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Preamble

The purpose of this License is to make a manual, textbookttmrdunctional and useful document “free” in the sense eédiom: to assure everyone the effective freedom to copy edidtribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this Liserpreserves for the author and publisher a way to get creditéir work, while not being considered responsible fodifications made by others.

This License is a kind of “copyleft”, which means that detive works of the document must themselves be free in the samge. It complements the GNU General Public License, whialtopyleft license designed for free software.

We have designed this License in order to use it for manualfsde software, because free software needs free docuticenta free program should come with manuals providing tireesfreedoms that the software does. But this License is not
limited to software manuals; it can be used for any textuakwegardless of subject matter or whether it is publisteed printed book. We recommend this License principally forks whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medihat contains a notice placed by the copyright holdemggigican be distributed under the terms of this License. $unbtice grants a world-wide, royalty-free license, unfedi
in duration, to use that work under the conditions statedihefThe ‘Document’, below, refers to any such manual or work. Any member of thieliz is a licensee, and is addressed y®". You accept the license if you copy, modify or distribute th
work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document artgn of it, either copied verbatim, or with modificationsddor translated into another language.

A “Secondary Sectiohis a named appendix or a front-matter section of the Docurtieat deals exclusively with the relationship of the puifdiss or authors of the Document to the Document'’s overajestifor to related matters) and contains
nothing that could fall directly within that overall subje¢Thus, if the Document is in part a textbook of mathematicSecondary Section may not explain any mathematics.) &latanship could be a matter of historical connection \lih subject or
with related matters, or of legal, commercial, philosophiethical or political position regarding them.

The “Invariant Sections’ are certain Secondary Sections whose titles are designasebeing those of Invariant Sections, in the notice that tizat the Document is released under this License. If dosedbes not fit the above definition of
Secondary then it is not allowed to be designated as InvarT&re Document may contain zero Invariant Sections. If tbeubnent does not identify any Invariant Sections then taezeone.

The “Cover Texts' are certain short passages of text that are listed, as fower Texts or Back-Cover Texts, in the notice that saysttit@Document is released under this License. A Front-Ctaermay be at most 5 words, and a Back-Cover
Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, reptextin a format whose specification is available to the gémeiblic, that is suitable for revising the document gtiaorwardly with generic text editors or (for
images composed of pixels) generic paint programs or (fawihgs) some widely available drawing editor, and that isable for input to text formatters or for automatic tranisla to a variety of formats suitable for input to text forreas. A copy
made in an otherwise Transparent file format whose markughsence of markup, has been arranged to thwart or discoswgequent modification by readers is not Transparent. Agérformat is not Transparent if used for any substantialamno
of text. A copy that is not “Transparent” is calle@paque’.

Examples of suitable formats for Transparent copies irepldin ASCII without markup, Texinfo input format, LaTeXpint format, SGML or XML using a publicly available DTD, andastiard-conforming simple HTML, PostScript or PDF
designed for human modification. Examples of transpareagérformats include PNG, XCF and JPG. Opaque formats ingrmf®ietary formats that can be read and edited only by petgyy word processors, SGML or XML for which the DTD
and/or processing tools are not generally available, amdnifchine-generated HTML, PostScript or PDF produced byeseard processors for output purposes only.

The “Title Page’ means, for a printed book, the title page itself, plus swalfofving pages as are needed to hold, legibly, the matdrislLiicense requires to appear in the title page. For worksrimats which do not have any title page as such,
“Title Page” means the text near the most prominent appearafithe work's title, preceding the beginning of the bodyhef text.

A section ‘Entitled XYZ " means a named subunit of the Document whose title eithereisigely XYZ or contains XYZ in parentheses following telit translates XYZ in another language. (Here XYZ standsafepecific section name
mentioned below, such a&tknowledgements, “ Dedications', “ Endorsements, or “History”.) To “Preserve the Titl¢' of such a section when you modify the Document means thahitins a section “Entitled XYZ" according to this definition

The Document may include Warranty Disclaimers next to thécaavhich states that this License applies to the DocuniBmése Warranty Disclaimers are considered to be includegfeyence in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Riseers may have is void and has no effect on the meaning stibénse.

2. VERBATIM COPYING

‘You may copy and distribute the Document in any medium, eitbenmercially or noncommercially, provided that this Lise, the copyright notices, and the license notice sayisd tbense applies to the Document are reproduced in allesopi
and that you add no other conditions whatsoever to thoséoEitense. You may not use technical measures to obstriectrarol the reading or further copying of the copies you makistribute. However, you may accept compensation in@xge
for copies. If you distribute a large enough number of cogimsmust also follow the conditions in section 3.

You may also lend copies, under the same conditions stateaaand you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that comimdrave printed covers) of the Document, numbering more @) and the Document's license notice requires Cover Tgatsmust enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts onftbet cover, and Back-Cover Texts on the back cover. Botfecomust also clearly and legibly identify you as the pulgisf these copies. The front cover must present the full wiith all
words of the title equally prominent and visible. You may adlder material on the covers in addition. Copying with chemiymited to the covers, as long as they preserve the titleeobocument and satisfy these conditions, can be treateetatim
copying in other respects.

If the required texts for either cover are too voluminoustéfjibly, you should put the first ones listed (as many as éisoaably) on the actual cover, and continue the rest onémexdj pages.

If you publish or distribute Opaque copies of the Documemhbering more than 100, you must either include a machingatgia Transparent copy along with each Opaque copy, oristatevith each Opaque copy a computer-network location
from which the general network-using public has access wnttzad using public-standard network protocols a complesmsparent copy of the Document, free of added materigloufuse the latter option, you must take reasonably prudepss
when you begin distribution of Opaque copies in quantityerisure that this Transparent copy will remain thus acclesattthe stated location until at least one year after thetila you distribute an Opaque copy (directly or throughryagents or
retailers) of that edition to the public.

Itis requested, but not required, that you contact the asthithe Document well before redistributing any large nemif copies, to give them a chance to provide you with an \getha¢rsion of the Document.

4. MODIFICATIONS



You may copy and distribute a Modified Version of the Documander the conditions of sections 2 and 3 above, providedythatelease the Modified Version under precisely this Lieenith the Modified Version filling the role of the
Document, thus licensing distribution and modificationte Modified Version to whoever possesses a copy of it. In addiyou must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a titleidéstfrom that of the Document, and from those of previousieers (which should, if there were any, be listed in the Hiss®ction of the Document). You may use the same title as
a previous version if the original publisher of that versgives permission.

B. Liston the Title Page, as authors, one or more personstitiesmesponsible for authorship of the modifications ie todified Version, together with at least five of the printipathors of the Document (all of its principal authors, ifiéts
fewer than five), unless they release you from this requireme

C. State on the Title page the name of the publisher of the fiéntiVersion, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modificai@uljacent to the other copyright notices.

F. Include, immediately after the copyright notices, arlie notice giving the public permission to use the ModifiedsM under the terms of this License, in the form shown inAtidendum below.
G. Preserve in that license notice the full lists of Invari@actions and required Cover Texts given in the Documeiggnée notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve itdeTiand add to it an item stating at least the title, year, aathors, and publisher of the Modified Version as given onTitle Page. If there is no section Entitled “History” in the
Document, create one stating the title, year, authors, abtigher of the Document as given on its Title Page, then adtean describing the Modified Version as stated in the previgentence.

J. Preserve the network location, if any, given in the Doaunfier public access to a Transparent copy of the Documenit|ikewise the network locations given in the Document favious versions it was based on. These may be placed in
the “History” section. You may omit a network location for @sk that was published at least four years before the Doctitssdf, or if the original publisher of the version it refeto gives permission.

K. For any section Entitled “Acknowledgements” or “Dedicais”, Preserve the Title of the section, and preserve irséiction all the substance and tone of each of the contribotorowledgements and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,tenad in their text and in their titles. Section numbers erghjuivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a eaatiay not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endarents” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sectionsappendices that qualify as Secondary Sections and combaimaterial copied from the Document, you may at your optiesighate some or all of these sections as invariant. To do
this, add their titles to the list of Invariant Sections il fodified Version’s license notice. These titles must b&mtisfrom any other section titles.

You may add a section Entitled “Endorsements”, provideaittains nothing but endorsements of your Modified Versiorvédayous parties—for example, statements of peer reviewatrthe text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Tex passage of up to 25 words as a Back-Cover Text, to the ehe ti§t of Cover Texts in the Modified Version. Only one pagsaf Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) angrttity If the Document already includes a cover text forgame cover, previously added by you or by arrangement matteetsame entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit perioisgom the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not bytticisnse give permission to use their names for publicityoioto assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

‘You may combine the Document with other documents releasddrtthis License, under the terms defined in section 4 almveddified versions, provided that you include in the coratibn all of the Invariant Sections of all of the original
documents, unmodified, and list them all as Invariant Sestaf your combined work in its license notice, and that yasprve all their Warranty Disclaimers.

The combined work need only contain one copy of this Liceasd, multiple identical Invariant Sections may be replacét wsingle copy. If there are multiple Invariant Sectiorigwmthe same name but different contents, make the titleci ea
such section unique by adding at the end of it, in parenthésesiame of the original author or publisher of that secfitnown, or else a unique number. Make the same adjustmehetsection titles in the list of Invariant Sections in theelise notice
of the combined work.

In the combination, you must combine any sections Entitiidtory” in the various original documents, forming onetgme Entitled “History”; likewise combine any sections fifed “Acknowledgements”, and any sections Entitled “Deedions”.
You must delete all sections Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

‘You may make a collection consisting of the Document andratbeuments released under this License, and replace tivédual copies of this License in the various documents witlingle copy that is included in the collection, provideakth
you follow the rules of this License for verbatim copying afbh of the documents in all other respects.

You may extract a single document from such a collection,disttibute it individually under this License, providedwimsert a copy of this License into the extracted document,fallow this License in all other respects regarding vérba
copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with otheparate and independent documents or works, in or on a vafimstorage or distribution medium, is called an “aggregitée copyright resulting from the compilation is not used
to limit the legal rights of the compilation’s users beyonidatthe individual works permit. When the Document is ineldiéh an aggregate, this License does not apply to the othessimthe aggregate which are not themselves derivativésvofrthe
Document.

If the Cover Text requirement of section 3 is applicable &sthcopies of the Document, then if the Document is less thamalf of the entire aggregate, the Document’s Cover Tegtsime placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if theubuent is in electronic form. Otherwise they must appear amtga covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you miagribute translations of the Document under the terms ctfiee 4. Replacing Invariant Sections with translatiorgaiiees special permission from their copyright holders ytmu may
include translations of some or all Invariant Sections idiidn to the original versions of these Invariant Sectiovisu may include a translation of this License, and all teeriise notices in the Document, and any Warranty Disclairpeosided that
you also include the original English version of this Licerad the original versions of those notices and disclainhersase of a disagreement between the translation anditfiealiversion of this License or a notice or disclaimer, ¢higinal version
will prevail.

If a section in the Document is Entitled “Acknowledgement8&edications”, or “History”, the requirement (sectionté)Preserve its Title (section 1) will typically require ctuang the actual title.

9. TERMINATION

‘You may not copy, modify, sublicense, or distribute the Dent except as expressly provided for under this Licensg.otiner attempt to copy, modify, sublicense or distributeEfocument is void, and will automatically terminate yoghtis
under this License. However, parties who have receivedesopt rights, from you under this License will not have tliegnses terminated so long as such parties remain in foiptiance.

10. FUTURE REVISIONS OF THIS LICENSE




The Free Software Foundation may publish new, revisedaessf the GNU Free Documentation License from time to timechShew versions will be similar in spirit to the present i@ns but may differ in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing versiomber. If the Document specifies that a particular nuntbeeesion of this License “or any later version” applies toydu have the option of following the terms and conditionbei

of that specified version or of any later version that has fpedrlished (not as a draft) by the Free Software FoundatithelDocument does not specify a version number of this lSeegou may choose any version ever published (not as a byaft)

the Free Software Foundation.

Que a quien robe este libro, o lo tome prestado y no lo devuebkm le convierta en una serpiente en las
manos y lo venza. Que sea golpeado por la paralisis y todosrsignbros arruinados. Que languidezca
de dolor gritando por piedad, y que no haya coto a su agoniathda Ultima disolucién. Que las polillas
roan sus entrafias y, cuando llegue al final de su castigo, qudaaen las llamas del Infierno para siempre.
-Maldicién anénima contra los ladrones de libros en el manastle San Pedro, Barcelona.
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Preface

These notes started in the summer of 1993 when | was teachinghdr Theory at the Center for Talented Youth Summer
Program at the Johns Hopkins University. The pupils weresden 13 and 16 years of age.

The purpose of the course was to familiarise the pupils wathtest-type problem solving. Thus the majority of the prob-
lems are taken from well-known competitions:

AHSME American High School Mathematics Examination
AIME American Invitational Mathematics Examination
USAMO United States Mathematical Olympiad

IMO International Mathematical Olympiad

ITT International Tournament of Towns

MMPC Michigan Mathematics Prize Competition

(UM)? University of Michigan Mathematics Competition
STANFORD Stanford Mathematics Competition

MANDELBROT Mandelbrot Competition

Firstly, I would like to thank the pioneers in that coursems@l Chong, Nikhil Garg, Matthew Harris, Ryan Hoegg, Masha
Sapper, Andrew Trister, Nathaniel Wise and Andrew Wong. Uild@lso like to thank the victims of the summer 1994: Karen
Acquista, Howard Bernstein, Geoffrey Cook, Hobart Lee hdatLutchansky, David Ripley, Eduardo Rozo, and Victor Yang

I would like to thank Eric Friedman for helping me with the typ, and Carlos Murillo for proofreading the notes.

Due to time constraints, these notes are rather sketchyt dfdhe motivation was done in the classroom, in the notes
| presented a rather terse account of the solutions. | hope stay to be able to give more coherence to these notes. No
theme requires the knowledge of Calculus here, but someecfdhutions given use it here and there. The reader not kigowin
Calculus can skip these problems. Since the material isege¢arHigh School students (talented ones, though) | assenye v
little mathematical knowledge beyond Algebra and Trigoetmn Here and there some of the problems might use certain
properties of the complex numbers.

A note on the topic selection. | tried to cover most Numberdrigeghat is useful in contests. | also wrote notes (which |
have not transcribed) dealing with primitive roots, quaidnaeciprocity, diophantine equations, and the geometryumbers.
| shall finish writing them when laziness leaves my weary soul

| would be very glad to hear any comments, and please forwardmyg corrections or remarks on the material herein.

David A. SANTOS
dsantos@ccp.edu
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Chapter

Preliminaries

1.1 Introduction

We can say that no history of mankind would ever be complethoui a history of Mathematics. For ages numbers have
fascinated Man, who has been drawn to them either for thaityuat solving practical problems (like those of measgyin
counting sheep, etc.) or as a fountain of solace.

Number Theory is one of the oldest and most beautiful brasmoh#&athematics. It abounds in problems that yet simple to
state, are very hard to solve. Some number-theoretic pradileat are yet unsolved are:

1. (Goldbach’s Conjecture) Is every even integer greater ththe sum of distinct primes?
2. (Twin Prime Problem) Are there infinitely many primgsuch thatp+ 2 is also a prime?
3. Are there infinitely many primes that are 1 more than thesgjof an integer?

4. Is there always a prime between two consecutive squatategers?

In this chapter we cover some preliminary tools we need leafarbarking into the core of Number Theory.

1.2 Well-Ordering

The setN = {0,1,2,3,4,...} of natural numbers is endowed with two operations, addiied multiplication, that satisfy the
following properties for natural numbeasb, andc:

1. Closure: a+ b andabare also natural numbers.

2. Associative laws:(a+ b) +c=a+ (b+c) anda(bc) = (ab)c.
3. Distributive law: a(b+c) =ab+ac.

4. Additive Identity: 0+a=a+0=a

5. Multiplicative Identity: la=al=a.

One further property of the natural numbers is the following
1 Axiom (Well-Ordering Axiom)  Every non-empty subse¥’ of the natural numbers has a least element.
As an example of the use of the Well-Ordering Axiom, let us/prthat there is no integer between 0 and 1.

2 Example Prove that there is no integer in the interi@lL][.
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Solution: Assume to the contrary that the sétof integers in]0;1[ is non-empty. Being a set of positive integers, it must
contain a least element, say Now, 0< n? < m< 1, and son? € .#. But this is saying that” has a positive integem’
which is smaller than its least positive integerThis is a contradiction and s@ = .

We denote the set of all integers Byi.e.,

Z=1{.—-3-2-10123,..}.

. : . La .
A rational number is a number which can be expressed as tioeyaif two integersa, b, whereb # 0. We denote the set of

rational numbers b{). An irrational number is a number which cannot be expressed as the ratio of twodrgeget us give
an example of an irrational number.

3 Example Prove that/2 is irrational.

Solution: The proof is by contradiction. Suppose th@ were rational, i.e., thay2 = % for some integers, b. This implies

that the set
</ = {nv'2: bothn andnv/2 positive integers

is nonempty since it contaires By Well-Ordering<7 has a smallest element, spy- kv/2. As v2—1 > 0,
j(V2-1) = jvV2—kv2=(j—kV2
is a positive integer. Since2 2v/2 implies 2— V2 < v/2 and alsojv/2 = 2k, we see that
(i—kV2=k(2—Vv2) <k(v2)=].
Thus(j — k)2 is a positive integer in7 which is smaller tharj. This contradicts the choice fas the smallest integer i’

and hence, finishes the proof.

4 Example Leta,b,c be integers such thaf +2b® = 4c®. Show tham=b=c=0.

Solution: Clearly we can restrict ourselves to nonnegativabers. Choose a triplet of nonnegative integebsc satisfying
this equation and with
maxa,b,c) >0

as small as possible. # 4 2b° = 4c® thena must be evena = 2a;. This leads to 38 4 b® = 2c®. Henceb = 2b; and so
168§ + 3208 = c®. This givesc = 2c;, and sca§ + 2b$ = 4cS. But clearly maxay, by, c1) < max(a,b,c). This means that all of
these must be zero.

2, 12 2, 12
L ac+b°. . as+b°.
5 Example (IMO 1988) If a,b are positive integers such th?t—:ab is an integer, then—l :ab is a perfect square.

_ a?+b% . _ .
Solution: Suppose thaﬁ =k is a counterexample of an integer which is not a perfect sguwéth maxa,b) as small as

possible. We may assume without loss of generalitydhatb for if a= b then

2a2

O<k= oo
< a2+1<

2,
which forcesk = 1, a perfect square.
Now, a® + b? — k(ab+ 1) = 0 is a quadratic ifb with sum of the root&ka and product of the roota® — k. Let by, b be its
roots, sdb; + b = kaandb;b=a%—k.
As a k are positive integers, supposibg < 0 is incompatible witha® + b? = k(ab; + 1). As k is not a perfect square,
supposind; = 0 is incompatible witha? + 0> = k(0-a+ 1). Also
a®—k b’—k

b, = b < b <h.
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a2+ b2

l+ab

is a contradiction. It must be the case, then, thiata perfect square.

Thus we have found another positive integefor which =k and which is smaller than the smallest rfe¥). This

Practice

Problem 1.2.1 Find all integer solutions of &+ 2b® = 4c®. | Problem 1.2.2 Prove that the equality’+Yy? 4 Z° = 2xyz can
hold for whole numbers,y, z only when x>y =2z=0.

