often change the fitting criteria.  Also, when you use an iterative 
fitting process, the model needs to be seeded with starting 
parameter values that are in the ballpark of their actual values.  
The stats package will have default starting values, but the model 
will converge faster if it starts looking in the right place. 
 
Here is some output from STATA, Inc. when fitting the nonlinear 
power function for our weight-length data: 
 
nl (wt = {b0=0.000001}*tl^{b1=3}) 
(obs = 230) 
 
Iteration 0:  residual SS =  5812.907 
Iteration 1:  residual SS =  4745.663 
Iteration 2:  residual SS =   665.886 
Iteration 3:  residual SS =   393.205 
Iteration 4:  residual SS =  392.7327 
Iteration 5:  residual SS =  392.7327 
 
      Source |       SS        df       MS 
-------------+------------------------------          Number of obs =       230 
       Model | 48857.9216     2   24428.9608         R-squared     =    0.9920 
    Residual | 392.732703   228   1.72251185         Adj R-squared =    0.9920 
-------------+------------------------------           Root MSE      =  1.312445 
       Total |  49250.6543   230    214.13328         Res. dev.     =  775.7732 
 
------------------------------------------------------------------------------ 
          wt |      Coef.       Std. Err.        t       P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         /b0 |   5.12e-06    8.87e-07     5.78    0.000     3.38e-06    6.87e-06 
         /b1 |   3.107703   .0341015    91.13   0.000     3.040508    3.174897 
------------------------------------------------------------------------------ 
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Our estimated power function is now: 
 

11.3*00000512.0 TLWeight =  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
It’s clear that both models fit the data very well in this example 
and generate nearly identical results.  This won’t always be the 
case.  When sample sizes are small and variances are high, the 
results from the two fitting approaches can diverge to a 
considerable degree. 
 
Let’s look at another example.  This one involves some 
abundance data for a fish as a function of age.  We wish to 
estimate the mortality rate (decline in n with increasing age).  
The plot of the raw data is below. 
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Based on previous empirical observations and population 
dynamics theory, we expect mortality to be best described by an 
exponential decay function of the form: 
 

XeY 1
0

ˆ ββ=  
 
If we log-transform the abundance data (Y-values), we can 
linearize this function: 
 

XY 10lnˆln ββ +=  
 
When we fit a straight-line model to estimate β0 and β1 we get:  
 

XY 022.091.2ˆln −=  
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And our exponential decay function would then be: 
 

XeAbundance 022.0*41.18 −=  
 
where βo = e2.91 = 18.41 and β1 = -0.022 
 
The ANOVA table is: 
Source df SS MS F-ratio P-value 
Regression 1 3.36 3.36 11.70 F(0.05)1,13= 

4.67 

Residual 13 3.73 0.29  P=0.0045 
Total 14 7.09    
The R2 value = 0.474 
 
Alternatively, if we fit the exponential decay function to the 
untransformed data using a nonlinear iterative approach we get: 
 

XeAbundance 033.0*21.30 −=  
 

The output from STATA, Inc. is below 
 
nl (n = {b0}*exp({b1}*age)) 
(obs = 15) 
 
Iteration 0:  residual SS =     158.4 
Iteration 1:  residual SS =  137.6356 
Iteration 2:  residual SS =  73.27781 
Iteration 3:  residual SS =  58.04145 
Iteration 4:  residual SS =  57.91858 
Iteration 5:  residual SS =  57.91852 
Iteration 6:  residual SS =  57.91852 
Iteration 7:  residual SS =  57.91852 
Iteration 8:  residual SS =  57.91852 
Iteration 9:  residual SS =  57.91852 
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      Source |       SS         df        MS 
-------------+------------------------------           Number of obs =        15 
       Model |  365.081478     2      182.540739          R-squared     =    0.8631 
    Residual |  57.9185216    13       4.4552709          Adj R-squared =    0.8420 
-------------+------------------------------           Root MSE      =  2.110751 
       Total |         423           15        28.2          Res. dev.     =  62.83296 
 