1.3 Mathematical Induction

The Principle of Mathematical Induction is based on theofwihg fairly intuitive observation. Suppose that we are ¢ofprm
a task that involves a certain number of steps. Supposeftesg tsteps must be followed in strict numerical order. Kinal
suppose that we know how to perform tih task provided we have accomplished the 1-th task. Thus if we are ever able
to start the job (that is, if we have a base case), then we dlb@uble to finish it (because starting with the base case we go
the next case, and then to the case following that, etc.).

Thus in the Principle of Mathematical Induction, we try taifyethat some assertioR(n) concerning natural numbers is
true for some base cakg (usuallyky = 1, but one of the examples below shows that we may takeksay33.) Then we try
to settle whether information da(n— 1) leads to favourable information d#(n).

We will now derive the Principle of Mathematical Inductiawif the Well-Ordering Axiom.

6 Theorem (Principle of Mathematical Induction) If a set of non-negative integers contains the integer 0, and alse co
tains the integen+ 1 whenever it contains the integerthen.” = N.

Proof: Assume this is not the case and so, by the Well-Ordering Pfathere exists a least positive integer k
notin.#. Observe that k- 0, since0 € S and there is no positive integer smaller ttarAs k— 1 < k, we see that
k—1¢ .. But by assumptionk 1+ 1 is also in.#, since the successor of each element in the set is also in the
set. Hence k= k— 1+ 1is also in the set, a contradiction. Thig = N. [

The following versions of the Principle of Mathematical tration should now be obvious.

7 Corollary If a set/ of positive integers contains the integeand also contains+ 1 whenever it containg, wheren > m,
then« contains all the positive integers greater than or equail to

8 Corollary (Principle of Strong Mathematical Induction) If a set.” of positive integers contains the integerand also
containsn+ 1 whenever it containg+ 1, m+2,...,n, wheren > m, thens contains all the positive integers greater than or
equal tom.

We shall now give some examples of the use of induction.

9 Example Prove that the expression
3+3_26n—27

is a multiple of 169 for all natural numbens
Solution: Fom = 1 we are asserting thaf 3- 53= 676 = 169. 4 is divisible by 169, which is evident. Assume the asserigon

true forn—1,n> 1 i.e., assume that
3N _26n—1=16N

for some integeN. Then

33 _26n—27=27-3%"—26n—27=27(3*"—26n—1) +676n
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which reduces to
27-169N+169- 4n,

which is divisible by 169. The assertion is thus establidnethduction.
10 Example Prove that
(1+V2)2 4 (1—v2)

is an even integer and that

(1+v2)2—(1-v2)* =bv2

for some positive integer b, for all integers> 1.

Solution: We proceed by induction en Let P(n) be the proposition: (14 v/2)2"+ (1—v/2)?" is even and 1+ v/2)2"— (1—
V/2)?" = by/2 for someb € N.” If n= 1, then we see that

(1+V2)%+(1—V2)%? =6,

an even integer, and

(1+v2)?—(1—V2)2=4V2.

ThereforeP(1) is true. Assume thd@(n—1) is true forn > 1, i.e., assume that
(14221 4 (1—v2)2"=1 = 2N

for some integeN and that

(14 V220Y (1220~ ay3

for some positive integea.
Consider now the quantity

(L+V22"+ (1-v2)*" = (1+V2)2(1+V2)*" 24 (1-V2)*(1- V2)"" 2
This simplifies to
(3+2V2)(1+V2)2 24 (3—2V2)(1—V2)*"2,

UsingP(n— 1), the above simplifies to
12N+ 2v/2av/2 = 2(6N + 2a),

an even integer and similarly
(1+v2)%"— (1—v2)?" = 3av/2+ 2V/2(2N) = (3a+4N)V/2,

and soP(n) is true. The assertion is thus established by induction.

11 Example Prove that ifk is odd, then 2*2 divides
n

K —1

for all natural numbers.

Solution: The statement is evident for= 1, ask? — 1 = (k— 1)(k+ 1) is divisible by 8 for any odd natural numblebecause
both (k— 1) and(k+ 1) are divisible by 2 and one of them is divisible by 4. Assume ﬂ'?éz|k2" —1, and let us prove that
232 1 As k™ -1 = (K" — 1)(K¥" + 1), we see that®'? divides (k2" — 1), so the problem reduces to proving that
2|(k®"+1). This is obviously true sinck®" odd make&®"+ 1 even.
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12 Example (USAMO 1978) An integermn will be calledgoodif we can write
n=a+ay+---+a,

whereas, ay, . .., 8 are positive integers (not necessarily distinct) satifyi

1 1 1
—F =4 +—=—=1
ap & ax

Given the information that the integers 33 through 73 aredgpoove that every integer 33 is good.

Solution: We first prove that ifi is good, then 84 8 and 21+ 9 are good. For assume theta; + a2+ - - - + ax, and

Then h+8=2a; +2a,+---+2a+4+4and

1+1+ 1 1 1
2a; 2a 20 4 4

Also, 2n+9=2a; +2a,+---+ 2ax+ 3+ 6 and

1.1, .1 1.1 111
2a9 2ap 20 3 6 2 3 6

Therefore,
if nis good both &+ 8 and 21+ 9 are good (1.2)

We now establish the truth of the assertion of the problemrmbudtion onn. Let P(n) be the proposition “all the integers
n,n+1n+2,...,2n+ 7" are good. By the statement of the problem, we seeR38) is true. But (L.1) implies the truth of
P(n+ 1) whenevelP(n) is true. The assertion is thus proved by induction.

We now present a variant of the Principle of Mathematicalubtibn used by Cauchy to prove the Arithmetic-Mean-
Geometric Mean Inequality. It consists in proving a statettfiiest for powers of 2 and then interpolating between poveérs
2.

13 Theorem (Arithmetic-Mean-Geometric-Mean Inequality) Letag,ay,...,a, be nonnegative real numbers. Then

aptax+---+an
—

vaja--an <

Proof: Since the square of any real number is nonnegative, we have

(VXL /%2)? > 0.
Upon expanding, ‘« tx
! > 2> /XX, (1.2)

which is the Arithmetic-Mean-Geometric-Mean Inequalityf = 2. Assume that the Arithmetic-Mean-Geometric-
Mean Inequality holds true for & 21 k > 2, that is, assume that nonnegative real numbeyrsmy, . .., Wok—1

satisfy
Wy +Wo + - -+ Wok—1
2k—1

> (WiWa - Woe 1) Y2 (1.3)

Using (L.2) with
ity t A Yo
- 2k—1

X1

and

- ka—1+l + - +ka
X2 = 2k71 ;
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we obtain that

VYi+Yo+-+Yok-1 | Yok-1yq+ Yok
2k—1 + 2k—1
>
> 2

<(y1+YZ+"'+ka1)(Y2k1+1+"'+y2k)>l/2
2k—1 2k—l :

Applying (L.3) to both factors on the right hand side of the above , we obtain

Y1+Y2+k"'+ka > (

k
Z yiyz- Yo ) Y2 (1.4)

This means that the“~1-th step implies th@-th step, and so we have proved the Arithmetic-Mean-Gedrmetr
Mean Inequality for powers of 2.

Now, assume tha@1 < n < 2% Let
yl = a-lay2 = a-21"'7yn = an7

and at+ag+---+an
14yt
Yn+1ZYn+2:"':y2k:—n )
Let a+---+
A= & AndG = (ay---an) ",

Using (1.4) we obtain

a1+a2+...+an+(2k7n)17an
2K >
ar+ -+ an, (ok_n)\ Y
(alaz-.-an(lf)(Z n)) |
which is to say that
”A“E#A > (GNAZ V2,
This translates into & G or
(alaz...an)l/n< w

n
which is what we wanted.

14 Example Letsbe a positive integer. Prove that every interigs| contains a power of.2

Solution: Ifsis a power of 2, then there is nothing to proves I not a power of 2 then it must lie between two consecutive
powers of 2, i.e., there is an integefor which 2 < s < 21, This yields 271 < 2s. Hences < 2" < 2s, which gives the
required result.

15 Example Let.# be a nonempty set of positive integers such theadd[/X] both belong ta# wheneveix does. Prove
that.# is the set of all natural numbers.

Solution: We will prove this by induction. First we will prevthat 1 belongs to the set, secondly we will prove that evewep
of 2 is in the set and finally we will prove that non-powers ofr@ also in the set.

Since.# is a nonempty set of positive integers, it has a least elersapa. By assumptior|v/a|| also belongs to#, but
va< aunlessa= 1. This means that 1 belongs t#'.

Since 1 belongs to# so does 4, since 4 belongs.# so does 44 = 42, etc.. In this way we obtain that all numbers of
the form 4 = 22" n=1,2,... belong to.#. Thus all the powers of 2 raised to an even power belong/toSince the square
roots belong as well to#Z we get that all the powers of 2 raised to an odd power also getor7 . In conclusion, all powers
of 2 belong taZ.
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Assume now thah € N fails to belong to.#. Observe thah cannot be a power of 2. Since¢ M we deduce that
no integer inA; = [n?,(n+1)?) belongs to.#, because every member pk A; satisfies[,/y] = n. Similarly no member
ze Ay = [n* (n+1)% belongs ta since this would entail thatwould belong toA;, a contradiction. By induction we can
show that no member in the interl = [n?, (n+1)?) belongs ta.

We will now show that eventually these intervals are so léngéthey contain a power of 2, thereby obtaining a conttamtic
to the hypothesis that no element of thebelonged to#. The function

*
Ry
X

f:

—

— R

log, x

is increasing and hence Igigm+ 1) —log, n > 0. Since the function

f:

is decreasing, for a sufficiently large positive integ@re have

R — R}
X = 2%

27X < log,(n+1) —log,n.

This implies that

(n+1)% > 2n%.

Thus the interva[nzk,ank] is totally contained ir{nzk, (n+ 1)2k). But every interval of the fornis, 2s] wheres is a positive
integer contains a power of 2. We have thus obtained theatbsontradiction.

Practice

Problem 1.3.1 Prove that11"*2 4+ 1221 js divisible by133
for all natural numbers n.

Problem 1.3.2 Prove that
X  Xx—1) Xx(x—1)(x—2)
Lt - 3l
aX(X—1)(x—2)--- (x—n+1)
n!

+oot (-1

equals
n(x—=1)(x—2)---(x—n)

(—1) o

for all non-negative integers n.

Problem 1.3.3 Let ne N. Prove the inequality

1 1 1

n+1+n+2+"'+3n+1>1'

Problem 1.3.4 Prove that

L\/2+\/2+---+\/5:2co.‘32n—711

>l

~
n radical signs

forneN.

Problem 1.3.5 Let & = 3,b; =4, and g, = 3%-1,b, = 451
when n> 1. Prove that aggp > bgge.

Problem 1.3.6 Let ne N,n > 1. Prove that

1.35.(n-1) 1
2.4.6---(2n) 3ntl

Problem 1.3.7 Prove that if n is a natural number, then

1-2+2-5+4---+n-(3n—1)=n?(n+1).

Problem 1.3.8 Prove that if n is a natural number, then

,  Nn(4n?—1)

12432452+ 4 (2n—1) 3

Problem 1.3.9 Prove that
4n
n+1

(2n)!

(n!)2

for all natural numbers n> 1.

Problem 1.3.10 Prove that the sum of the cubes of three con-
secutive positive integers is divisible &y
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Problem 1.3.111f |x| # 1,n € N prove that

8 . on
1+x8 1+x2"

1
1+x

2
14x2

4
14 x2

equals
1 2n+1

X—1+ 17X2n+1'

Problem 1.3.121s it true that for every natural number n tH
quantity rf + n-+41is a prime? Prove or disprove!

Problem 1.3.13 Give an example of an assertion whichnist
true for any positive integer, yet for which the inductioas|
holds.

Problem 1.3.14 Give an example of an assertion which is ty
for the first two million positive integers but fails for eyen-
teger greater thar2000000

Problem 1.3.15 Prove by induction on n that a set having
elements has exact®/ subsets.

Problem 1.3.16 Prove that if n is a natural number,
n°/5+n%/2+n%/3-n/30

is always an integer.

Problem 1.3.17 (Halmos)) Every man in a village knows ir]
stantly when another’s wife is unfaithful, but never whes
own is. Each man is completely intelligent and knows thaf
ery other man is. The law of the village demands that w|
a man can PROVE that his wife has been unfaithful, he
shoot her before sundown the same day. Every man is

pletely law-abiding. One day the mayor announces that ti

is at least one unfaithful wife in the village. The mayor aj&
tells the truth, and every man believes him. If in fact th
are exactly forty unfaithful wives in the village (but thatt
is not known to the men,) what will happen after the may
announcement?

Problem 1.3.18
bers with
ai-ax---an =1

Use induction to prove that
aytat+---+apn=>n,
with equality ifand only ifa=a, =--- =ap,=1.

2. Use the preceding part to give another proof of

1. Let a,ay,...a, be positive real numt

. Prove that if =~ 1, then

1.3.5...(2n—1) < n".

. Prove that if > 1 then

1

1
1/n_ — Y —
n((n+1) 1)<1+2+ +-

. Prove that if = 1 then

L,
n+1)4/n

1

1
1 —
+ n+1

2

1
+---+—<n<1—
n (

. Given that u, v, w are positivé < a < 1, and that
u+v+w=1 prove that

(G- (-
u % w

. Let \,¥2,...,¥n be positive real numbers. Prove the
Harmonic-Mean- Geometric-Mean Inequality:

1 < VY1Y2- - Yn
Yn

) > 27— 27a+9a%—a°.

n
1

Y2

1
Y1
. Leta,...,ay be positive real numbers, all different. Set
S=aj+ax+---+an.
(a) Prove that

1 1

(n—1) Z < —.
_ 1§r§nsiar 1<r§nar
hi (b) Deduce that
ev-
hen an_. 3 1 n 1
hust S lgrgna‘y(s_a‘y) n_ll<r<nar
Com-

%(raoblem 1.3.19Su

i\ ,
real numbers with
eré

ppose that xxo,...,X, are nonnegative

X1+Xo 4 +x < 1/2.
DI'S
Prove that

(1=x)(1=%z) - (1—=%n) = 1/2.

Problem 1.3.20 Given a positive integer n prove that there is
a polynomial | such thatcosnx = T,(cosx) for all real num-
bers x. T, is called the n-thirchebychev Polynomial

Problem 1.3.21 Prove that

1 1
n+1 n+2

1
2n

13

* 24

ot >

he

Arithmetic-Mean-Geometric-Mean Inequality.

for all natural numbers n> 1.




Fibonacci Numbers

Problem 1.3.22 In how many regions will a sphere be divid
by n planes passing through its centre if no three planes
through one and the same diameter?

Problem 1.3.23 (IMO 1977)Let f,f : N — N be a function
satisfying
f(n4+1) > f(f(n))

béProblem 1.3.24 Let Fy(x) = X, F(X) = 4x(1 —X),Fh1(X) =
b&S$nh(Xx)),n=0,1,.... Prove that

Aan(X)dXZ

22n71
21

for each positive integer n. Prove thatr) = n for each n.

1.4 Fibonacci Numbers

TheFibonacci numbersfare given by the recurrence

fo=0, f1 =1, fopa=fh1+fy, n>1

Thus the first few Fibonacci numbers are 0, 1, 1, 2, 3, 5,
proved using the above recursion.

16 Example Prove that

(Hint: Letx = sin’6.)

(1.5)

8, 13, 2. A number of interesting algebraic identities can be

fi+fo+- -+ fi=f2—1
Solution: We have
fi =f3—1
fo =f,1— 13
fs =fs—"T4
fn =fi2—fare

Summing both columns,

fi+tfot-+f=fo—fo=f2—-1,

as desired.

17 Example Prove that
fi+ fa+ f5+--

Solution: Observe that
f
f3
fs

fon1 =

Adding columnwise we obtain the desired identity.

18 Example Prove that

+ fon_1 = fon.

fo—fo
fa—fo
fe— fa

fon— fon_2

ff+f22++fr$:fnfn+l

Solution: We have

fo1fnr1 = (fora— fo) (Fo+ fao1) = fapafo— 2+ fapa foon — fafa1.

Thus

fop1fn— fafo1 = f2,
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which yields
f2+ 24+ f2 = fafnia.

19 Theorem (Cassini’s Identity)
fa1fnia— fn2 =(-1" n>1

Proof: Observe that
foafoa— 12 = (fa—fo2)(fot fo1)— 12
= *fnfzfn - fnfl( fn72* fn)
= —(fn—zfn—fr?_l)

Thusif v = fn_1fh 1 — f2, we have y = —v,_1. This yields ¥ = (—1)" vy which is to say
foafoya— 7 = (1" Yfofa— ) = (1"
O

20 Example (IMO 1981) Determine the maximum value of
m? 4 n?,
wherem, n are positive integers satisfyimgn € {1,2,3,...,1981} and

(n>—mn—n?)? = 1.

Solution: Call a paifn,m) admissibléf mne {1,2,...,1981} and(n>—mn—n?)2 = 1.

If m=1, then(1,1) and(2,1) are the only admissible pairs. Suppose now that the(pain,) is admissible, witm, > 1.
Asni(ng—ny) = n%i 1> 0, we must hava; > ny.

Let nowns = n; —n,. Then 1= (n? — nyny — n3)? = (n% — nan3 — n3)?, making(nz,n3) also admissible. Ihs > 1, in the
same way we conclude thas > n3 and we can lehs = n, — nz making(nz, ns) an admissible pair. We have a sequence of
positive integers; > ny > ..., which must necessarily terminate. This terminates wiyea 1 for somek. Since(ng_1,1)
is admissible, we must havg_; = 2. The sequence goes thu®13,5,8,...,987,1597, i.e., a truncated Fibonacci sequence.
The largest admissible pair is thus (1597, 987) and so thérmew sought is 1597+ 987.

1+2\/§ be the Golden Ratio. Observe that! = \/_571

x? = x+ 1. We now obtain a closed formula fdg. We need the following lemma.

Let T =

. The numberr is a root of the quadratic equation

21 Lemma If ¥* =x+1,n> 2 then we have” = fax+ fnr_1.

Proof:  We prove this by induction on fror n = 2 the assertion is a triviality. Assume thatn2 and that
X1 = fr_1x+ fo_o. Then

X' = xX"hx
(fa_1X+ fn2)x
fao1(X+ 1)+ fr_ox
(fao1+ fa2)x+fa1
= fox+fa1

n—1.

O

22 Theorem (Binet's Formula) The n-th Fibonacci number is given by

(5 (52)

n=0,2,....




Practice

Proof: The roots of the equatiorfx= x+lare T = 1+2\/§ andl—1= 172\/5. In virtue of the above lemma,
=1f+ 1
and
(1-D)"=1—-1)fn+ foo1.
Subtracting

" —(1-1)" = V51,

from where Binet's Formula follows.

23 Example (Cesaro) Prove that

Solution: Using Binet's Formula,

N4\ UL\ S A e gL
S - () —F

k=0

=~
o

- BB 0 S0z

= —((1420)"—(1+2(1—1)").

Sie

AsT?>=1+1,1+2r=1°. Similarly 1+ 2(1—1) = (1—1)3. Thus

> (1) 2= g (0 (1-11%) = fn,

k=0

as wanted.

The following theorem will be used later.
24 Theorem If s> 1.t > 0 are integers then
fort = fsa fo + fsfepq.

Proof: We keept fixed and prove this by using strong induction onrss £0l we are asking whether
fy1 = fofe + fofipq,

which is trivially true. Assume thats 1andthat £ ,; = fs k1t + fs_kfir1 for all k satisfyingl <k <s—1.

We have
fsit = fspr—1+ fspto by the Fibonacci recursign
= fsarit+fson trivially ,
= fsofi+fs a1fip1+ fssfi+ fs 2fi 1 by the inductive assumption
= fi(fso+fs3)+fpa(fs1+fs2)  rearranging
= fifs 1+ fiiafs by the Fibonacci recursion
This finishes the proadf.

Practice
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Problem 1.4.1 Prove that

farifa—fooafo2o=fon1, n>2

Problem 1.4.2 Prove that

fn+l = 4fn fn_l+ fr?—Z’ n> 1

Problem 1.4.3 Prove that
ffp+ fafa+ -+ fon_1fon = f2,.

Problem 1.4.4 Let N be a natural number.
largest n such that,f< N is given by

log (N+ %) V5
<1+ \/5> I
log >

Problem 1.4.5 Prove that £+ f2 ; = fon, 1.

=1

Problem 1.4.6 Prove that if n> 1,

f2— fop fao = (—1)" 2.

Problem 1.4.7 Prove that

Z fox = Z n—K) faxq 1.
k=0

Problem 1.4.8 Prove that
s 1
I
n—2 n—1In+1

Hint: What is
1 1

fnfl fn

?
fn fn+1

Problem 1.4.9 Prove that

Problem 1.4.10 Prove that

Z 1/ fzn =4—T.
n=0

Prove that th

Problem 1.4.11 Prove that

Zarctan— = 11/4.

fony1
Problem 1.4.12 Prove that
im fn 1
n—oo Tn \/B
groblem 1.4.13 Prove that
lim e _ .
n—oo n
Problem 1.4.14 Prove that
Z f2n,2
fzk f2n '
Deduce that
5

“1
S

k=0

Problem 1.4.15 (Cesaro)Prove that

zn: (E) fio = fon.

k=0

Problem 1.4.16 Prove that

o0 fn
— 10

is a rational number.
Problem 1.4.17 Find the exact value of
1994

199
Z(l)k< o 5) fic

Problem 1.4.18 Prove the converse of Cassini's Identity: If k
and m are integers such thiat? —km—k?| = 1, then there is
an integer n such that +f,, m=+f,, 1.
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1.5 Pigeonhole Principle

The Pigeonhole Principle states thanif 1 pigeons fly tan holes, there must be a pigeonhole containing at least twaopig)
This apparently trivial principle is very powerful. Let usessome examples.

25 Example (Putnam 1978) Let A be any set of twenty integers chosen from the arithmeticnessgon 14,...,100 Prove
that there must be two distinct integersdmwhose sum is 104.

Solution: We partition the thirty four elements of this pregsion into nineteen grougé}, {52}, {4,100} , {7,97}, {10,94},
...{49,55}. Since we are choosing twenty integers and we have ninetégrbyethe Pigeonhole Principle there must be two
integers that belong to one of the pairs, which add to 104.

26 Example Show that amongst any seven distinct positive integersxuaazling 126, one can find two of them, sagndb,
which satisfy
b<a<?2b

Solution: Split the number§l, 2,3, ...,126} into the six sets
{1,2},{3,4,5,6},{7,8,...,1314},{15,186,...,29,30},
{31,32,...,61,62} and{63,64,...,126}.
By the Pigeonhole Principle, two of the seven numbers meshlone of the six sets, and obviously, any such two will $atis

the stated inequality.

27 Example Given any set of ten natural numbers between 1 and 99 inelupiove that there are two disjoint nonempty
subsets of the set with equal sums of their elements.

Solution: There are®® — 1 = 1023 non-empty subsets that one can form with a given 10exieset. To each of these subsets
we associate the sum of its elements. The maximum value tlyagiech sum can achieve is 9®1+---+99=945< 1023
Therefore, there must be at least two different subsetsthad the same sum.

28 Example No matter which fifty five integers may be selected from

{1,2,...,100},

prove that one must select some two that differ by 10.

Solution: First observe that if we choose- 1 integers from any string ofreconsecutive integers, there will always be some
two that differ byn. This is because we can pair the @nsecutive integers

{a+1l,a+2,a+3,...,a+2n}

into then pairs
{a+1,a+n+1},{a+2a+n+2},....,{a+n,a+2n},

and ifn+ 1 integers are chosen from this, there must be two that betothge same group.
So now group the one hundred integers as follows:

{1,2,...20},{21,22,...,40},

{41,42,...,60}, {61,62,...,80}

and
{81,82,...,100}.

If we select fifty five integers, we must perforce choose eldvem some group. From that group, by the above observation
(letn=10), there must be two that differ by 10.
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29 Example (AHSME 1994) Label one disc1”, two discs ‘2", three discs 3", .. ., fifty discs“50". Putthese }2+3+---+
50= 1275 labeled discs in a box. Discs are then drawn from the beecmalom without replacement. What is the minimum
number of discs that must me drawn in order to guarantee depatileast ten discs with the same label?

Solution: If we draw all the #2+---+9=45 labelled 1", ..., “9” and any nine from each of the disc%0C’, ..., “50°, we
have drawn 45-9-41= 414 discs. The 415-th disc drawn will assure at least tersdisen a label.

30 Example (IMO 1964) Seventeen people correspond by mail with one another—eaaehvith all the rest. In their letters
only three different topics are discussed. Each pair ofesmondents deals with only one of these topics. Prove tbat tit
least three people who write to each other about the same topi

Solution: Choose a particular person of the group, say @&haike corresponds with sixteen others. By the Pigeonhdaheipte,
Charlie must write to at least six of the people of one topag, ®pic I. If any pair of these six people corresponds onddpi
then Charlie and this pair do the trick, and we are done. @ifiser these six correspond amongst themselves only onstopic
Il or lll. Choose a particular person from this group of siay<ric. By the Pigeonhole Principle, there must be thredef t
five remaining that correspond with Eric in one of the topsas; topic Il. If amongst these three there is a pair that spoeds
with each other on topic Il, then Eric and this pair correspon topic Il, and we are done. Otherwise, these three peopje o
correspond with one another on topic Ill, and we are donenagai

31 Example Given any seven distinct real numbaess. . . x7, prove that we can always find two, sayb with

a—b 1

O<m)<7§.

Solution: Putx, = tanay for ax satisfyingf7—2T < < g Divide the interval(fg, 7—2-[) into six non-overlapping subintervals of

equal length. By the Pigeonhole Principle, two of seven {goiill lie on the same interval, say < a;. Then 0< aj —& < 7—(;
Since the tangent increaseqinrm/2, 11/2), we obtain

tana j— tang; T

O<tanaj—a)=-—"—— <tan _1
i "~ 1+tana; tana 6 3

as desired.

32 Example (Canadian Math Olympiad 1981) Letas,ay,...,a7 be nonnegative real numbers with

apta+...+ta;=1

M = max
max A+ ak41 1 Ak 2,

determine the minimum possible value that can take as thay vary.
Solution: Sinceay < a3 +az < a1 +ax+ag anday < ag+ a7 < as + ag + ay we see that# also equals

max{ay,az,ay + ap, a6 +az, a8 + ak 1+ a2}
1<k<5

We are thus taking the maximum over nine quantities that stap8a, + - - - +a7) = 3. These nine quantities then average
3/9=1/3. By the Pigeonhole Principle, one of thesevid/3,ie. M >1/3. fay =1+ =as+ax+az=apy+az+au =
azt+as+as=as+as+as=as+as+ay =ay=1/3, we obtain the 7-tupléa;, ay, a3, a4, as,as,a87) = (1/3,0,0,1/3,0,0,1/3),
which shows tham =1/3.

Practice
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Problem 1.5.1 (AHSME 1991)A circular table has exactli
sixty chairs around it. There are N people seated at thisa
in such a way that the next person to be seated must sit n{
someone. What is the smallest possible value of N?

P

Answer: 20.

Problem 1.5.2 Show that if any five points are all in, or o
a square of sidd, then some pair of them will be at most
distancev'2/2.

Problem 1.5.3 (E6tvds, 1947Prove that amongst six peop
in a room there are at least three who know one another, d
least three who do not know one another.

numbers there is always one number which is at least thd

erage of the numbers and that there is always one membef th

it is at most the average of the numbers.

Problem 1.5.5 We call a set “sum free” if no two elements
the set add up to a third element of the set. What is the n
mum size of a sum free subse{df2,...,2n—1}.

Hint: Observe thatthe s¢h+1,n+2,...,2n—1} of n+1el-
ements is sum free. Show that any subset with2 elementd
is not sum free.

Problem 1.5.6 (MMPC 1992) Suppose that the letters of t
English alphabet are listed in an arbitrary order.

1. Prove that there must be four consecutive consonatr|

2. Give a list to show that there need not be five cons
tive consonants.

3. Suppose that all the letters are arranged in a cirg
Prove that there must be five consecutive consonan

Problem 1.5.7 (Stanford 1953)Bob has ten pockets arf
forty four silver dollars. He wants to put his dollars in
his pockets so distributed that each pocket contains ardi
ent number of dollars.

1. Can he do so?

2. Generalise the problem, considering p pockets ar
dollars. The problem is most interesting when

Why?

h

h

Problem 1.5.4 Show that in any sum of non-negative reah

Y

Problem 1.5.8 No matter which fifty five integers may be se-
ected from

Xt to {1,2,...,100},

prove that you must select some two that diffeBpgome two
that differ by10, some two that differ b2, and some two that
differ by 13, but that you need not have any two that differ by
11

aIgroblem 1.5.9 Let mn+ 1 different real numbers be given.

Prove that there is either an increasing sequence with atlea
n+ 1 members, or a decreasing sequence with at leastim

Snembers.
rat

Problem 1.5.101f the points of the plane are coloured with
three colours, show that there will always exist two poirfts o

e same colour which are one unit apart.
av-

that

Problem 1.5.11 Show that if the points of the plane are
coloured with two colours, there will always exist an eqtiila

eral triangle with all its vertices of the same colour. There

Ofs! however, a colouring of the points of the plane with two

&Hdtours for which no equilateral triangle of sidehas all its
vertices of the same colour.

Problem 1.5.12Letrq,ro,...,rh,n> 1 be real numbers of ab-
solute value not exceedirigand whose sum i8. Show that
there is a non-empty proper subset whose sum is not more than
2/nin size. Give an example in which any subsum has abso-

i 1
fute value at Ieastm.

%Broblem 1.5.13 Let r,ro,...,rn be real numbers in the in-
(E%r_val [0,1]. Show that there are numbegg, 1 <k < n,g =
—1,0,1 not all zero, such that

n
le. ngrk
k=1

n
< —.
S, - 2n

%Problem 1.5.14 (USAMO, 1979)Nine mathematicians meet
Oat an international conference and discover that amonggt an
fféhree of them, at least two speak a common language. If
each of the mathematicians can speak at most three languages
prove that there are at least three of the mathematicians who
can speak the same language.

dn
Problem 1.5.15 (USAMO, 1982)In a party with 1982 per-
sons, amongst any group of four there is at least one person
who knows each of the other three. What is the minimum num-
ber of people in the party who know everyone else?
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Problem 1.5.16 (USAMO, 1985)There are n people at

party. Prove that there are two people such that, of the
maining n— 2 people, there are at leastn/2]] — 1 of them,
each of whom knows both or else knows neither of the
Assume that “knowing” is a symmetrical relationship.

Problem 1.5.17 (USAMO, 1986)During a certain lecture
each of five mathematicians fell asleep exactly twice. Fohd
pair of these mathematicians, there was some moment

h ment, some three were sleeping simultaneously.

re-

Problem 1.5.18Let &, be a set of| ern|| + 1 points on the
tw?. - . o )
pfane. Any two distinct points ¥, are joined by a straight
line segment which is then coloured in one of n given colours.
Show that at least one monochromatic triangle is formed.

b

both were sleeping simultaneously. Prove that, at some

Nhﬂ’ﬁ‘ut: e= ZOO: 1/nl.)
n=0

m -
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2.1 Divisibility
33 Definition If a# 0,b are integers, we say thatavidesb if there is an integee such thataic=b. We write this as|b.

If adoes not dividés we writea fb. The following properties should be immediate to the reader.

34 Theorem 1. If a,b,c,m,n are integers wittt|a, c|b, thenc|(am+ nb).

2. If x,y,z are integers witlx|y,y|z thenx|z
Proof: There are integers, s with sc=a,tc=b. Thus
am+ nb= c(sm+tn),

giving d(am+bn).
Also, there are integers,u with xu=y,yv=z Hence xuv= z, giving %z.
It should be clear that if o and b£ 0 thenl < |a| < |b|.O

35 Example Find all positive integera for which
n+1jn’+1.

Solution:n> +1=n?—1+2= (n—1)(n+1) + 2. This forcem+ 1|2 and son+1=1 orn+1=2. The choicen+1 =1 is
out sincen > 1, so that the only suchisn=1.

36 Example If 7|3x+ 2 prove that 715> — 11x— 14.).

Solution: Observe that 36— 11x— 14= (3x+ 2)(5x— 7). We have 8= 3x+ 2 for some integes and so
15¢° — 11x— 14=7s(5x— 7),
giving the result.

Among every two consecutive integers there is an even onengmvery three consecutive integers there is one divisible
by 3, etc.The following theorem goes further.

37 Theorem The product oh consecutive integers is divisible loy.

17
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Proof: Assume first that all the consecutive integers

om+2,...,m+n are positive. If this is so, the divisibility

by n follows from the fact that binomial coefficients are integer

n n'm!

<m+n> _ (m+n)!  (M+n)(m+n—1)---(m+1)

n!

If one of the consecutive integers is 0, then the producterhtrs 0, and so there is nothing to prove. If all the n
consecutive integers are negative, we multiplyb$)", and see that the corresponding product is positive, and so

we apply the first resuli]

38 Example Prove that @° — n, for all integersn.

Solution:n®*—n= (n—1)n(n+ 1) is the product of 3 consecutive integers and hence is dieisip3 = 6.

39 Example (Putnam 1966) Let0O< a; < a» < ... < amn.1 bemn+ 1 integers. Prove that you can find eitime# 1 of them
no one of which divides any other, or+ 1 of them, each dividing the following.

Solution: Let, for each ¥ k < mn+ 1, ng denote the length of

the longest chain, starting witand each dividing the following

one, that can be selected fran ax1,...,amn+-1. If NO Nk is greater tham, then the are at least+ 1 ne's that are the same.
However, the integeray corresponding to thesg’s cannot divide each other, becawgés implies thatn, > n; + 1.

40 Theorem If k|n then fi| fp.

Proof: Letting s=kn,t =ninthe identity §;; = fs_1fi + fsf; 1 we obtain

ferin = finin =

fn—l fkn + fn fkn+1-

Itis clear that if §|fxn then | f1)n. Since | fn.1, the assertion follows]

Practice

Problem 2.1.1 Given that5|(n+ 2), which of the following
are divisible by5

n>—4, n>+8n+7,n*—1,n>—2n?

Problem 2.1.2 Prove that R —5n° + 4n is always divisible by
120

Problem 2.1.3 Prove that
(2m)!(3n)!
(m!)2(nt)3

is always an integer.

Problem 2.1.4 Demonstrate that for all integer values n,
n’—6n’49n°—4n®

is divisible by864Q

Problem 2.1.5 Prove that if n> 4 is composite, then n dividg

(n—1)!.

(Hint: Consider, separately, the cases when n is and is not a
perfect square.)

Problem 2.1.6 Prove that there is no prime triplet of the form
p, p+ 2, p+ 4, except foi3,5,7.

Problem 2.1.7 Prove that for ne N, (n!)! is divisible by
m(n—l)!

Problem 2.1.8 (AIME 1986) What is the largest positive in-
teger n for which

(n+10)|(n®+100)?

(Hint: 3 +y3 = (x+y) ¢ —xy+Y?).)

Problem 2.1.9 (Olimpiada matematica espafiola, 1985f
T is a positive integer, prove thdnh+ 1)(n+2)---(2n) is
divisible by2".
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2.2 Division Algorithm

41 Theorem (Division Algorithm)  If a,bare positive integers, then there are unique integjersuch thaa =bg+r,0<r < b.

Proof: We use the Well-Ordering Principle. Consider the $ét= {a—bk:k € Z and a> bk}. Then.” is a
collection of nonnegative integers ad # @ as a—b-0 € .. By the Well-Ordering Principle has a least
element, say r. Now, there must be someZjsuch that r=a— bq since re .. By construction, £> 0. Let us
prove that r< b. For assume that® b. Thenr>r—b=a—bgq—b=a—(q+1)b> 0, since —b > 0. But then
a—(g+1)be . and a— (q+1)b < r which contradicts the fact that r is the smallest membe#ofThus we must
haveO <r < b. To show that r and g are unique, assume that-bg; =a=bgp+r2,0<r; <b,0<r, <b. Then
r,—ry=Db(q1— ), thatis B(rp—r1). But|ro—r31| < b, whence $ = r1. From this it also follows that g= qp.
This completes the prodi]

Itis quite plain thaty = || a/b||, where||a/b]|| denotes the integral part afb.

It is important to realise that given an integer 0, the Division Algorithm makes a partition of all the integeaccording
to their remainder upon division by For example, every integer lies in one of the famili&s3& + 1 or &k + 2 wherek € Z.
Observe that the familyl3+ 2,k € Z, is the same as the familk3- 1,k € Z. Thus

Z=AUBUC

where
A={...,—9,-6,-3,0,3,6,9,...}

is the family of integers of the formi3k € Z,
B={...—8-5-2147..}
is the family of integers of the formi3+ 1,k € Z and
C={..—-7,-4-1258...}
is the family of integers of the formi3- 1, k € Z.

42 Example (AHSME 1976) Letr be the remainder when 103917 and 2312 are divided loy> 1. Find the value ofl —r.

Solution: By the Division Algorithm, 1059 g;d +r,1417= g>d +r,2312= gsd +r, for some integersj1, g, g3. From this,
358= 1417—1059= d(0 — q1),1253= 2312— 1059= d(qz — o) and 895= 2312—1417=d(qz — ). Henced|358=
2.179d|1253=7-179 and 7895=5-179. Sinced > 1, we conclude thadl = 179. Thus (for example) 10595-179+ 164,
which means that = 164 We conclude thadl —r = 179— 164= 15.

43 Example Show thain® 4 23 is divisible by 24 for infinitely many.

Solution:n?+23=n?—1+24= (n—1)(n+1)+24. If we taken=24k+1,k=0,1,2, .. ., all these values make the expression
divisible by 24.

44 Definition A prime numberp is a positive integer greater than 1 whose only positivesdrg are 1 ang. If the integer
n> 1is not prime, then we say that ité@mposite.

For example, 2, 3,5, 7, 11, 13,17, 19 are prime, 4, 6, 8, 9,214, 15, 16, 18, 20 are composite. The number 1 is neither
a prime nor a composite.