------------------------------------------------------------------------------ 
           n |      Coef.          Std. Err.      t      P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         /b0 |   30.20731   11.46542     2.63   0.021     5.437777    54.97684 
         /b1 |    -.03337   .0081388     -4.10   0.001    -.0509529   -.0157871 
------------------------------------------------------------------------------ 

 
Using the nonlinear iterative approach results in a better model fit 
based on the elevated R2 value, but the differences are mainly 
due to the combination of low sample size and high variance. 
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One last example for a situation when it’s not possible to linearize 
the function we are interested in fitting. 
 
The data are size at age date for striped bass.  We wish to fit a 
theoretical growth curve that let’s us obtain estimates of 
maximum size (in a lifetime) and the rate at which fish approach 
this size (growth coefficient).  The function is called the von 
Bertalanffy growth curve: 
 

}1{* )]([ 0ttKeLengthLength −−
∞ −=  

 
The plot looks like: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We seed the nonlinear model with starting values for each of our 
parameters (Linf, K, and t0) and obtain the STATA, Inc. output: 
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nl (basslength = {b0=100}*(1-exp(-{b1=0.05}*(bassage-{b2=0})))) 
(obs = 18) 
 
Iteration 0:  residual SS =  26492.32 
Iteration 1:  residual SS =   619.911 
Iteration 2:  residual SS =  377.1966 
Iteration 3:  residual SS =  189.1039 
Iteration 4:  residual SS =  188.8788 
Iteration 5:  residual SS =  188.8786 
Iteration 6:  residual SS =  188.8786 
Iteration 7:  residual SS =  188.8786 
 
      Source |       SS            df       MS 
-------------+------------------------------          Number of obs =        18 
       Model |  108607.081     3   36202.3602          R-squared     =    0.9983 
    Residual |  188.878592    15   12.5919061          Adj R-squared =    0.9979 
-------------+------------------------------           Root MSE      =  3.548508 
       Total |  108795.959      18    6044.21996          Res. dev.     =  93.39498 
 
------------------------------------------------------------------------------ 
  basslength |      Coef.   Std. Err.         t      P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
         /b0 |   112.8633   4.098082    27.54   0.000     104.1284    121.5981 
         /b1 |    .141702   .0147401      9.61   0.000     .1102843    .1731198 
         /b2 |    .461623    .210167      2.20    0.044     .0136628    .9095833 
------------------------------------------------------------------------------ 
 
The parameterized model is: 
 

}1{*86.112 )]462.0(142.0[ −−−= teLength  
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Multiple Regression 
 
Many researchers collect data on numerous potential predictors 
for a single response variable and wish to analyze their overall 
and independent effects simultaneously (i.e., in one model).  For 
these models, we will predict one response variable (Y) from k 
independent variables (X1, X2, ….Xk).  The general regression 
model is: 
 

εβββββ +++++= kk XXXXY 3322110  
 
We need to note up front that, similar in some respects to the 
polynomial and nonlinear models we have looked at: 
 

1) It is sometimes difficult to determine the best choice of 
model 

• Often, many reasonable candidate models will emerge 
 

2) It is difficult (many times impossible) to visualize what the 
fitted model looks like 

• Can’t plot the data when k ≥ 3 
 

3) The computations can’t be done by hand (Thank God!) 
• Statistical software packages are required 

 
 
When we had a single independent variable (even in the case of 
the polynomial models), graphical interpretation was mostly 
straight-forward.  However, when k ≥ 2 we are no longer dealing 
with a 2-dimensional line or curve, but rather with a hypersurface 
in k + 1 dimensional space.  If k ≥ 3, we can’t even make a plot 
of the data. 
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    2-D plot (line or curve)       3-D plot (plane or surface) 
 
Assumptions of multiple regression 
 

1. For each specific combination of X1, X2,...,Xk, Y is a random 
variable with a certain probability distribution 

 
2. The Y observations are statistically independent 

 
3. The mean value of Y is a linear function of X1, X2,...,Xk 

 
4. Variances in Y are homogeneous for the range of X values 

 
5. For any fixed X1, X2,...,Xk, Y is normally distributed 

 
 
We’ll start with an example:  We have data on weight, length, 
and age for a group of 12 gray wolves.  We want to build a model 
that will allow us to predict weight from having knowledge of 
length and age.  This will help us to evaluate whether any 
particular wolf might be nutritionally deficient, through a 
comparison of its observed weight relative to expected weight. 

X

Y

Y

X1

X2
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The data are: 
 
Individual  Weight (Y) Length (X1) Age (X2) 
 1   64   57   8 
 2   71   59   10 
 3   53   49   6 
 4   67   62   11 
 5   55   51   8 
 6   58   50   7 
 7   77   55   10 
 8   57   48   9 
 9   56   42   10 
 10   51   42   6 
 11   76   61   12 
 12   68   57   9    
 
There are many possible models.  For instance, 
 

εβββ +++= 22110 XXY  
where X1 = length and X2 = age 

 
εββββ ++++= 3322110 XXXY  

where X3 = X2
2 

 
Or any number of more complex models.  We can evaluate 
models, starting with a simple linear model and progressing to 
more complex models using our familiar partial F-test.  Recall that 
using the ‘least squares’ approach, we will attempt to minimize 
the residual error (ResSS) for each model.  We will discuss other 
model selection approaches shortly. 
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For our example, say we chose to fit the following model: 
 

εββββ ++++= 2
3210 AgeAgeLengthWeight  

 
The least squares parameter estimates are: 
 

β0 = 3.438, β1 = 0.724, β2 = 2.777, β3 = -0.042 
 
and the corresponding model would be: 
 

ε+−++= 2042.0777.2724.0438.3 AgeAgeLengthWeight
 
 

The ANOVA table for the model is: 
Source df SS MS F-ratio P-value 
Regression 3 693.06 231.02 9.47 F(0.05)3,8= 

4.066 

Residual 8 195.19 24.40  P=0.0052 
Total 11 888.25    
The R2 value for this three-variable model = 0.780 
 
 
Although this model is significant overall, we might wish to 
evaluate whether each of the X variables is contributing in a 
meaningful way.  We would start by fitting a single X variable 
model, then sequentially add X variables, conducting our familiar 
partial F-test’s along the way.  This approach would allow us to 
address the following questions: 
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1) Does knowing length significantly aid in predicting weight? 
2) Does the addition of age significantly contribute to the 

prediction of weight after accounting for the contribution of 
length? 

3) Does the addition of age2 significantly contribute to the 
prediction of weight after accounting for the contribution of 
length and age? 

 
Let’s start with question 1: 
 
The ANOVA table for the straight-line model with X1 = length is: 
Source df SS MS F-ratio P-value 
Regression 1 588.92 588.92 19.67 F(0.05)1,10= 

4.96 

Residual 10 299.33 29.93  P=0.0013 
Total 11 888.25    
The R2 value for the straight-line model = 0.663 
 
Thus, the answer to question 1 is yes. 
 
Moving on to question 2: 
 
The ANOVA table for the model with X1 = length and X2 = age is: 
Source df SS MS F-ratio P-value 
Regression 2 692.82 346.41 15.95 F(0.05)2,9= 

4.26 

Residual 9 195.43 21.71  P=0.0011 
Total 11 888.25    
The R2 value for this two-variable model = 0.780 
 
Also a significant overall model, but we need to conduct a partial 
F-test to answer the question. 
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The additional RegSS due to the addition of age to a model that 
already included length = 692.82 - 588.92 = 103.90. 
 