45 Example Show that ifp > 3 is a prime, then 214p2 —1).

Solution: By the Division Algorithm, integers come in onesdf flavours: &, 6k+ 1,6k+ 2 or 6k+ 3. If p > 3 is a prime, then
p is of the formp = 6k + 1 (the other choices are either divisible by 2 or 3). Bek+ 1) — 1 = 36k?+ 12k = 12k(3k—1).
Since eithek or 3k— 1 is even, 1R(3k— 1) is divisible by 24.
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46 Example Prove that the square of any integer is of the folno#d4k + 1.

Solution: By the Division Algorithm, any integer comes ineoof two flavours: a or 2a+ 1. Squaring,

(2a)? = 4a%, (2a+1)°=4(a®+a)+1)

and so the assertion follows.

47 Example Prove that no integer in the sequence

11,111,111111111...

is the square of an integer.

Solution: The square of any integer is of the forknot 4k + 1.
they cannot be the square of any integer.

All the numbers in this sequence are of the folr-4L, and so

48 Example Show that from any three integers, one can always choosedwiasa®h — ab? is divisible by 10.

Solution: It is clear thag®h— ab® = ab(a—b)(a+b) is always even, no matter which integers are substitutednéfof the

three integers is of the formk5then we are done. If not, we

are choosing three integerdi¢hatthe residue classe«5: 1 or

5k + 2. Two of them must lie in one of these two groups, and so therst fre two whose sum or whose difference is divisible

by 5. The assertion follows.

49 Example Prove that if 3(a?+ b?), then 3aand 3b

Solution: Assume = 3k+ 1 orb=3m=+ 1. Thena® = 3x+ 1,
3 J(a%+b?).

Practice

Problem 2.2.1 Prove the following extension of the Divisi
Algorithm: if a and b£ 0 are integers, then there are uniq
integers q and r such thata gb+r,0<r < |b|.

Problem 2.2.2 Show that if a and b are positive intege
then there are unique integers q and r, aneg- +1 such that|

a=gb+er,——<r< -,

2 2

Problem 2.2.3 Show that the product of two numbers of {
form4k+ 3is of the formdk + 1.

Problem 2.2.4 Prove that the square of any odd integer lea
remainderl upon division byB.

Problem 2.2.5 Demonstrate that there are no three cons
utive odd integers such that each is the sum of two squ
greater than zero.

Problem 2.2.6 Let n> 1 be a positive integer. Prove that

i

b?=3y+1. Butthena®+b?>=3t+1ora’+b?>=3s+2,i.e.,

rcomposite.
e

Problem 2.2.7 Prove that there are infinitely many integers n
such thatdn? + 1 is divisible by bottL.3and5.
Sl

Problem 2.2.8 Prove that any integer i+ 11is the sum of two
positive composite numbers.

hlélint: Think of n—6 if nis even andh— 9 if nis odd.
Problem 2.2.9 Prove that3 never divides A+ 1.

es
Problem 2.2.10 Show the existence of infinitely many natural
numbers xy such that fx+ 1)|y(y+ 1) but
bC- X Jyand(x+1) Jy,
el also
x fly+1) and(x+1) fy+1).

IfHint: Try x = 36k + 14,y = (12k+ 5)(18k+ 7).

one of the numberg" —1,2" + 1 is prime, then the other is
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2.3 Some Algebraic Identities

In this section we present some examples whose solutioresidem the use of some elementary algebraic identities.

50 Example Find all the primes of the form®— 1, for integem > 1.

Solution: n® —1 = (n—1)(n?+n+1). If the expression were prime, sinc@+n+ 1 is always greater than 1, we must have
n—1=1,i.e.n=2. Thus the only such primeis 7.

51 Example Prove than*+ 4 is a prime only whem = 1 forn € N.

Solution: Observe that
n*+4 = n*+4an’+4—4an?
(n®+2)?—(2n)?
= (n°+2-2n)(n°+2+2n)
(n—12+1)((n+1)2+1).
Each factor is greater than 1 for> 1, and son® + 4 cannot be a prime.
52 Example Find all integers > 1 for whichn*+4" is a prime.

Solution: The expression is only prime foe= 1. Clearly one must takeodd. Fom > 3 odd all the numbers below are integers:

n*4+22" = npty2on?2" 422 on2n
(n2+2n)2_ (nz(n+l)/2)2
(n2_|_2n+n2(n+1)/2)(n2+2n7n2(n+1)/2).

Itis easy to see that if > 3, each factor is greater than 1, so this number cannot be a prime

53 Example Prove that for alh € N, n? divides the quantity

(n+1)"—1.

Solution: Ifn =1 this is quite evident. Assunre> 1. By the Binomial Theorem,

(n+1"—1=3%" <E> nk,
k=1

and every term is divisible by?.

54 Example Prove thatifpis an odd prime and if

%:1+1/2+~--+1/(p—1),
thenp dividesa.
Solution: Arrange the sum as
1+ ! +}+ ! +- ! + 1
p—1 2 p-2 (p—1)/2  (p+1)/2

After summing consecutive pairs, the numerator of the tieguiractions isp. Each term in the denominatord4sp. Sincepis
a prime, thep on the numerator will not be thus cancelled out.
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55 Example Prove that

XNy = (X—y) (X" Xy Xy 2y

Thusx—y always dividesx" —y".

Solution: We may assume that£ y, xy # 0, the result being otherwise trivial. In that case, the refaliibws at once from the
identity

upon lettinga = x/y and multiplying through by".

|:| Without calculation we see th87673*°— 810123*%is divisible by666

56 Example (E 6tv6s 1899) Show that
2903'— 803" 464"+ 261"

is divisible by 1897 for all natural numbens

Solution: By the preceding problem, 2903803 is divisible by 2903- 803= 2100= 7-300=, and 261 — 464" is divisible

by 261—464= —203=7-(—29). Thus the expression 2903 803" — 464"+ 261" is divisible by 7. Also, 2903— 464" is
divisible by 2903-464=9-271 and 261— 803" is divisible by —542= (—2)271. Thus the expression is also divisible by
271. Since 7 and 271 have no prime factors in common, we carlummthat the expression is divisible by271= 1897.

57 Example ((UM)2C*1987% Given that 1002004008016032 has a prime faptor 250000 find it.

Solution: Ifa=10°,b =2 then

67b6

1002004008016032 a° + a*b+ a*b? + a’b® +ab*+ b°> = aai b

This last expression factorises as

a67b6
= (a+b)(a®+ab+b?)(a?—ab+b?)

= 1002-1002004 998004
= 4.4.1002 250501k,

wherek < 250000. Therefore = 250501.

58 Example (Griinert, 1856) If x,y,z n are natural numbers> z then the relation
X'y =2"

does not hold.

Solution: Itis clear that if the relatiox’ +y" = Z" holds for natural numbersy, z thenx < zandy < z By symmetry, we may
suppose that < y. So assume thaf' +y" = Z" andn > z Then

2y =z HyP 2 4y > 1 s X

contrary to the assertion thelt+y" = 2. This establishes the assertion.
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59 Example Prove that fon odd,
XMy = (X y) (X XAy oy 2y,

Thusif nis odd,x+y divides x" +y".
Solution: This is evident by substitutingy for y in example 1.11 and observing tHaty)" = —y" for n odd.

60 Example Show that 1001 divides
11993, 51993, 31993, | 100993

Solution: Follows at once from the previous problem, sinmeheof 1993+ 1000993 2199319991993 | 50019934 501!9%3s
divisible by 1001.

61 Example (S250) Show that for any natural numbeythere is another natural numbesuch that each term of the sequence
X+ 1+ 1x5+1,...

is divisible byn.
Solution: It suffices to take = 2n— 1.

62 Example Determine infinitely many pairs of integef, n) such that# andn share their prime factors arich— 1,n— 1)
share their prime factors.

Solution: Takem=2X—1,n= (2X—1)? k= 2,3,.... Thenm,n obviously share their prime factors ant- 1 =2(2"*—1)
shares its prime factors with— 1 = 2¢+1(2k-1 1),

Practice
Problem 2.3.1 Show that the integer 2. Prove thatforn=1,2,...,
1...1 1 n 1 n+1
91 ones (1+ﬁ> < (1+n—+1> n:1,2,....
is composite.
3. Show that
99 | 599 | 299 | 499 ic Aivici p+1_ gntl
Problem 2.3.2 Prove thatl™ + 2°¥ 4- 3 4 4" is divisible by a > (n+1)a
5. b—a
Problem 2.3.3 Show that ifab| # 1, then & + 4b% is compos{ %= Show that
ite. 1\ "1 1 \N+2
<1+ﬁ> ><1+n—+1> n=12,....
Problem 2.3.4 Demonstrate that for any natural number |n,
the number 1oeiins 1-2...9 Problem 2.3.6 If a, b are positive integers, prove that
H,—/ \,—/
2n 1's n2's (a+1/2)"+(b+1/2)"

is the square of an integer.
is an integer only for finitely many positive integers n.
Problem 2.3.5Let0<a<b.

1. Prove that B((n+ 1)a7 nb) < an+1. Problem 2.3.7 Prove thaﬂOq 1110— 1.
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Problem 2.3.8 Let A and B be two natural numbers with t
same number of digits, A B. Suppose that A and B have m(
than half of their digits on the sinistral side in common. ¥R
that

Al/niBl/n < %‘

foralln=2,3,4,....

Problem 2.3.9 Demonstrate that every number in the
quence

49,4489 44488944448889. .., 4 .- 89,
——v

n—18s

is the square of an integer.

Problem 2.3.10 (Polish Mathematical Olympiad) Prove
that if n is an even natural number, then the numb@&+ 6 is
divisible by7.

Problem 2.3.11 Find, with proof, the unique square which
the product of four consecutive odd numbers.

Problem 2.3.12 Prove that the numbe22F555 5555222ig
divisible by7.

(Hint: Consider

222?555+ 45555+ 555?2227 42222+ 422227 45555')

Problem 2.3.13 Prove thatif 84+ 1,1 < a € N, is prime, then

ais even and n is a power @f Primes of the forng?* +1lare
calledFermat primes

Problem 2.3.14Prove thatifd—1,1 < a€ N, is prime, then
a=2and n is a prime. Primes of the for@! — 1 are called
Mersenne primes

Problem 2.3.15 (Putnam, 1989How many primes among
the positive integers, written as usual in base-ten are soah
their digits are alternatindl’s andQ’s, beginning and endin
in1?

Problem 2.3.16 Find the least value achieved Bg<— 5 k=
1.2,

Problem 2.3.17 Find all the primes of the form¥ 1.

h&roblem 2.3.18 Find a closed formula for the product
re
P=(1+2)(1+2%)(1+2%)... (1+2%).

Use this to prove that for all positive integersZ"r? +1divides

222n+1 —2

| Problem 2.3.19Let a> 1 be a real number. Simplify the ex-
Pression

\/a+ 2va—1+ \/af 2va—1

Problem 2.3.20Let a b, c,d be real numbers such that
a?+b?+c?+d? =ab+bc+cd+da

Prove thata=b=c=d.

Problem 2.3.21 Let a b, ¢ be the lengths of the sides of a tri-
angle. Show that

is  3(ab+bc+ca) < (a+b+c)? < 4(ab+bc+ca).
Problem 2.3.22 (ITT, 1994) Let ab,c,d be complex num-
bers satisfying

atb+ctd=a’+p3+c+d*=0.

Prove that a pair of the &, c,d must add up t®.

Problem 2.3.23 Prove that the product of four consecutive
natural numbers is never a perfect square.

Hint: What is(n®+n—1)2?

Problem 2.3.24Let k> 2 be an integer. Show that if n is a
positive integer, then Kncan be represented as the sum of n
successive odd numbers.

Problem 2.3.25 (Catalan) Prove that

171+171+ n 1 1
-t 2 3 4 2n—1 2n
equals
) T SR
n+1 n+2 2n’

Problem 2.3.26 (IMO, 1979)If a,b are
such that

natural numbers

11
1318 ' 1319

a_q

1011
b 23 4

prove thatl979a.
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Problem 2.3.27 (Polish Mathematical Olympiad)A trian-
gular numbeis one of the fornl+2+...4+n,n € N. Prove
that none of the digit&,4,7,9 can be the last digit of a trian
gular number.

Problem 2.3.28 Demonstrate that there are infinitely ma
square triangular numbers.

Problem 2.3.29 (Putnam, 1975)Supposing that an integer
is the sum of two triangular numbers,
2 2

a+a b°+b

= + + 5
2 2

write 4n+ 1 as the sum of two square#)+ 1 = x> +y? where
x and y are expressed in terms of a and b.

Conversely, show thatdin+1 = x*+Y?, then nis the su
of two triangular numbers.

n

Problem 2.3.30 (Polish Mathematical Olympiad) Prove

that amongst ten successive natural numbers, there areyalwa
L at least one and at most four numbers that are not divisible by

any of the number®,3,5,7.

"Yroblem 2.3.31 Show that if k is odd,

142+--+n

>

divides

1424k,

Problem 2.3.32 Are there five consecutive positive integers

such that the sum of the first four, each raised to the fourth
power, equals the fifth raised to the fourth power?
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CongruencesZ,

3.1 Congruences

The notatiora=b modn is due to GauR3, and it means timta— b). It also indicates tha& andb leave the same remainder
upon division byn. For example—8= —1=6=13 mod 7. Since|(a—b) implies that3k € Z such thank=a—b, we
deduce thaa=b modn if and only if there is an integdesuch thata = b+ nk.

We start by mentioning some simple properties of congrugnce
63 Lemma Leta,b,c,d,me Z,kewitha=b modmandc=d modm. Then

1. a+c=b+d modm

2. a—c=b—d modm

3. ac=bd modm

4. a“=bX modm

5. If f is a polynomial with integral coefficients thdiia) = f(b) modm.

Proof: Asa=b modm and c=d modm, we can find Kko, € Z with a= b+ kim and c=d + kom. Thus

atc=b+d+m(k; £ko) and ac=bd+ m(k:b+k;d). These equalities give (1), (2) and (3). Property (4) fokow
by successive application of (3), and (5) follows from (4).

Congruences mod 9 can sometimes be used to check muliiptisat~or example 875962753+ 2410520633For if
this were true then

(84+74+54+9+6+1)(24+74+5+3)=24+4+1+0+5+2+0+6+3+3 mod 9
But this says that 8=8 mod 9, which is patently false.

64 Example Find the remainder whent®’is divided by 37.
Solution: & = —1 mod 37. Thus ¥%'=6.61%6=6(62)% = 6(—1)%*= —6=31 mod 37.
65 Example Prove that 7 divides®** -+ 2"+ for all natural numbera.

Solution: Observe thatt3 1 =3.9"=3.2" mod 7 and "?>=4-2" mod 7. Hence
FMHL L2 =7.2"=0 mod 7

for all natural numbera.

26
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66 Example Prove the following result of Euler: 64232+ 1).

Solution: Observe that 64% 27 -5+ 1 =2*+5% Hence 2-5= —1 mod 641 and 5= —2* mod 641. Now, 3.-5=—1
mod 641 yields 4. 222 = (5.27)4 = (—1)* =1 mod 641. This last congruence arfti=5—2* mod 641 yield—2*.2% =1
mod 641, which means that 64232+ 1).

67 Example Find the perfect squares mod 13.

Solution: First observe that we only have to square all thalwers up to 6, becausé = (13—r)?> mod 13. Squaring the
nonnegative integers up to 6, we obtafre00,1% = 1,22 = 4,3> = 9,4° = 3,52 = 12,6 = 10 mod 13. Therefore the perfect
squaresmod 13 are 0, 1, 4, 9, 3, 12, and 10.

68 Example Prove that there are no integers with— 5y° = 2.

Solution: Ifx? = 2—5y?, thenx? =2 mod 5. But 2 is not a perfect square mod 5.

69 Example Prove that 7[2222°°°4 5555222,

Solution: 2222=3 mod 7, 5555=4 mod7 and 3=5 mod 7. Now 222%% 4 5555222 = 395554 2222 — (35)1111
(42)1111E 511117 51111E 0 mod?7.

70 Example Find the units digit of 7.

Solution: We must find 7 mod 10. Now, 7= —1 mod 10, and s0%=72.7= -7 =3 mod 10 and 7= (72)? =
mod 10. Also, #=1 mod 4 and so 7= (7%)2-7 =3 mod 4, which means that there is an integsuch that 7 = 3+ 4t.
Upon assembling all this,

77 =748 = (7. 78=1.3=3 mod 10

Thus the last digit is 3.
71 Example Prove that every year, including any leap year, has at lessFaday 13-th.

Solution: Itis enough to prove that each year has a Sundalsth@&low, the first day of a month in each year falls in one of the
following days:

Month Day of theyear mod7

January |1 1

February | 32 4

March 60 or 61 4or5
April 91 or 92 Oorl
May 121 orl122 2o0r3
June 152 or 153 50r6
July 182 or183 Oorl

August 213 or 214 3or4
September 244 or 245 6o0r0
October 274 or 275 lor2
November| 305 or 306 4o0r5
December| 335 or 336 6o0r0

(The above table means that, depending on whether the yadeap year or not, that March 1st is the 50th or 51st day of the
year, etc.) Now, each remainder class modulo 7 is repred@ntbe third column, thus each year, whether leap or notahas
least one Sunday the 1st.
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72 Example Find infinitely many integera such that 24 27 is divisible by 7.

Solution: Observe that'2=2,22=4,2=1,2*=22=4,2°=1 mod7 andso¥ =1 mod 3 for all positive integers
Hence 3+ 27=1+427=0 mod 7 for all positive integets This produces the infinitely many values sought.

73 Example Are there positive integepsy such that = 2Y + 157

Solution: No. The perfect cubes mod7 are 0, 1, and 6. Nowygvewer of 2 is congruentto 1, 2, or 4 mod7. Thus
2Y +15=23,0r5 mod 7. This is an impossibility.

74 Example Prove that 8— 5. k=0,1,2,... never leaves remainder 1 when divided by 7.

Solution: 2 =2,22=4,2°=1 mod 7, and this cycle of three repeats. Thlis-3 can leave only remainders 3, 4, or 6 upon
division by 7.
75 Example (AIME, 1994) The increasing sequence

3,15,24,48, ...,

consists of those positive multiples of 3 that are one leas thperfect square. What is the remainder when the 1994nrthotie
the sequence is divided by 10007

Solution: We want {3127 1=(n—1)(n+1). Since 3 is prime, this requires=3k+1 orn=3k—1 k=123 .... The
sequenceld+ 1,k =1,2,... produces the terms? — 1 = (3k+ 1)2— 1 which are the terms at even places of the sequence of
3,15,24,48,.... The sequencei3- 1,k =1,2,... produces the terms — 1 = (3k— 1)°> — 1 which are the terms at odd places
of the sequence,35,24,48,.... We must find the 997th term of the sequenke-3,k=1,2,.... Finally, the term sought is
(3(997) +1)>—1=(3(—3)+1)2—1=82—1=63 mod 1000. The remainder sought is 63.

76 Example (USAMO, 1979) Determine all nonnegative integral solutions
(n17 n27 cr n14)

if any, apart from permutations, of the Diophantine equatio

ng+n3+---+ni, = 1599

Solution: There are no such solutions. All perfect fourtivpos mod 16 are=s 0 or 1 mod 16. This means that
N+ +ni,
can be at most 14 mod 16. But 158915 mod 16.