The partial F-test is conducted as: 
 

F  =  (extra SS due to adding X2)/1 
       MS residual for the two-variable model 

 

78.4
71.21
90.103

==F
 

 
F (0.05, 1, 9) = 5.12, however F (0.10, 1, 9) = 3.36.  Our exact 
P-value for this test = 0.056.  Thus, our significance level is 
marginal, but the evidence suggests that the addition of the X2 
term (age) to the model substantially improves the predictive 
ability of the model, relative to the using length alone.  *Note: 
This is the reason that many statisticians don’t like using P-values 
coupled with a fixed rejection threshold* 
 
 
Let us keep age in the model and continue to question 3: 
 
The ANOVA table for the model with X1 = length and X2 = age 
and X3 = age2 is the original table given above, which represents 
a significant overall model, but we need to conduct another 
partial F-test to answer question 3. 
 
The additional RegSS due to the addition of age2 to a model that 
already included length and age = 693.06 – 692.82 = 0.24. 
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The partial F-test is conducted as: 
 

F  =  (extra SS due to adding X3)/1 
       MS residual for the three-variable model 

 

01.0
40.24

24.0
==F

 

 
F (0.05, 1, 8) = 5.32 and our exact P-value for this test = 0.923.  
Thus, the evidence strongly suggests that the addition of the X3 
term (age2) adds nothing substantial to the model. 
 
 
The partitioned ANOVA table for this example would be: 
Source df SS MS F 
Regression (length alone) 1 588.92 588.92 19.67 

Regression (addition of age) 1 103.90 103.90 4.78 

Regression (addition of age2) 1 0.24 0.24 0.01 

Residual 8 195.19 24.40  

Total 11 888.25   
 
The best model is probably the one that includes both length and 
age as predictors of wolf weight, although a model that only used 
length as a predictor would be useful as well. 
 
Another way to interpret the relative predictive capability of 
multiple independent variables is to compute standardized 
regression coefficients.  The unstandardized regression 
coefficients for the full model that we presented above cannot be 
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compared to each other because the raw data are measured in 
different units (weight in kg, length in cm, and age in years).  We 
can standardize the coefficients in two ways.  One way is to 
standardize the data prior to running the model.  For each 
variable, we calculate the mean and standard deviation.  Each 
observation is standardized by subtracting it from the mean and 
dividing by the standard deviation.  Then the regression is run on 
the standardized data to generate standardized coefficients.  
Alternatively, we can standardize the coefficients after running 
the model on the raw data.  We simply calculate the ratio of 
standard deviations between the response variable (Y) and each 
X variable.  Then multiply these ratios by the unstandardized 
regression coefficients to generate the standardized coefficients. 
 
In our example, for the best model, which included just length 
and age (not the age2 term), the standard deviations from the 
raw data were: 
 
Weight (Y) = 8.986 
Length (X1) = 6.824 
Age (X2) = 1.899 
 
X variable   coeff. Stdev ratio standardized coeff. 
Length   0.722    0.759   0.548  
Age    2.050    0.211   0.433_______ 
 
The standardized regression coefficients can be interpreted in a 
relative sense.  Thus, in our data set, length was a somewhat 
stronger predictor of weight compared with age.  If, for instance, 
one coefficient had been 0.50 and the other was only 0.10, you 
could say that one had five times the predictive capability as the 
other. 
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Alternatives to using P-values 
 
All of the approaches that we have described in this course are 
based on the statistical methodology put forth by Fisher and 
contemporaries almost 100 years ago.  The hypothesis testing 
methods involve stating a null hypothesis, determining an 
appropriate test statistic based on a theoretical sampling 
distribution, α-levels that are set arbitrarily, and the calculation of 
our P-value.  We then evaluate statistical significance as yes/no 
decision (even though the probability distribution is continuous). 
 