77 Example (Putnam, 1986) What is the units digit of

1(?0000
——
LL10100+ 3”‘
200 200 199 200
Solution: Se—3 =10 Then[(10?°°%9 /10904 3] = [(a—3)2%/a] = 5 Z( ‘ ) a2%0-k(—3 _Z< ) al99k(—3)k,
k=0 k=0
200 199
Smcez <200> 1992 (200> —3199 Asa=3 mod 10,

199 199
<200> al99-k(_g)k = 31992 <200> —3'99=3 mod 10
k=0
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78 Example Prove that for any,b,c € Z,n € N,n > 3, there is an integdt such than f(k+a),n y(k+b),n J(k+c).

Solution: The integera, b, c belong to at most three different residue classes mdsincen > 3, we have more than three
distinct residue classes. Thus there must be a residue stadsfor which —k # a,—k # b,—k % ¢, modn. This solves the
problem.

79 Example (Putnam, 1973) Letas,ay,...,asn 1 be a set of integers such that if any one of them is removedegthaining
ones can be divided into two setsrointegers with equal sums. Prove that=a, = ... = as 1.

Solution: As the sum of therintegers remaining is always even, no matter which ofahliee taken, all they must have the
same parity. The property stated in the problem is now shHayegl/2 or (ax— 1) /2, depending on whether they are all even, or
all odd. Thus they are all congruent mod 4. Continuing in théner we arrive at the conclusion that ghere all congruent
mod X for everyk, and this may only happen if they are all equal.

80 Example Prove that
n—1

(kn)!=0 mod J](n+r)
r=0
if nke Nn>k>2.

Solution: (kn)! =M(n—1)!In(n+1)---(2n—1) for some integeM > 1. The assertion follows.
81 Example Let

ni!=n!(1/2!—1/3! +---+(=1)"/n!).
Prove that foralhe N,n > 3,

n!=n" mod (n—1).

Solution: We have

n—n! = nh—1)(n— 1 1/2!
+-- + )" 1/(n—1) '—i— 1)"/nl)
(n—l)( ( )" n/(n—1)+(-1)"/(n— 1))

(n—1) (m+ (*1)“),
where.Z is an integer, sincén— 2)! is divisible byk!,k <n—2.

82 Example Prove that

6n+-2
Z <6n21|: 2) =0 2801 3+l g B2
k=0

whenn is of the form X, 4k + 3 or 4+ 1 respectively.

Solution: Using the Binomial Theorem,
3n+1
25:=2 Z (6”+ 2) =(1+V3)5"2 4 (1 /3)5""2,

Also, if nis odd, witha=2++/3,b=2—/3,

3n+1

2
:_L(a3n+1+b3n+1) - 3 3n+1\ Jani1-argy
2 — 2r '

3B 1/2 mod 4
(—1)("=1/2 mod 4
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As 25 = 2°"1(a3 1 1 p3+1) e have, for odah,

S= (_1)(n71)/223n+1 mod 2’>n+3_
If nis even,
}(a3n+1+b3n+l) -y @n"‘i) 2r+133n—2r
2r<3n r+
= 2(6n+1)3*" mod 8
= 4n+2 mod 8

So for evem,S=2°""22n+1 mod 2"

Practice

Problem 3.1.1 Find the number of all L. < n < 25 such that
n? 4+ 15n+ 122is divisible bys.

(Hint: "?+15n+122=n?+3n+2=(n+1)(n+2) mod86.)

Problem 3.1.2 (AIME 1983) Let a, =6"+8". Determine the
remainder when g is divided by49.

Problem 3.1.3 (POLISH MATHEMATICAL  OLYMPIAD)
What digits should be put instead of x and y3ox0y03 in
order to give a number divisible 13?

Problem 3.1.4 Prove that if9|(a + b®+ ¢3), then3|abc, for
integers ab, c.

Problem 3.1.5 Describe all integers n such thad|n'®+ 1.

Problem 3.1.6 Prove that if
a—b,a®—b%a®—b%a*—b? ...

are all integers, then a and b must also be integers.
Problem 3.1.7 Find the last digit 0f3*%,

Problem 3.1.8 (AHSME 1992)What is the size of the large
subset S of1,2,...,50} such that no pair of distinct elemen
of S has a sum divisible

Problem 3.1.9 Prove that there are no integer solutions to {
equation X — 7y = 3.

Problem 3.1.10 Prove that if7|a + b? then7|a and7|b.

Problem 3.1.11 Prove that there are no integers with

Problem 3.1.12 Prove that the sum of the decimal digits of a
perfect square cannot be equal1891

Problem 3.1.13 Prove that
7147+ 22" 41

for all natural numbers n.

Problem 3.1.14 Prove thats never divides

n
23k <

2n+1
2k+1)°

Problem 3.1.15Prove that if p is a prime(B) — [g] is di-
visible by p, for all n> p.

Problem 3.1.16 How many perfect squares are there
mod 2'?

Problem 3.1.17 Prove that every non-multiple &is a per-
fect power o2 mod 3.

3

t$roblem 3.1.18 Find the last two digits 081%.

Problem 3.1.19 (USAMO, 1986)What is the smallest inte-
hQer n> 1, for which the root-mean-square of the first n positive
integers is an integer?

Note. The root mean square ofnumbersa, ay, ..., a, is defined to be

(i2t5)”

Bl
n

800000007 X +y?+ Z.
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Problem 3.1.20 Find all integers ab,c,a > 1 and all prime| Problem 3.1.24Let x and @i =0,1,...,k be arbitrary inte-

numbers pg,r which satisfy the equation gers. Prove that
a b c k
= > a(+1)%
(a,b,c, p,q,r need not necessarily be different). i=0

k
is divisible by X + x+ 1 if and only ifZ(—l)iai is divisible
i=0

Problem 3.1.21 Show that the numbet6 is a perfect8-th
power modp for any prime p.

by ¥ £+ x+ 1.
Problem 3.1.22 (IMO, 1975) Let &, ap, a3, ... be an increas

ing sequence of positive integers. Prove that for everyls
there are infinitely many & that can be written in the form Problem 3.1.25 (UM)C® 1992 If x,y,z are positive inte-
am = Xas+ ya& with positive integers x and y and:s. gers with

X'+y'=2"

Problem 3.1.23 For each integer n> 1, prove that i—n? +
n— 1is divisible by(n— 1)2. for an odd integer n> 3, prove that z cannot be a prime-power.

3.2 Divisibility Tests

Working base-ten, we have an ample number of rules of dilityibThe most famous one is perhaps the following.

83 Theorem (Casting-out 9's) A natural numben is divisible by 9 if and only if the sum of it digits is divisiblby 9.

Proof: Letn= ak1d<+ ak_11d<*1+ ---+a110+ ag be the base-10 expansion of n. 83=1 mod 9 we have
10' =1 mod 9 It follows that n= ak1d<+ --+a110+ag = ax + - - - +a; + ag, whence the theoreril

84 Example (AHSME, 1992) The two-digit integers from 19 to 92 are written consecugive order to form the integer
192021222324 -89909192

What is the largest power of 3 that divides this number?

Solution: By the casting-out-nines rule, this number isgildle by 9 if and only if
19+20+21+---+92=37%-3

is. Therefore, the number is divisible by 3 but not by 9.

85 Example (IMO, 1975) When 4444444 is written in decimal notation, the sum of its digitsAs Let B be the sum of the
digits of A. Find the sum of the digits d8. (A andB are written in decimal notation.)

Solution: We have 4444 7 mod 9, and hence 4434 73 =1 mod 9. Thus 4444*4= 44448148 . 4444=1.7=7 mod 9.
LetC be the sum of the digits d&.

By the casting-out 9's rule, Z 4444*44= A=B=C mod 9. Now, 4444 log,4444< 4444l0g,10" = 17776 This means
that 4444%**has at most 17776 digits, so the sum of the digits of 44¥#4s at most 917776= 159984 whenceA < 159984
Amongst all natural numbers 159984 the one with maximal digit sum is 99999, so it followatB < 45. Of all the natural
numbers< 45, 39 has the largest digital sum, namely 12. Thus the sum ofitfits @f B is at most 12. But sihncE=7 mod 9,
it follows thatC = 7.

A criterion for divisibility by 11 can be established sinila For letn = a 10+ 110K 1+ -- + 3,10+ a. As 10= —1
mod 11, we have 10= (—1)) mod 11. Therefora= (—1)¥a,+ (—1) a_1+---—a1+ap mod 11, thatisnis divisible by
11if and only if the alternating sum of its digits is divis#iby 11. For example, 912282249 —-1+4+2—2+8-24+2—-14+9=7
mod 11 and s0 912282219s not divisible by Whereas 8924310064538 —-9+2—4+3—-14+0—-0+6—4+4—-3+9=0
mod 11, and so 8924310064539 is divisible by 11.
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86 Example (Putnam, 1952) Let

n
f(x) = Zakx”_k
k=0

be a polynomial of degreewith integral coefficients. I&g, an

andf (1) are all odd, prove that(x) = 0 has no rational roots.

Solution: Suppose thdt(a/b) = 0, wherea andb are relatively prime integers. Then-6b"f (a/b) = agh" +ab" ta+---+
a,_1ba" 1+ a,a". By the relative primality ol andb it follows thatalag, bja,, whencea andb are both odd. Hence

ab” +ab"ta+ - +ap 1bad" t+an@" =agta+---+an=f(1)=1 mod 2

but this contradicts that/b is a root off.

Practice

Problem 3.2.1 (AHSME 1991) An n-digitinteger iuteif its
n digits are an arrangement of the gett, 2, ..., n} and its first
k digits form an integer that is divisible by k for allk< k <n.
For example321is a cute three-digit number becauteli-

vides3, 2 divides32, and 3 divides321 How many cute six}

digit integers are there?

Answer: 2.

Problem 3.2.2 How many ways are there to roll two disti
guishable dice to yield a sum that is divisible by three?

Answer: 12.

Problem 3.2.3 Prove that a number is divisible 18, k € N if
and only if the number formed by its last k digits is divisitne]
2% Test whether

90908766123456789999872
is divisible by8.

Problem 3.2.4 An old receipt has faded. It rea@®8 chickens
at the total of$x4.2y, where x and y are unreadable digif
How much did each chicken cost?

Answer: 73 cents.

Problem 3.2.5 Five sailors plan to divide a pile of coconu
amongst themselves in the morning. During the night, on
them wakes up and decides to take his share. After thro
a coconut to a monkey to make the division come out eve
takes one fifth of the pile and goes back to sleep. The othef
sailors do likewise, one after the other, each throwing a
conut to the monkey and taking one fifth of the remaining
In the morning the five sailors throw a coconut to the mon

is the smallest amount of coconuts that could have been in the
original pile?

Answer: 15621

Problem 3.2.6 Prove that a number which consists¥fiden-
tical digits is divisible by3". For example, 111 111 111is
divisible by9.

Problem 3.2.7 (UM)2C® 1991) Suppose that @a,...an
are integers with a# 0, and let

p(X) = ag+aix+ - -+ anx".

Suppose thatyis arational number such that(gy) =0. Show
thatif 1 <k <n, then

X0+ A G+ -+ +anx"

is an integer.

Problem 3.2.8 1953 digits are written in a circular order.
Prove that if thel953digit numbers obtained when we read
these digits in dextrogyral sense beginning with one of the d

Sits is divisible by27, then if we read these digits in the same
direction beginning with any other digit, the nel®53digit
number is also divisible b®7.

Problem 3.2.9 (Lagrange)Prove that

and divide the remaining coconuts into five equal piles. W

(s

e of fn+60 = fn mod 10

ving - . . ;

L ThYs the last digit of a Fibonacci number recurs in cycles of
fength6o.

cO-

bileroblem 3.2.10 Prove that

key

hat fny1= iy mod f7.
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3.3 Complete Residues

The following concept will play a central role in our studyiofegers.

87 Definition If a=b modn thenb is called aresidueof a modulon. A seta;,ay,...a, is called acomplete residue system
modulon if for every integeib there is exactly one indexsuch thab = a; modn.

It is clear that given any finite set of integers, this set falim a complete set of residues moduldf and only if the
set hasn members and every member of the set is incongruent madukor example, the se¥” = {0,1,2,3,4,5} forms
a complete set of residues mod 6, since any integercongruent to one and only one membetresf Notice that the set
% = {—40,6,7,15,22 35} forms a complete residue set mod 6, but the®et {—3,—2,—1,1,2,3} does not, as-3=3
mod 6.

+3 (0|12 46| 0|1 |2[3]4]|5

0 |0f1]2 0 |0|1|2|3]|4]5

1 11210 1 |11]2(3|4]5|0

2 2101 2 12|3|4]5/0]1

3 13(4|5|0]1]2

4 |4(5(0|1]2]3

5 15(0|1|2|3]|4

Table 3.1: Addition Table foZ3 Table 3.2: Addition Table foZg

Tied up with the concept of complete residues is thdZof As an example, let us take= 3. We now let0 represent all
those integers that are divisible by Brepresent all those integers that leave remainder 1 upasiativby 3, and all those
integers that leave remainder 2 upon division by 3, and denshe seZs; = {0,1,2}. We define addition irZ3 as follows.
Givena,b € Z3 we considea+b mod 3. Now, there is € {0,1,2} such thak+b=c mod 3. We then define+3b to be
equal toc. Table3.3contains all the possible additions.

We observe thdf; together with the operatiofs as given in Tabl&.3 satisfies the following properties:

1. The elemend € Z; is anidentity elementor Z3, i.e. 0 satisfied +3a =a+3;0=aforallacZ;

2. Every elemens € Z3 has amadditive inverseb, i.e., an element such thatt; b = b+3a = 0. We denote the additive
inverse ofa by —a. In Z3 we note that-0=0,—1=2,—2=1.

3. The operation addition ifi3 is associativethat is, for alla,b,c € Z3 we havea+3 (b+3¢c) = (a+3b) +3c.

We then say that Z3, +3 > forms agroupand we call it thegroup of residues under additiormod 3.
Similarly we define< Zn,+n >, as thegroup of residues under additionmodn. As a further example we present the
addition table fo Zg,+¢ > on Table (1.2). We will explore later the multiplicativeistture ofZp.

Practice

Problem 3.3.1 Construct the addition tables f&g andZg. | Problem 3.3.2 How many distinct ordered pairga,b) #
(0,0) are inZ12 such thata +12b = 0?
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Unique Factorisation

4.1 GCD and LCM

If a,b € Z, not both zero, the largest positive integer that dividak b is called thegreatest common divisor of a andThis
is denoted bya, b) or sometimes by gdd, b). Thus ifd|a andd|b thend|(a,b), because any common divisor@&ndb must
divide the largest common divisor afandb. For example(68,—6) = 2,gcd 1998 1999 = 1.

If (a,b) =1, we say that andb arerelatively prime or coprimeThus ifa, b are relatively prime, then they have no factor
greater than 1 in common.

If a,b are integers, not both zero, the smallest positive intdgris a multiple of, b is called thdeast common multiple
of a and b This is denoted bya, b]. We see then that &|c and ifb|c, then[a, b]|c, sincec is a common multiple of both and
b, it must be divisible by the smallest common multipleacgndb.

The most important theorem related to gcd’s is probably dfiewing.

88 Theorem (Bachet-Bezout Theorem) The greatest common divisor of any two integarb can be written as a linear
combination ofa andb, i.e., there are integersy with

(a,b) = ax+by.

Proof: Lets/ = {ax+bylax+by> 0,x,y € Z}. Clearly one oft-a,+b is in.«7, as both ab are not zero. By the
Well Ordering Principle,o# has a smallest element, say d. Therefore, there @mg such that d= axy + byy. We
prove that d= (a,b). To do this we prove that|d, d|b and that if ta, t|b, then td.

We first prove that &. By the Division Algorithm, we can find integers, @ <r < d such that a= dg+r. Then
r=a—dg=a(l—qgx)—by.

If r > 0, then re o7 is smaller than the smaller element.@af, namely d a contradiction. Thus & 0. This entails
dg=a, i.e. da. We can similarly prove that|d.

Assume that|a,t|b. Then a=tm,b =tn for integers mn. Hence d= axy + bxy = t(mx + nyp), that is, §d. The
theorem is thus proved]

|:| Itis clear that any linear combination of, b is divisible by(a, b).

89 Lemma (Euclid's Lemma) If albcand if (a,b) = 1, thenalc.

Proof: As(a,b) =1, by the Bachet-Bezout Theorem, there are integgrsvith ax+ by= 1. Since gbc, there is
an integer s with as= bc. Then c= c- 1 = cax+ chy= cax+ asy From this it follows that &, as wanted]]

34



GCD and LCM 35

90 Theorem If (a,b) =d, then

Proof: By the Bachet-Bezout Theorem, there are integgrsuch that ax-by=d. But then(a/d)x+ (b/d)y =1,
and g/d,b/d are integers. But this is a linear combination ofdab/d and so(a/d,b/d) divides this linear
combination, i.e., divides 1. We conclude theatd, b/d) = 1.0

91 Theorem Let c be a positive integer. Then
(ca,cb) =c(a,b).

Proof: Letd, = (ca,cb) and & = (a,b). We prove that dcd, and c@|d;. As &b|a and &|b, then cd|ca, cdy|cb.
Thus cd is a common divisor of ca and cb and hengé&d,. By the Bachet-Bezout Theorem we can find integers
X,y with d = acx+ bcy= c(ax+ by). But ax+ by is a linear combination of.& and so it is divisible by d There

is an integer s then such thatse¢ ax+ by. It follows that d = csa, i.e., cg|d;. O

|:| It follows similarly that(ca, cb) = |c|(a,b) for any non-zero integer c.

92 Lemma For nonzero integers a, b, c,
(a,bc) = (a, (a,b)c).

Proof: Since(a, (a,b)c) divides(a,b)c it divides bc. Thugcda, (a, b)c) divides a and bc and henged a, (a,b)c)|gcda, be).

On the other hand,a, bc) divides a and bc, hence it divides ac and bc. Therefarbc) divides(ac, bc) = c(a,b).
In conclusiona, bc) divides a and a,b) and so it dividega, (a,b)c). This finishes the prodi.

93 Theorem (a2,b?) = (a,b)?.

Proof: Assume thatm,n) = 1. Using the preceding lemma twice,
(P, n?) = (m?, (P, n)n) = (%, (n, (m,n)m)n).
As(m,n) = 1, this last quantity equalg’,n). Using the preceding problem again,

Thus(m,n) = 1 implies(n?,n?) = 1.
By Theoren®0,

and hence 2 b2
(@ormon)
By Theoren®1, upon multiplying bya, b)?, we deduce
(82,b%) = (a,b)2,

which is what we wanted.
94 Example Let (a,b) = 1. Prove thata+b,a?—ab+b?) = 1 or 3.

Solution: Letd = (a+b,a®— ab+b?). Nowd divides
(a+b)?>—a?+ab—b®=3ah
Henced divides ®(a+ b) —3ab= 3b2. Similarly, d|3a. But thend|(3a?,3b?) = 3(a?,b?) = 3(a,b)? = 3.
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95 Example Leta,a = 1,m,n be positive integers. Prove that

@—-1,a"-1)=a™v 1.