Many statisticians (and biologists) will argue that null hypothesis 
testing is relatively uninformative.  Essentially, we discard a lot of 
useful information in exchange for our yes/no interpretation of a 
P-value.  Rather, they argue, we should be evaluating multiple 
working hypotheses simultaneously and making inferences based 
on the relative weight of evidence supporting alternative models.  
Our question should be which hypothesis is best supported by 
empirical data?  In other words, what is the evidence for 
hypothesis i?  These questions aren’t new, per se, but some new 
theories and methods have built upon this theme.  These new 
methods have been termed ‘information-theoretic’ approaches 
and they are based largely on Kullback-Leibler Information theory 
published in a seminal paper in 1951.  It involves a lot of 
mathematical theory, but boils down to estimating the amount of 
information lost when using a model to approximate reality. 
 
In 1973, Akaike discovered an efficient way to link information 
theory to statistical theory.  He came up with a single quantity 
that could be used to estimate the expected Kullback-Leibler 
Information.  The quantity is known as Akaike’s Information 
Criterion and is abbreviated AIC.  Calculation of AIC allows one to 
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rank multiple models from best to worst and to make inferences 
based on all of the models (Multimodel Inference). 
 
Information-theoretic approaches provide: 
 

1) Quantification of information loss, Δi. 
• This allows ranking of hypotheses, based on the data. 
• Information loss, Δ, is scaled to the best model. 

2) Estimation of P(Hi|X). The probability of a hypothesis Hi, 
given the data X. 

3) Evidence ratios of model probabilities. 
4) A framework where rigorous statistical inference can be 

based on all of the models in the set (multimodel inference). 
 
Recall that for null hypothesis testing we calculate the probability 
of the observed data given the null, P(X|H0).  Information-
theoretic approaches calculate the probability of a specified 
hypothesis (model) given the observed data, P(Hi|X).  The 
information-theoretic approach, by its nature, places much more 
emphasis on hard thinking (we’ve heard of this before, right?) to 
identify and justify a priori a set of candidate models to evaluate. 
 
How the information-theoretic approach works 
Akaike discovered a formal relationship between Kullback-Leibler 
Information and the statistical Maximum Likelihood function.  The 
Akaike Information Criterion (AIC) = -2 loge(ML) + 2K, where ML 
= the maximum likelihood function and K = the number of 
parameters estimated in the model.  In practice, we generally use 
another term for bias correction: 
 

AICc = -2 loge (ML) + 2K + [2K*(K+1)]/n-K-1 
where n = sample size.  This corrects for bias when n is small 
relative to K. 
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For models fit using the ‘Least Squares’ approach, the loge (ML) = 
 

)log(
2

)(log 2σnMLe −=
 

 
where σ2 = ResSS/n.  Thus,  
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***Keep in mind that there are lots of likelihood functions; the 
once above is specific to least squares regression models. 
 
 
Once, the AICc scores have been computed, we calculate simple 
differences (Δi’s) as AICci - AICcmin 

 

These values represent the expected Kullback-Leibler Information 
between the best model in your set and all other models.  They 
are additive and make ranking the models easy. 
 
Then, the likelihood of any particular model i, given the data can 
be expressed as: 

 
L(model i|X) = e(-½Δi) 

 
We can also measure the strength of evidence for any particular 
model by comparing its likelihood as a ratio of the sum of all 
likelihoods: 
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These are referred to as Akaike weights. 
 
 
If we return to our example, we had three models: 
 
Model    ResSS  K  n 
Length only   299.33  2  12 
Length + Age   195.43  3  12 
Length + Age + Age2 195.19  4  12 
 
 
Using the information-theoretic approach, we can calculate: 
 
Model    AICc  ΔAICc L  wi 
Length only   39.93 3.45  0.178 0.124 
Length + Age   36.48 0  1  0.696 
Length + Age + Age2 39.18 2.70  0.259 0.180  
 
Thus, the model that included length and age has the greatest 
weight of evidence and is the most supported among the set of 
models we tested.  Again, the set of models being considered is 
up to you, so it’s best to do some hard thinking about your 
models rather than dropping all possible models into the ‘meat 
grinder’ and hoping that the computer will do the thinking for 
you. 
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Another example: 
Below is some data for deer populations, specifically adult 
population size, a juvenile abundance index, annual precipitation, 
and winter severity.  We might want to build a model to predict 
adult population size based on the other factors we have 
measured. 
 