Solution: Setd = (m,n),sd = m,td =n. Thena™—1 = (a%)>— 1 is divisible bya® — 1 and similarly,a” — 1 is divisible by
a®—1. Thus(a®—1) |(@"—1,a"—1). Now, by the Bachet-Bezout Theorem there are integgraith mx+ ny= d. Notice that

x andy must have opposite signs (they cannot obviously be bothtivegaince them would be negative. They cannot both be
positive because theh> m+n, when in fact we havel < m,d < n). So, assume without loss of generality tkat 0,y < 0.
Sett = (@"—1,a"—1). Thent|(@™—1) andt|(a ™ —1). Hence,t|((@™—1)—a’(a "™ —1)) = a’ — 1. The assertion is
established.

. 2In+4 . . .
96 Example (IMO, 1959) Prove that the fractlom is irreducible for every natural number

Solution: 221n+4) — 3(14n+ 3) = —1. Thus the numerator and the denominator have no common faetater than 1.

97 Example (AIME, 1985) The numbers in the sequence
101,104,109 116,...

are of the forma, = 100+ n,n=1,2,.... For eachm letd, = (an,any1). Find m>a}xdn.
n=

Solution: We have the followingdy, = (100+n?,100+ (n+ 1)) = (100+n?,100+n?+2n+1) = (100+n?,2n+1). Thus
dn|(2(100+ n?)—n(2n+1)) =200—n. Therefored,|(2(200—n) +(2n+1)) =401. This means thal;|401 for alln. Could itbe
that large? The answer is yes, fortet 200, thenaygo = 100+ 2007 = 100(401) andayg; = 100+ 201° = 40501= 101(401).
Thus rrg:ivdn =401

98 Example Prove that ifmandn are natural numbers amdis odd, ther(2™—1,2"+1) = 1.

Solution: Letd = (2™—1,2" 4 1). It follows thatd must be an odd number, and' 2 1 = kd, 2" +1 = Id, for some natural
n—1

numbersk,|. Therefore, 2" = (kd+1)" =td + 1, wheret = (T) K™~ id"= =1 In the same manner™ = (Id —1)™ =
j=0
ud— 1, where we have used the fact tmats odd. Astd+ 1 =ud— 1, we must havel|2, whenced = 1.

99 Example Prove that there are arbitrarily long arithmetic progressiin which the terms are pairwise relatively prime.

Solution: The numbedem +1,k=1,2,..., mform an arithmetic progression of lengthand common differenam!l. Suppose
thatd|(Im!41),d|(sm+1),1 <l <s<m. Thend|(s(Im!+1) —I(sm+1)) = (s—1) <m. Thus 1< d < mand sod|m!. But
thend|(sm + 1—sm) = 1. This means that any two terms of this progression are coprime

100 Example Prove that any two consecutive Fibonacci numbers arevelagprime.

Solution: Letd = (fy, fu1). As for1 — fn = fn_1 andd divides the sinistral side of this equalit)},f,—1. Thusd|(fn— fh_1) =
fn—2. Iterating on this process we deduce tigy = 1 and sad = 1.
Aliter: By Cassini’s Identityf, 1y 1— f2 = (—1)". Thusd|(—1)",i.e.,d = 1.

101 Example Prove that
(fm7 fn) - f(n’mJ .

Solution: Set = (fn, fm),c = f(mn),a= (m,n). We will prove thatc|d andd|c.
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Sinceajmandaln, fa|fm andfy|f, by Theorem¥O. Thus

fa| ( fma fm)a

i.e.,cld.

Now, by the Bachet-Bezout Theorem, there are integgrsuch thakm+yn= a. Observe that,y cannot be both negative,
otherwisea would be negative. Aa|n,ajmwe havea < n,a < m. They cannot be both positive since treea xm+yn> m+n,
a contradiction. Thus they are of opposite signs, and wenassvithout loss of generality that< 0,y > 0.

Observe that
fyn = fafxm = fa—l ffxm + fa f—xm+l

upon using the identity
fort =fsa e+ fsfrpn

of Theoren24. As n|lyn,m|(—xm), we have thafy| fyn, fm| f_xm. This implies that fy, fm)|fyn and(fn, fm)|f_xm. Hence

(fn, fm)[ fafxmy 1.

We saw earlier thatf,, fm)| f_xm. If it were the case that

( fna fm) | f—Xm+1a

then( f,, fm) would be dividing two consecutive Fibonacci numbers, am@afittion to the preceding problem in the case when
(fn, fm) > 1. The case= 1 is a triviality. Thereford f,, fm)|fa, which is what we wanted to prove.

102 Example Prove that no odd Fibonacci number is ever divisible by 17.

Solution: Letd = (17, f), which obviously must be odd. Thet7, fn) = (34, f) = (fg, fn) = f(gn) = f1, f3 Or fo. This means
thatd = (17, f,) = 1,2 or 34. This forcesl = 1.

103 Example TheCatalan number of order is defined as

Prove thatC, is an integer for all natural numbens

Solution: By the binomial absorption identity,

2n+1/2n\ (2n+1
n+1\n/ \n+1/)
Since 21+ 1 andn+ 1 are relatively prime, and since the dextral side is an grtégmust be the case that- 1 divides <2nn> .

104 Example Letn be a natural number. Find the greatest common divisor of

() (5) o)

: 2n \ _ 2201
2k—1 ’
k=1

Solution: Since
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the gcd must be of the fornf2 Since the gcd must divid€21n> = 2n, we see that it has dividd 2!, wherel is the largest

power of 2 that divides. We claim that 21 divides all of them. We may write = 2'm, where.# is odd. Now,
2l+1m 2+1lm /ol +1im—_1
<2k—1> - 2k—1< 2k—2 )
But 2k—1 f2'* for k > 1. This establishes the claim.

105 Example Let any fifty one integers be taken from amongst the numbgts 1,100. Show that there are two that are
relatively prime.

Solution: Arrange the 100 integers into the 50 sets
{1,2},{3,4},{5,6}...,{99,100}.

Since we are choosing fifty one integers, there must be twiovthialie in the same set. Those two are relatively prime, as
consecutive integers are relatively prime.

106 Example Prove that any natural numbar> 6 can be written as the sum of two integers greater than 1, eftte
summands being relatively prime.

Solution: Ifniis odd, we may choose=2,b=n—2. If nis even, then is either of the fornkér 4k+ 2. If n = 4k, then take
a=2k+1,b=2k—1. These two are clearly relatively prime (why?)nl& 4k+ 2,k > 1 takea = 2k+ 3,b = 2k — 1.

107 Example How many positive integers 1260 are relatively prime to 12607

Solution: As 1260=22.32.5.7, the problem amounts to finding those numbers less than 12@hwane not divisible by
2, 3, 5, or 7. LetA denote the set of integers 1260 which are multiples of 2B the set of multiples of 3, etc. By the
Inclusion-Exclusion Principle,

[AUBUCUD)|

|Al+|B|+[C[+[D|
—|ANB|—|ANC|—|AND|
—|BNC|—|BND|—|CND|
+|ANBNC|+|ANBND|+|ANCND|
+/BNCND|—|]ANBNCND|

630+ 420+ 2524 180—210—126—90—84
—60—36+424+30+18+12—-6=972

The number of integers sought is then 126872= 288.

Practice

Problem 4.1.1 Show that Problem 4.1.3 Find two positive integers,& such that
(a,b)[a,b] =ab a’+b?=85113 and Icm(a,b) = 1764

for all natural numbers gb. Problem 4.1.4 Find a.b € N with (a,b) = 12, [a, b] = 432

Probl 4.1.2 Find| 23141!,29'37!).
robiem ind lcm ( ’ ) Problem 4.1.5 Prove that(a,b)" = (a",b") for all natural

numbers n.




Primes

39

Problem 4.1.6 Let ac N. Find, with proof, all be N such that
(2°—1)|(22+1).

Problem 4.1.7 Show thatn®+3n+1,7n*+ 18n* —n—2) =
1.

Problem 4.1.8 Let the integers @b, be defined by the reld
tion
an+bnv2=(1+v2)", neN.

Prove thatgcdan,by) =1V n.

Problem 4.1.9 Prove or disprove the following two proposgi

tions:

Problem4.1.11Let R, = 22" + 1 be the n-thFermat number.
Find (Fn, Fm).

Problem 4.1.12 Find the greatest common divisor of the se-
guence
16"+10n—-1,n=1,2,....

“Problem 4.1.13 Demonstrate thatn! +1,(n+1)! +1)=1.

Problem 4.1.14 Prove that any natural number » 17 can
be written as n=a+ b+ c where ab, c are pairwise relatively
prime natural numbers each exceedihg

(Hint: Considem mod 12. Write two of the summands in the

1. Ifab € N,a < b, then in any set of b consecutive in{el®rM 6k+sand the third summand as a constant.)

gers there are two whose product is divisible by ab.

2. If a,b,c,e Nja < b < ¢, then in any set of ¢ consec
tive integers there are three whose product is divis
by abc

Problem 4.1.10Let nk,n > k > 0 be integers. Prove that th
greatest common divisor of the numbers

Problem 4.1.15Prove that there are no positive integers
Ha, b,n > 1 with
ble (anibn”(an_i_bn)'
Problem 4.1.16 Prove that the binomial coefficients have the
Efollowing hexagonal property:
n+1 >
17\ k

o ()
ol (2 (1) ()

Problem 4.1.17 (Putnam, 1974)Call a set of integerson-
spiratorialif no three of them are pairwise relatively prime.
What is the largest number of elements in any conspiratorial

n
K+

equals

n\ /n+1 n-+k
(") (")
is1.
(Hint: Prove
a K\ /n+]
—1)! —(—1)k
> <J>< k) (1))
4.2 Primes

Recall that prime numbeis a positive integer greater than

subset of the integedsthrough16?

1 whose only positivesdrs are itself and 1. Clearly 2 is the only

even prime and so 2 and 3 are the only consecutive integechwhé prime. An integer different from 1 which is not prime is
calledcompositelt is clear that ifn > 1 is composite then we can writeasn=ab,1 <a<b<n,abeN.

108 Theorem If n > 1, thennis divisible by at least one prime.

Proof: Since n> 1, it has at least one divisor 1. By

the Well Ordering Principle, n must have a least positive

divisor greater than 1, say g. We claim that g is prime. Fordf then we can write g asgab, 1 <a<b < g. But
then a is a divisor of n greater than 1 and smaller than g, whichtradicts the minimality of gl

109 Theorem (Euclid) There are infinitely many primes.
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Proof: Let pi, p2,... pk be a list of primes. Construct the integer

N=ppz--- P+ 1

This integer is greater thaband so by the preceding problem, it must have a prime divis@tyzerve that p must
be different from any of ppo, ..., px since n leaves remainddrupon division by any of the;p Thus we have
shown that no finite list of primes exhausts the set of priireesthat the set of primes is infinité.

110 Lemma The product of two numbers of the fornk 4 1 is again of that form.

Proof: (4a+1)(4b+1)=4(4ab+a+b)+1.00
111 Theorem There are infinitely many primes of the form 4 3.

Proof: Any prime either equalg, or is of the formdk + 1. We will show that the collection of primes of the form
4k —1is inexhaustible. Let
{P1,p2,... pn}

be any finite collection of primes of the fodk— 1. Construct the number
N=4pip2---pn—1.

Since each jpis > 3,N > 11. Observe that N is not divisible by any of the primes in ourezilbn. Now either N
is a prime, in which case it is a prime of the fodk— 1 not on the list, or it is a product of primes. In the latter
case, all of the prime factors of N cannot be of the feilm- 1, for the product of any two primes of this form is
again of this form, in view of the preceding problem. Thus Nstrbe divisible by some prime of the fodk— 1
not on the list. We have thus shown that given any finite liptiaies of the fornslk — 1 we can always construct
an integer which is divisible by some prime of the falka- 1 not on that list. The assertion followsl

112 Example Prove that there are arbitrarily long strings that do notaimra prime number.

Solution: Letk € N,k > 2. Then each of the numbers
kl+2,...,kl+k

is composite.
113 Theorem If the positive integen is composite, then it must have a prime fagbowith p < /n.

Proof: Suppose that a-ab,1 < a< b < n. If both a and b are> /n, then n=ab > y/n\/n= n, a contradiction.
Thus n has a factog 1 and< /n, and hence a prime factor, which<s+/n. O

114 Example Find the number of prime numbets100.

Solution: Observe that/100= 10. By the preceding theorem, all the composite numbers in thged 0< n < 100 have
a prime factor amongst, 3,5, or 7. LetAny denote the multiples of# which are< 100. Then|A;| = 50, |As| = 33,|As| =
20, |A7| =14, |As| = 16, |Aq0| = 10, |A14| =7, [A1s| = 6, |Az1| =4, |Ags| = 2, |Ago| = 3, |A42| = 2,|A70| = 1, |A105| = 0, |Az10| = 0.
Thus the number of primes 100 is

= 100— ( number of composites< 1) — 1

= 4+4100— multiplesof 2 3, 5,0r 7<100—-1

= 44100— (50+33+20+14)+ (16+10+7+6+4+2)
—(3+2+1+0)—0-1

= 25

)

where we have subtracted the 1, because 1 is neither primengrosite.
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115 Lemma If pisa prime,(E) is divisible byp for all 0 < k < p.

Proof:

p(p—1)---(p—k+1)

(-
{

yields

p
k

k!

)=p(p—1)---(p—k+1),

whence (k! (E) Now, as k< p, p /k!. By Euclid’s Lemma, it must be the case thb<EJ> .0

116 Example Prove that ifp is a prime, therp divides 2 — 2.
Solution: By the Binomial Theorem:
2P—2=(1+1)P-2= (

as (g) = (E) = 1. By the preceding lemmaa divides each

assertion.

Practice

Problem 4.2.1 Prove that there are infinitely many primes
the formén+ 5.

Problem 4.2.2 Use the preceding problem to show that th
are infinitely many primes p such that4® is not a prime.

Problem 4.2.31If p and q are consecutive odd primes, prd
that the prime factorisation of $ q has at least three (nd
necessarily distinct) primes.

Problem 4.2.4 1. Let p be a prime and leta N. Prove,
by induction on n, that jgpn® —n).

2. Extend this result to all g Z.

)

p
p_

o))

of the terms on the dextral side of the aboves §3tablishes the

of 1).
4. Prove tha#2n’—n,ne Z.

ere 5. Prove thaB0|n® —n,n € Z.

Problem 4.2.5 Let p be an odd prime and lé4, b) = 1. Prove

Véhat b pp
t (a+ b, &> dividesp.
a+b

Problem 4.2.6 Prove that3,5, 7 is the only prime triplet of the
form pp+2,p+4.

Problem 4.2.7 Let n> 2. Prove that if one of the numbers

3. ProveFermat's Little Theoremif p Jh, then p(nP~1—

2" —1and2"+ 1is prime, then the other is composite.

4.3 Fundamental Theorem of Arithmetic

Consider the integer 133# is clearly divisible by 2 and so we obtain 13322- 666. Now, 666 is clearly divisible by 6, and

s01332=2-2-3-111 Finally, 111 is also divisible by 3 and

so we obtain 1332-2- 3-3-37. We cannot further decompose

1332 as a product of positive integers greater than 1, as&lB2 are prime. We will show now that such decomposition is

always possible for a positive integer greater than 1.

117 Theorem Every integer greater than 1 is a product of prime numbers.
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Proof: Letn> 1.If nis a prime, then we have nothing to prove. Assume that argosite and let gbe its least
proper divisor. By Theorem 4.5; ds a prime. Set B=qg1n;,1 < ng < n. If ny is a prime, then we arrived at the
result. Otherwise, assume thatis composite, and letxpe its least prime divisor, as guaranteed by Theorem 4.5.
We can write then B g102n2,1 < nz < Ny < n. Continuing the argument, we arrive at a chairem; >ny--- > 1,

and this process must stop before n steps, as n is a positegein Eventually we then have-ngiqz - -- gs. O

We may arrange the prime factorisation obtained in the gliegeTheorem as follows,
n=pips---p¥, & >0,8,>0,...,8 >0,

Pr<p2<--- < Py

where thep; are primes. We call the preceding factorisatiomahecanonical factorisatiorof n. For example 9325278 is the
canonical factorisation of 617400.

118 Theorem (Fundamental Theorem of Arithmetic) Every integer> 1 can be represented as a product of primes in only
one way, apart from the order of the factors.

Proof: We prove that a positive integer greater than 1 can only hanecanonical factorisation. Assume that

by b
n= pilpgz gS:qllqzz...qtb[

are two canonical factorisations of By Euclid’s Lemma (example 1.2) we conclude that every p beuatq and

every g must be a p. This implies that$. Also, fromp < pa<--- < psand q < ¢z < --- < ¢ we conclude that

pj=q;,1<j<s

If a; > b; for some j then, upon dividing b)}j)jp we obtain

aj—bj b _b bi_1 b;
pi‘lpgzpjj LR ZS:pllpZZpJJ—llerf gs’
which is impossible, as the sinistral side is divisible Qyapd the dextral side is not. Similarly, the alternative
aj < bj for some j is ruled out and sgj & bj for all j. This finishes the proof]

Itis easily seen, by the Fundamental Theorem of Arithméhiat if a has the prime factorisatica—= pi‘l pgz ---pé andb

has the prime factorisatidn= p?l pgz ‘e pﬁ”, (it may be the case that some of tgeand some of théy are zero) then

(a’ b) _ plmin(al-,blj pg"in(az,bz) . pnmin(an-,bnjl (41)
and also o . o
[a,b] = pTaX(al-, 1) p;nax(az, 2) . pnmax(an-, n) (4.2)

Sincex+y = maxXx,y) + min(x,y), it clearly follows that

ab=(a,b)[a,b].
119 Example Prove that/2 is irrational.

Solution: Assume that/2 = a/b with relatively prime natural numbeesb. Then D% = a°. The sinistral side of this last
equality has an odd number of prime factors (including rigipas), whereas the dextral side has an even number of prime
factors. This contradicts the Fundamental Theorem of Arétic.

120 Example Prove that if the polynomial
p(x) = aX" +aX" 1+ +aq_1X+an

with integral coefficients assumes the value 7 for four irdegalues of, then it cannot take the value 14 for any integral value
of x.
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Solution: First observe that the integer 7 can be decomposedt most three different integer factors-7-7(1)(—1). Assume
thatp(ayx) — 7 = O for distinctay, 1 < k < 4. Then

P(X) =7 = (x—ag)(X—az)(x—ag) (x—a4)q(x)

for a polynomialq with integer coefficients. Assume that there is an integéwith p(m) = 14. Then
7=p(m) —7 = (m—ay)(m—az)(m—ag)(m—as)q(m).

Since the factors—ay are all distinct, we have decomposed the integer 7 into at fear different factors. This is impossible,
by the Fundamental Theorem of Arithmetic.

121 Example Prove that the product of three consecutive integers isrreeperfect power (i.e., a perfect square or a perfect
cube, etc.).

Solution: Let the integer b@— 1)n(n+1) = (n>—1)n. Sincen?— 1 andn are relatively prime, by the Fundamental Theorem of
Arithmetic,n?— 1 is a perfeckth power(k > 2) andnis also a perfedtth power. But theny? — 1 andn® would beconsecutive
perfectkth powers, sheer nonsense.

122 Example Prove thatm® + 3m*n— 5mPn? — 15n?n® + 4mrf* + 12n° is never equal to 33.

Solution: Observe that
mP + 3m*n— 5mPn? — 15m?nd + 4mrf* + 12n°

= (m—2n)(m—n)(m+n)(m+2n)(m+ 3n).

Now, 33 can be decomposed as the product of at most foureliffartegers 33- (—11)(3)(1)(—1). If n£0, the factors in the
above product are all different. They cannot be multiply3o3y the Fundamental Theorem of Arithmetic, as 33 is the pebd
of 4 different factors and the expression above is the prioafug different factors fon # 0.. If n= 0, the product of the factors
ismP, and 33 is clearly not a fifth power.

123 Example Prove that the sum
S=1/2+1/3+1/4+---4+1/n

is never an integer.

Solution: Letk be the largest integer such th&t2 n, andP the product of all the odd natural numbers not exceedinghe

. 1 .
number 2~ 1PSis a sum, all whose terms, except f&FQP?, are integers.

124 Example Prove that there is exactly one natural number n for with- 211+ 2" is a perfect square.

Solution: If k? = 28 + 2114 2" — 2304+ 2" = 48° 4+ 2", thenk? — 48 = (k—48)(k+ 48) = 2". By unique factorisation,
k—48=25 k+48=2' s+t =n. But then 2—25=96=3.2° or 25(2'"5—1) = 3. 2°. By unique factorisatiors = 5,t —s =2,
givings+t=n=12

125 Example Prove that in any set of 33 distinct integers with prime feg@mongst5,7,11,13,23}, there must be two
whose product is a square.
Solution: Any number in our set is going to have the form

537711613923

Thus to each number in the set, we associate a véatbrc,d, f). These vectors come in 32 different flavours, according to
the parity of the components. For example (even, odd, odzh,exdd) is one such class. Since we have 33 integers, two (at
least) will have the same parity in their exponents, and tbdyrct of these two will be a square.
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126 Example (IMO, 1985) Given a set# of 1985 distinct positive integers, none with a prime fagorater than 26, prove
that.# contains a subset of four distinct elements whose produleeiourth power of an integer.

Solution: Any number in our set is going to be of the form
233P5e7d11713917119/23¢

Thus if we gather 513 of these numbers, we will have two diffiéiones whose product is a square.

Start weeding out squares. Since we have 19833 numbers, we can find a pair of distirsgt b; such thata;b; = cf.
Delete this pair. From the 1983 integers remaining, we cahdipair of distinciay, b, such thatyb, = c%. Delete this pair.
From the 1981 integers remaining, we can find a paibs such thatagbs = c%. We can continue this operation as long as
we have at least 513 integers. Thus we may perform this apemat- 1 times, weren is the largest positive integer such that
1985—2n> 513 i.e.,n = 736. Therefore, we are able to gather 737 pajtdy such thatyby = cﬁ. Now, the 737 numbers
¢ have all their prime factors smaller than 26, and since ¥3%1.3 we may find two distinctm sayc; andc;,i # j, such that
CCj = a%, a perfect square. But thegc; = a? implies thatajbja;bj = a*, a fourth power. Thus we have found four distinct
numbers in our set whose product is a fourth power.

127 Example Let any fifty one integers be taken from amongst the numbgts 1,100. Show that there must be one that
divides some other.

Solution: Any of the fifty one integers can be written in thenfio2®m, wheremis odd. Since there are only fifty odd integers
between 1 and 100, there are only fifty possibilitiesrforThus two (at least) of the integers chosen must share the edth
part, and thus the smaller will divide the larger.

128 Example (USAMO 1972) Prove that

[abc?  (abc)?
[a,b][b,c][c,a]  (a,b)(b,c)(c,a)’

Solution: Put
a=[]p, b=]] rl c=]]nl,
with primespg. The assertion is equivalent to showing
2 ma)(akv Bkv M() - ma)( aka Bk) - max(akv M() - maX(Bkv M()

= 2min(a, B, k) —min(ay, B) —min(ai, %) — min( B, %)
By symmetry, we may assume, without loss of generality, that B« > y. The equation to be established reduces thus to the
identity
20— O — Ok — B = 2 — B — k— K-

129 Example Prove than = 24 is the largest natural number divisible by all integrdl < a < v/n.

Solution: Supposa is divisible by all the integers Vvn. Letpr =2,p, =3,...,p be all the primes< v/n, and letk; be the
unique integers such thafj <yn< pk . Clearlyn'/2 < pfttiple™ . ¥t | etlem(1,2,3,..., VA — 1, [|vA])) =
Clearly therk = ptpk2... pi. Hencepkﬁlpszrl - pi Tt < K2 and thusn'/2 < K2. By hypothe5|sn must be divisible by<

and soK < n. Consequentlyrn'/2 < n?. This implies that < 4 and san < 49. By inspection, we see that the only valid values
fornaren=2,4,6,8,12 24.
130 Example (Irving Kaplansky) A positive integemn has the property that for@ 1 < m<n,

S=l+(l+1)+...+m

is never divisible byn. Prove that this is possible if and onlyrifis a power of 2.
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Solution: Setn = s2X with s odd. Ifs=1,2S= (I + m)(m—1+ 1), which has one factor even and one factor odd, cannot be
divisible by 2h = 21, since, its even factor is less than But if s> 1, thenSis divisible byn, with 0 < | < m< n, if we take

m=(s+21-1)/2

and
[ 1t m—2ktl g 2kl
"l 1+m-—s, s< 241,

n+1 .
131 Example LetO<a; <ap < --- < a < n, wherek > U%JJ, be integers. Prove that

at+aj=a
is soluble.
Solution: Thek— 1 positive integersy —ay,2 < i <Kk, are clearly distinct. These, together with thgiven distincta’s, give
2k— 1> n positive integers, each not greater tharHence, at least one of the integers is common to both setsasat least

oncea; —a; = a;.
The sequencgn/2]|+1,|n/2||+2,...,n, shows that fok = || (n+ 1) /2| the result is false.

132 Example LetO< a; < ap < --- < @y < 2n be integers such that the least common multiple of any tweeds 2. Prove
2n
thata; > UEJJ.

Solution: It is clear that no one of the numbers can dividettaero(otherwise we would have an Ica2n). Hence, writing
a = 2%A,, A odd, we see that all th&, are different. Since there aneof them, they coincide in some order with the set of all
positive odd numbers less than.2

Now, consider; = 21A. If a; < ||2n/3]], then 2y = 213A; < 2n, and 3\; < 2n. Since 3\; would then be an odd number
< 2n, 3A; = A| for somej, anda;j = 2'13A;. Thus eitheriay,aj] = 213A; = 3a; < 2n, or [a,aj] = 2'13A; = aj < 2n. These
contradictions establish the assertion.

133 Example (Putnam, 1980) Derive a formula for the number of quadruplesb, c,d) such that
3'7°=[a,b,c] = [b,c,d] =[c,d,a] = [d,a,b].
Solution: By unique factorisation, each afb, c,d must be of the form37",0 < m<r,0 < n < s. Moreover,.# must equal
4
r for at least two of the four numbers, andnust equak for at least two of the four numbers. There e<rg> r? = 6r2 ways

. 4 .
of choosing exactly two of the four numbers to have exponeé&) r = 4r ways of choosing exactly three to have exponent

4 : . .
r and (4) = 1 of choosing the four to have exponentThus there is a total of 4 4r + 6r2 of choosing at least two of the

four numbers to have exponentSimilarly, there are 4 4s+ 65> ways of choosing at least two of the four numbers to have
exponens. The required formula is thus
(1+4r +6r2)(1+4s+65%).

Practice

Problem 4.3.1 Prove thatlog, 47 is irrational. Problem 4.3.2 Prove that

log3
log2
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is irrational. Problem 4.3.12Let2 = p;,3 = py,... be the primes in their
natural order and suppose thatn10and thatl < j < n. Set

Problem 4.3.3 Find the smallest positive integer such that

N = e Pjm1— LNy =2 e Pj—1—1,. ..
n/2is a square and f3is a cube. L= PPz P LRz = SPibe P-4
and

Problem 4.3.4 How many integers from to 10?° inclusive, Np; = Pjp1pz2---pj—1—1
are not perfect squares, perfect cubes, or perfect fifth pgveprove

: j <i<n,divi <
Problem 4.3.5 Prove that the sum 1. Each p,j <i < n, divides at most one of thg;N1 <

k<
1/3+1/5+1/7+---+1/(2n+1] 2. Thereis a j1 < j < n, forwhich p >n—j+1.
is never an integer. 3. Let s be the smallest j for whichy p- n— j + 1. There
isat 1<t < ps suchthatall of p,... p, fail to divide
(Hint: Look at the largest power of 8 n). tpip2---ps—1—1,and hence p,1 < p1p2- - Ps.

4. Thesaboveis 4andsop_1—2>sandppz---Ps<

Problem 4.3.6 Find min36< — 5%,
k>1 Ps+1--- Pn.

5. (Bonse’s Inequality) For i 4, 2 L <P1 Pn
(Hint: Why is 36— 1— 5% £ 0?) ( quality) Pra1 < ProPn
Problem 4.3.13 Prove that30 is the only integer n with the

Problem 4.3.7 (AIME 1987) Find the number of Orderejfollowing property: if1 <t < nand(t,n) — 1, then t is prime.

triples (a,b,c) of positive integers for whichla,b] =

100Q [b,c] = [a,c] =200Q . .
Problem 4.3.14 (USAMO 1984) 1. For which positive

integers n is there a finite set, ®f n distinct positive
integers such that the geometric mean of any subset of
S, is an integer?

Problem 4.3.8 Find the number of ways of factorint332
as the product of two positive relatively prime factors eg@ch
greater thanl. Factorisations differing in order are consig

ered the same. 2. Is there annfinite set S of distinct positive integers such
that the geometric mean of any finite subset of S is an
Answer: 3. integer.

Problem 4.3.9Let pi,py,...,pr be different primes anglProblem4.3.15 1. (Putnam 1955)Prove that there is no
ap,ay,...a be natural numbers. Find the number of wayq of  triplet of integers(a, b, c), except for{a,b,c) = (0,0,0)
factoring g p5? - - pf* as the product of two positive relatively for which

prime factors each greater thah Factorisations differing in a+bv2+cv3=0.

order are considered the same. o
2. (Putnam 1980)Prove that there exist integers a, b, c,

not all zero and each of absolute value less than a mil-

41
Answer: 2 1. lion, such that

Problem 4.3.10Let n= p3p3 .- p¥ and m= pd*p32... p?, la+bv2+cv3 <10
the p’s being different primes. Find the number of the comion
factors of m and n 3. (Putnam 1980)Let a b, c be integers, not all zero and
each of absolute value less than a million. Prove that
A :
nswer t la+bv2+cv3| > 1072
[T (14 min(a, by)).
k=1 Problem 4.3.16 (Btvds 1906)Let a,ay,...,a, be any per-
mutation of the numberk 2,...,n. Prove that if n is odd, the

Problem 4.3.11 (USAMO 1973)Show that the cube roots hProduct

three distinct prime numbers cannot be three terms (not hec- (a1 —1)(az—2)-+ (@ —n)
essarily consecutive) of an arithmetic progression. is an even number.
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Problem 4.3.17 Prove that from any sequence formed by gProblem 4.3.19 Prove that from any one hundred integers it
ranging in a certain way the numbers frobnto 101, it is al- | is always possible to choose several numbers (or perhas, on
ways possible to choosel numbers (which must not necgsaumber) whose sum is divisible b0.

sarily be consecutive members of the sequence) which fom an

increasing or a decreasing sequence. Problem 4.3.20 Given n numbers Xy, . .. , X, each of which

is equal to+1, prove that if

Problem 4.3.18 Prove that from any fifty two integers it is -
ways to choose two, whose sum, or else, whose differenge, is

divisible by100. then n is a multiple o#.

X1X2 + XoX3 + - -+ +XnXg = 0,
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Linear Diophantine Equations

5.1 Euclidean Algorithm

We now examine a procedure that avoids factorising two &t order to obtain their greatest common divisor. It Iedghe
Euclidean Algorithmand it is described as follows. Latb be positive integers. After using the Division Algorithnpeatedly,
we find the sequence of equalities

a = b +ry, 0<ry<hb,
b = TIa02+r3 0<r3<ry,
ro = I303trs 0<ryg<rs,
. . (5.1)
fh—2 = I—10n—1+M 0<rp<rn_g,
fh—1 = TInOn.

The sequence of remainders will eventually reach,a which will be zero, sincd,ro,r3,... is @ monotonically decreasing
sequence of integers, and cannot contain more h@ositive terms.

The Euclidean Algorithm rests on the fact, to be proved bgelbat(a,b) = (b,r) = (r2,r3) =--- = (rh_1,fn) =rn.
134 Theorem Prove that ifa, b, n are positive integers, then

(a,b) = (a+nb,b).

Proof: Setd= (a,b),c=(a+nb,b). As da,d|b, it follows that d(a+ nb). Thus d is a common divisor of both
(a+nb) and b. This implies that|d. On the other hand,|€a-+ nb),c|b imply that ¢((a+nb) —nb) =a. Thus cis
a common divisor of a and b, implying thatlc This completes the prodil

135 Example Use Theorem. 34to find (3456 246).

Solution: (3456 246) = (13- 246+ 158 246) = (158 246), by the preceding example. Nowi58 246) = (158 158+ 88) =
(88,158). Finally, (88,158) = (70,88) = (18,70) = (16,18) = (2,16) = 2. Hence(3456 246) = 2.

136 Theorem If ry, is the last non-zero remainder found in the process of théidaan Algorithm, then

r=(ab).

48
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Proof: From equation$.1

ro = a—bqg
rs = b-—rxq
g = TI2—1r303
l = TI'n-2—TIn-10n-1
Letr=(a,b). From the first equation,|r,. From the second equationrg. Upon iterating the process, we see that

rro.

But starting at the last equatiof.1 and working up, we see that|rn_1,|fn—2,...rn|r2,Mlb,ry|a. Thus pis a
common divisor of a and b and sgifa,b). This gives the desired resulil

137 Example Find (23,29) by means of the Euclidean Algorithm.

Solution: We have
29=1-23+6,

23=3.6+5,
6=1-5+1,
5=5.1.

The last non-zero remainder is 1, tH28,29) = 1.
An equation which requires integer solutions is calleticghantine equatiorBy the Bachet-Bezout Theorem, we see that
the linear diophantine equation
ax+by=c

has a solution in integers if and only(#, b)|c. The Euclidean Algorithm is an efficient means to find a sohutmthis equation.

138 Example Find integers,y that satisfy the linear diophantine equation

23+ 2% = 1.

Solution: We work upwards, starting from the penultimataaity in the preceding problem:
1=6-1-5
5=23-3-6,
6=29-1-23
Hence,

This solves the equation, with= -5,y = 4.

139 Example Find integer solutions to
23X +2%="T.

Solution: From the preceding example(23%) + 29(4) = 1. Multiplying both sides of this equality by 7,
23(—35)+29(28) =7,

which solves the problem.
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140 Example Find infinitely many integer solutions to

23x+ 2%y = 1.

Solution: By Examplel38 the paing = —5,yp = 4 is a solution. We can find a family of solutions by letting

X=—-5+2%, y=4-23, tecZ.
141 Example Can you find integers, y such that 3456+ 246y = 73?

Solution: No.(3456246) =2 and 2}73.

142 Theorem Assume thag, b, c are integers such théa, b)|c. Then given any solutioifixg,yo) of the linear diophantine
equation
ax+by=c

any other solution of this equation will have the form
X = +t9 —yo—t2
- XO d ) y - yO d )

whered = (a,b) andt € Z.

Proof: Itis clear that if (xo,Yo) is a solution of ax- by = ¢, then x=xg+tb/d,y = yp—ta/d is also a solution.
Let us prove that any solution will have this form.

Let (X,y) satisfy ax+ by = c. As ax + by = ¢ also, we have

a(X' —xo) =b(yo—Y).

Dividing by d= (a,b),
a b
a(XI—XO) = a(yo—)/)-
Since(a/d,b/d) = 1, g|(yo—)/), in virtue of Euclid’'s Lemma. Thus there is an integer t sukt tg =yo—VY,

that is, y=yp—ta/d. From this
E(X/— )= Etg
d* gt
which is to say %= X +tb/d. This finishes the proof]

143 Example Find all solutions in integers to
3456<+ 246y =234

Solution: By inspection, 3456-1) + 246(15) = 234. By Theorem142, all the solutions are given by= —1+ 123y =
15-1728,t € Z.

Practice

Problem 5.1.1 Find the following: 4. (809864307(8173826342
1. (34567987)
2. (560,600

Problem 5.1.2 Solve the following linear diophantine equa-
3. (4554 36) tions, provided solutions exist:
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1. 24x+25y=18 tices are(0,0), (b,a), (x,y) is

|by—ax

2. 3456¢+ 246y = 44 )

3. 1998+ 2000/= 33
+ v Problem 5.1.4 A woman pay$2.78 for some bananas and

eggs. If each banana cos$9.69 and each egg cos®$0.35,
Problem 5.1.3 Prove that the area of the triangle whose vehow many eggs and how many bananas did the woman buy?

5.2 Linear Congruences

We recall that the expressi@x=b modn means that there tse Z such thatax = b+ nt. Hence, the congruencial equation
in X, ax=b modn is soluble if and only if the linear diophantine equatiax+ ny = b is soluble. It is clear then that the
congruence

ax=b modn

has a solution if and only ifa, n)|b.

144 Theorem Leta, b, nbe integers. If the congruenag=b mod n has a solution, then it hda, n) incongruent solutions
modn.

Proof: From Theoreml42we know that the solutions of the linear diophantine equatin+ ny = b have the
form x=xp+nt/d,y =yo—at/d,d = (a,n),t € Z, where ¥, Yo satisfy ax+ ny=b. Letting t take on the values
t=0,1,...((a,n) — 1), we obtain(a, n) mutually incongruent solutions, since the absolute difiee between any
two of them is less than if x = xo + nt’/d is any other solution, we writé ast =qd+r,0<r < d. Then

Xo+n(qd+r)/d
Xo+ng+nr/d
Xo+nr/d modn.

X

Thus every solution of the congruence=ab modn is congruent modn to one and only one of the d values
xo+nt/d,0 <t <d-—1 Thus if there is a solution to the congruence, then there anecdngruent solutions

modn.O

145 Example Find all solutions to the congruence S 3 mod 7

Solution: Notice that according to Theoreim4, there should only be one solution mod 7,(8s7) = 1. We first solve the
linear diophantine equatiorxs- 7y = 1. By the Euclidean Algorithm

7 = 5142

5 = 2.2+1

2 = 2.1
Hence,

1 = 5-2.2

2 = 7-5-1,
which gives

1=5-2.2=5-2(7-5-1)=5-3—-7-2.
Whence 3=5(9) — 7(6). This gives 59=3 mod 7 which is the same as3=3 mod 7. Thux=2 mod?7.

146 Example Solve the congruence
3x=6 mod 12
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Solution: As(3,12) = 3 and 36, the congruence has three mutually incongruent solutiogsn&ection we see that=2 is
a solution. By Theoreri42, all the solutions are thus of the forxa= 2+ 4t t € Z. By lettingt = 0,1, 2, the three incongruent
solutions modulo 12 are= 2,6, 10.

We now add a few theorems and definitions that will be of usbeérfature.