adult pop size juvenile index precipitation winter severity 

9.20 2.90 13.20 2 
8.70 2.40 11.50 3 
7.20 2.00 10.80 4 
8.50 2.30 12.30 2 
9.60 3.20 12.60 3 
6.80 1.90 10.60 5 
9.70 3.40 14.10 1 
7.90 2.10 11.20 3 

 
First, we take a quick look at how each of our predictor variables 
relates to adult population size: 
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Not knowing which variables will contribute most to explaining 
variability in adult population size, we choose to fit several models 
and compare them. 
 
Here is the output that we’ll need to calculate AIC scores: 
 

Model RSS K AIC delta AIC 

Juv index 0.961143 2 -10.5526 0 

Precip 1.501297 2 -6.98489 3.567695 

Winter 2.433563 2 -3.12068 7.43191 

Juv + Precip 0.892516 3 -5.54522 5.007374 

Juv + winter 0.597548 3 -8.7549 1.797689 

Precip + winter 1.477971 3 -1.51017 9.042416 

Juv + Precip + Winter 0.379909 4 -3.04479 7.5078 

 
 
We see that the model which includes only the juvenile index has 
the lowest AIC score (least amount of information loss), and thus 
a delta AIC = 0.  The model which includes both the juvenile 
index and winter severity also shows limited information loss 
(ΔAIC < 2).  Here are the model likelihoods and Akaike weights: 
 
Model Likelihoods Akaike weight 
Juv index 1.000 0.583 
Precip 0.168 0.098 
Winter 0.024 0.014 
Juv + Precip 0.082 0.048 
Juv + winter 0.407 0.237 
Precip + winter 0.011 0.006 
Juv + Precip + Winter 0.023 0.014 
sum 1.715 

  



 240 

We see that the model including only juvenile index receives the 
most support and that the model which includes the juvenile 
index and winter severity is also moderately supported. 
 
Keep in mind that these relative weights of evidence are confined 
to the set of models that we tested (i.e., if we added other 
models, these weights would change). 
 
If no single model received overwhelming support, or if we end 
up with multiple models that receive good support, there are 
approaches to make inferences based on a set of multiple 
models.  This is known as multimodel inference and the most 
common technique is model averaging, which is simply a 
weighted average of predictions or model parameters across all 
the models in our set.  The Akaiki weights (i.e., the individual 
model probabilities) are generally used for weighting. 
 
 
Model validation 
 
After we have selected a model, we would be well served to know 
something about its performance (i.e., its predictive capabilities).  
To get at this, we need an independent data set (not the one we 
used to construct our model).  If one isn’t available, modelers will 
often partition the data set they do have into training and 
validation pieces in order to quantify model performance. 
 
A common approach is to use what is known as cross validation.  
One type is referred to as K-fold cross validation.  This is the 
when the original data set is partitioned into k equal-sized 
subsamples.  One of the subsamples is retained as the validation 
data set and models are trained using the other subsamples.  
This is repeated using each subsample as the validation data set 
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once.  The model performances are usually averaged for each 
validation data set. 
 
Two-fold cross validation is when our data can be neatly 
partitioned into 2 subsamples (k = 2).  One subsample is used for 
training and one is used for validation, and vice versa.  This 
works well for situations when an investigator has data from two 
years or two locations. 
 
Leave-one-out cross validation is akin to a jackknife resampling 
approach.  Each observation is left out of the model one at a 
time, and the model is fit using the remaining observations.  Each 
single observation then serves as the validation data.  This is the 
same as K-fold validation with K = n.  This allows an investigator 
to quantify the performance of a model at predicting the response 
for each single observation.  The performance is generally 
averaged across all of the observations. 
 
 
 