147 Theorem LetXx, y be integers and let, n be non-zero integers. Then
ax=ay modn

if and only if N
= d —.
X=Yy mo an

Proof: If ax=ay modn then dx—y) = sn for some integer s. This yields

(X_y) i — SL.
(an) (an)

Since(a/(a,n),n/(a,n)) = 1 by Theoren®0, we must have

(a7n) |(X_y)7

by Euclid’s Lemma (Lemnt&0). This implies that

n
X=y mod an

Conversely if xy mod

implies

n
(a,n)

an
ax=ay mod ——

(an)’

upon multiplying by aAs (a,n) divides a, the above congruence implies a fortiori that-aey = tn for some
integer t. This gives the required resilt.

Theoreml47gives immediately the following corollary.

148 Corollary If ax=ay modnand(a,n) =1, thenx=y modn.

Practice

Problem 5.2.1 Solve the congruend®x =12 mod 14 Problem 5.2.2 How many x38 < x < 289satisfy

3x=8 mod 172

5.3 A theorem of Frobenius

If (a,b) =d > 1 then the linear formax+ by skips all non-multiples ofl. If (a,b) =1, there is always an integer solution
to ax+ by = n regardless of the integer We will prove the following theorem of Frobenius that telis when we will find
nonnegative solutions @x+ by =n.

149 Theorem (Frobenius) Let a,b be positive integers. Ifa,b) = 1 then the number of positive integers m that cannot be
written in the formar 4+ bs= mfor nonnegative integers r, s equéds—1)(b—1)/2.
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Proof: Let us say that an integer n &tainablaf there are nonnegative integerssrwith ar+bs=n. Consider
the infinite array

0 1 2 ... k ... a-1
a a+1 a+2 ... a+k ... 2a—-1
2a 2a+1 2a+2 ... 2a+k ... 3a—-1

The columns of this array are arithmetic progressions witmeon difference a. The numbers directly below a
number n have the form-hka where k is a natural number. Clearly, if n is attainablejsa+ ka, implying thus
that if an integer n is attainable so is every integer dirgditlow it. Clearly all multiples of b are attainable. We
claim that no two distinct multiples of b and wb with0 < v,w < a— 1 can belong to the same column. If this
were so then we would have ¥bwb moda. Hence &v—w) =0 moda. Since(a,b) = 1 we invoke Corollary
5.1to deduce v w=0 moda. Sinced < v,w < a— 1, we must have ¥ w.

Now we show that any number directly above one of the mutifil® < v < a— 1is non-attainable. For a number
directly above vb is of the form vbka for some natural number k. If vbka were attainable, then axby=vb—ka
for some nonnegative integersyxThis yields by< ax+ by = vb—ka < vb. Hence,0 <y < v < a. This implies
that y#Z v modb. On the other hand, two numbers on the same column are cengrmoda. Therefore we
deduce vb= bv—ka = ax+ by moda which yields bv= by moda. By Corollary148we obtain v=y moda.
This contradicts the fact th&t<y<v< a.

Thus the number of unattainable numbers is precisely thebewsrthat occur just above a number of the form
vb,0<v<a—1. Now, onthe j-th column, there afeb— j)/a values above vb. Hence the number of unattainable

numbers is given by
a—la—1

vb—j (a—1)(b—1)
ZZ a 2 ’

v=0 j=0

as we wanted to shol.

The greatest unattainable integer occurs just aljavel)b, hence the greatest value that is not attainablais1)b—a,
which gives the following theorem.

150 Theorem Leta,b be relatively prime positive integers. Then the equation
ax+by=n

is unsoluble in nonnegative integety for n=ab—a—b. If n>ab—a—Db, then the equation is soluble in nonnegative integers.

151 Example (Putnam, 1971) A game of solitaire is played as follows. After each play,ading to the outcome, the player
receives eithea or b points, @,b € N,a > b), and his score accumulates from play to play. It has beenatbthat there are
thirty five non-attainable scores and that one of these isB&la andb.

Solution: The attainable scores are the nonnegative irgexjehe formax+ by. If (a,b) > 1, there are infinitely many such
integers. Hencéa, b) = 1. By Theoreml49, the number of non-attainable score&s-1)(b—1) /2. Therefore(a—1)(b—1) =
70=2(35) =5(14) = 7(10). The conditions > b, (a,b) = 1 yield the two possibilitea =71 b=2 anda=11b=8. As
58=0-71+2- 29, the first alternative is dismissed. The linext18y = 58 passes througl®, —1) and(—2,10) and thus it
does not pass through a lattice point in the first quadrarg.urtique solution ia=11b=8.

152 Example (AIME, 1994) Ninety-four bricks, each measuring 4 10" x 19”, are to be stacked one on top of another to
form a tower 94 bricks tall. Each brick can be oriented so ittdbutes 4 or 10’ or 19’ to the total height of the tower. How
many different tower heights can be achieved using all 9%@biricks?
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Solution: Let there be,y,z bricks of height 4,10”, and 19 respectively. We are asking for the number of different sums

4x+10y+ 19z

with the constraintg > 0,y > 0,z> 0,x+y+z=94.

Now, 4x+ 10y + 19z < 19-94 = 1786 Letting x = 94—

y—2z we count the number of different nonnegative integral

solutions to the inequality 3763(2y+5z) < 1786y+2z< 94, thatis 3/+5z< 470 y+z< 94. By Theoreml50, every integer
> (2—1)(5—1) =4 can be written in the formy2t 5z, and the number of exceptionsB—1)(5—1)/2=2, namelyn=1 and
n= 3. Thus of the 471 nonnegative integers 470 we see that 469 can be written in the fonm 2y+5z. Usingx=96—x—Y,
n,4 < n <470 will be “good” only if we have 476-n = 3x+ 5z By Theoreml49there arg3—1)(5—1)/2 = 4 exceptions,
each< 8, namelyn = 1,2,4,7. This means that 463, 466, 468, and 469 are not representathie form &4+ 10y+ 19z Then
every integen,0 < n < 470 except for 1, 3, 463, 466, 468, and 469 can be thus repegsemd the number of different sums

is471—-6=465

153 Example
only if there exist integerm, a, b with

1991

(*)

2. Find the largest positive rational with denominator 1
with denominators less than 1991.

. a

Solution: (a) If(x) holds the = 181m

n
1991

b
+ im doesthe t

1. Let(n,1991) = 1. Prove thati is the sum of two positive integers with denominatod 991 if an

1<m<10,a>1,b>1 mn=1la+181h.

gt cannot be written as the sum of two positive rationathea

. N a b
. - — — > = =
rick Conversely,m ; + < fora,b>1,(ar)=(b,s) =1,

andr,s < 1991, we may suppose= 181r;,s= 11s; and themr;s; = 11as + 181bry, which leads ta'1|11as and sori|s;.

Similarly, s|r1, whencer; = s; = m, say, and ) follows.
(b) Any n > 170,(n,1991) = 1 satisfieq*) with b=1 and.#
except ifm=1,n < 180 but thenn would not be of the fornm

such thaimnis of the formmn= 181 mod 11. Fomn> 181
=181 mod11.

But n= 170 does not satisf{x«); for we would have 176 181b mod 11, scb =m mod 11, which yield® > m, but

170m< 181. The answer is thus 170991.

Practice

Problem 5.3.1 Let a b, ¢ be positive real numbers. Prove th
there are at least%/2ab pairs of integersgx, y) satisfying

x>0,y>0, ax+hy<c.

Problem 5.3.2 (AIME, 1995) What is largest positive integd
that is not the sum of a positive integral multiple4#fand a
positive composite integer?

Problem 5.3.3Let a> 0,b > 0, (a,b) = 1. Then the numbe
of nonnegative solutions to the equatiorHaky = n is equal

to n n

[%] or [ab] +1

aProblem 5.3.4 Let ab € N,(a,b) =1. Let §n) denote the
number of nonnegative solutions to

ax+by=n.

lEvaluate

S(n)

n

lim

n—oo

 Problem 5.3.5 (IMO, 1983) Let a b,c be pairwise relatively
prime integers. Demonstrate thaabc—ab— bc— ca is the
largest integer not of the form

(Hint: [s] —[t] =[s—t] or [s—t] +1.)

bcx+acy+abz x>0,y>0,z>0.
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5.4 Chinese Remainder Theorem

In this section we consider the case when we have multiplgre@mces. Consider the following problem: find an integer
which leaves remainder 2 when divided by 5, is divisible bgtTd leaves remainder 4 when divided by 11. In the language of
congruences we are seekixguch that

X = 2 mod 5
X =0 mod 7,
X = 4 mod 11

One may check that= 147 satisfies the requirements, and that in fact, so doesatlaengtric familyx = 147+ 385t € Z.

We will develop a method to solve congruences like this orfee Method is credited to the ancient Chinese, and it is thus
called theChinese Remainder Theorem.

154 Example Find x such that
Xx=3 mod 5ank=7 mod 11

Solution: Sincex = 3+ 5a, we have 1% = 33+ 55a. Asx =7+ 11b, we have X =35+ 55b. Thusx =11x— 10x= 33— 70+
55a— 110b. This means that = —37= 18 mod 55. One verifies that all the numbe&rs 18+ 55t € Z verify the given
congruences.

155 Example Find a number n such that when divided by 4 leaves remaindeh@n divided by 5 leaves remainder 1, and
when divided by 7 leaves remainder 1.

Solution: We wanh such that

n= 2 mod 4
n= 1 mod 5
n= 1 mod 7

This implies that
35n= 70 mod 140
28n= 28 mod 140
20n= 20 mod 140

As n=21n—20n, we haven = 3(35n—28n) — 20n= 3(70—28) —20= 106 mod 140. Thus alt = 106 mod 140 will
do.

156 Theorem (Chinese Remainder Theorem) Letmy,mp,...mg be pairwise relatively prime positive integers, each egeee
ing 1, and letay, ay, ... ax be arbitrary integers. Then the system of congruences

X = a mod m,
X = a mod m,
X = a mod my

has a unique solution moduto;m, - - - my.

Proof: SetR=mm---m¢/m;,1 < j <k Let Qj be the inverse of P modm;, i.e., BQ; =1 modm;, which
we know exists since all thg e pairwise relatively prime. Form the number

X=a1P1Q1+aPQo + - - - + aRQx.

This number clearly satisfies the conditions of the theofEme.uniqueness of the solution modulgm- - - m can
be easily established]




56 Chapter 5

157 Example Can one find one million consecutive integers that are ncrsgfree?

Solution: Yes. Lep1, p2, . . ., P1oooooobe a million different primes. By the Chinese Remainder Tapq there exists a solution
to the following system of congruences.

X = -1 mod p?,
X = ) mod p3,
x = —1000000  modpZy00000

The numberg+1,x+2,...,x+ 21000000 are a million consecutive integers, each of whidivisible by the square of a prime.

Practice

Problem 5.4.1 Solve the following systems: Problem 5.4.2 (USAMO 1986) 1. Do there exist fourteen
consecutive positive integers each of which is divisible
1. x=-1 mod4x=2 mod5 by one or more primes,@ < p < 11?
2.4x=3 mod7Zx=10 mod 11
2. Do there exist twenty-one consecutive integers each of
3.5x=2 mod§ 3x=2 mod9x=0 mod1l which is divisible by one or more primes2< p < 13?
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Number-Theoretic Functions

6.1 Greatest Integer Function

The largest integer not exceedirgs denoted by x| or || x|]. We also call this function thoor function. Thug|x|| satisfies
the inequalitiexx— 1 < || x]] < x, which, of course, can also be written jgg|| < x < ||x|| + 1. The fact that|x]| is theunique
integer satisfying these inequalities, is often of use. W atilise the notatiodx} = x— || x|, to denote the fractional part of
x, and||x|| = q;iQ |x—n| to denote the distance of a real number to its nearest intAgeseful fact is that we can write any real

numberxin the formx = | x|| + {x},0 < {x} < 1.
The greatest integer function enjoys the following projesrt

158 Theorem Leta,B € R,acZ,neN. Then
1 |a+a]=|a]+a

2.1 9=l

n

3. lall+ Bl <lla+Bl <[alj+[Bl+1

Proof:
1. Letm=||a+al. Thenm< a+a<m+1 Hence m-a< a < m—a+ 1. This means thatma=|a|,
which is what we wanted.
2. Writea/nasa/n=|a/n||+6,0< 6 < 1. Since fa/n|| is an integer, we deduce by (1) that

lal = [nla/n]+n6]=n[a/n]+|n6].
Now,0 < ||[nf|| <nb < n,and so0 < [[nB]|/n< 1. If we let® = ||n6||/n, we obtain

uin“:u%ﬂﬂa, 0<o<1

This yields the required result.

3. From the inequalitiesr —1 < ||| < a,B—1<|B] <Bwegeta+B—-2<|a]+][B] <a+p. Since
lla ]|+ || B] is an integer less than or equal to+ 3, it must be less than or equal to the integral parbof 3,
i.e. o+ B]. We obtainthuga ||+ || 8] < |la + B]]- Also,a + B is less than the integefa || + || B]| + 2, sO
its integer part|a + B ]| must be less thaiha || + | 8] +2, but||a + B < [la ]|+ ||B]]+2yields| a + B <
lall+[IB] + 1. This proves the inequalities.

57
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159 Example Find a non-zero polynomid(x,y) such that
P([[2t],|[3t])) =0

for all realt.

Solution: We claim that @t] — 2[3t] = 0,41 or—2. We can then take
P(x,y) = (3x—2y)(3x—2y—1)(3x— 2y + 1)(3x— 2y + 2).

In order to prove the claim, we observe thjat| has unit period, so it is enough to prove the claimtfar[0,1). We divide
[0,1) as
[0,1) =[0,1/3)U[1/3,1/2)U[1/2,2/3)U[2/3,1).
If t € [0,1/3), then both||2t|| and||3t|] are=0, and so 82t|] —2||3t|| = 0. If t € [1/3,1/2) then[3t] = 1 and[2t] = 0, and so

32t)| —2||3t|=—2.Ifte[1/2,2/3),then[2t] =1,[3t] =1,and so B2t || —2||3t || = 1. If t € [2/3,1), then| 2t|| = 1, ||3t]| =2,
and 3| 2t)| —2||3t]| =—1.

160 Example Describe all integers such that 4 || v/2n|||2n.

Solution: Let 21=m(1+||v2n|). If m< [v2n]—1then 22 < (|v2n]—1)(|[v2n]+1) =[v2n|*~1<2n—-1<2n a
contradiction. lim> ||v/2n||+1, then 2 > (|| v/2n||2+1)? > 2n+ 1, another contradiction. It must be the case that||v/2n|.

Conversely, len = # Sincel < v2n <14 1,1 = ||[v2n|. So all the integers with the required property are the

triangular numbers.

161 Example Prove that the integers
L(1+v2)")

with n a nonnegative integer, are alternately even or odd.

Solution: By the Binomial Theorem

n n n
(1+V2)"+(1-v2)"=2 > (2)k<2k> =2N,

0<k<n/2

an even integer. Sincel < 1—+/2 < 0, it must be the case thet— v/2)" is the fractional part of1+v/2)" or (1+v2)"+1
depending on whetheris odd or even, respectively. Thus for odd(1+v2)"—1 < (1+v2)"+ (1—v2)" < (1+V2)",
whence(1+v2)"+ (1—v2)" = || (1+v2)"||, always even, and fareven N := (1+v2)"+ (1—v2)" = [ (1+V2)"| + 1,
and so|| (1+v2)"|| = 2N — 1, always odd for even.

162 Example Prove that the first thousand digits after the decimal paint i
(6-+v/35)19%°

are all 9’s.

Solution: Reasoning as in the preceding problem,

(6+v/35)19%0+ (6—1/35)19%0 = 2k,
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an even integer. But @ 6— /35 < 1/10, (for if % < 6—+/35, upon squaring 3500 3481, which is clearly nonsense), and

hence 0< (6 —v/35)1%8% < 10~ 1%8%which yields

1
2k—1+0.9. .9 = 2K~ rag; < (6+ V35190 < 2%
1979 nines

This proves the assertion of the problem.

163 Example (Putnam 1948) If nis a positive integer, demonstrate that

lvn+vn+1]| =|van+2]|.

Solution: By squaring, it is easy to see that
Van+1<yn+vn+1<4n+3.
Neither + 2 nor s+ 3 are squares since squares are either congruentto 0 or 1,re0d 4
[van+2] = [ van+3],

and the result follows.
164 Example Find a formula for then-th non-square.

Solution: LetT, be then-th non-square. There is a natural numimeuch tham? < T, < (m+1)2. As there aren squares less
thanT, andn non-squares up t@,, we see thal,, = n+m. We have them? < n+m< (m+1)2ormP—m<n<m’+m+1.

. . . o 1 1 .
Sincen,m? —m,n? +m+1 are all integers, these inequalities imp§—m+ = < n < m?+m-+ =, that is to say{m—1/2)? <

4 4
n < (m+1/2)2 But thenm=[|\/n+ %ﬂ. Thus then-th non-square i3, = n+ ||v/n+1/2].

165 Example (Putnam 1983) Let f(n) =n+ [ v/n]|. Prove that for every positive integer m, the sequence
m, £(m), £(f(m)), f(f(F(m))),...

contains at least one square of an integer.

Solution: Letm=k?+ j,0 < j < 2k. Split them's into two sets, the sek of all themwith excessj,0 < j < k and the seB
with all thosem's with excess, k < j < 2k+ 1.

Observe thak? < m < (k+1)?> = k? + 2k+ 1. If j =0, we have nothing to prove. Assume timat B. As || /m| =k,
f(m) =k?+ j+k=(k+1)°+ j—k—1, with 0< j —k—1 < k—1 < k+1. This means that eithdi{m) is a square of (m) € A.
It is thus enough to consider the alternatime A, in which casd|vm+Kk| =k and

f(f(m) = f(m+k =m+42k=(k+1)2+j—1.

This means that (f(m)) is either a square di( f (m)) € Awith an exces§— 1 smaller than the exce$®f m. At each iteration
the excess will reduce and eventually it will hit 0, whencere&ch a square.

166 Example Solve the equation
[ —x—2[| = [|x],

for x e R.

Solution: Observe thdta|| = ||b|| if and only if 3k € Z with a,b € [k,k+ 1) which happens if and only i —b| < 1. Hence,
the given equation has a solution if and onlyxt — 2x— 2| < 1. Solving these inequalities it is easy to see that the isolis
thus

xe (1, %(1—\/5)] U [%(H Vi7), %(1+ V21).
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167 Theorem If a,b are relatively prime natural numbers then
a—1 b—1
kb ka (a—1)(b—1)
2II=2 Igl=—"—
k=1 k=1

Proof: Consider the rectangle with vertices @, 0), (0,b), (a,0), (a,b). This rectangle containga— 1)(b— 1)

. . . . o . . . L . xb
lattice points, i.e., points with integer coordinates. Fiéctangle is split into two halves by the Ilne:yg.
We claim that there are no lattice points on this line, exdeptthe endpoints. For if there were a lattice point

n b . . . . . -
(mn),0<m<a0<n<b,then— = 2 Thus m is a reduction for the irreducible fractioryl, a contradiction.

The points k= (k, k;), 1<k <a-—1are eachonthisline. Nov&%’ﬂ equals the number of lattice points on the

kb 1 kb

vertical line that goes fronfk, 0) to (k, g), i.e. ZUEJJ is the number of lattice points on the lower half of the
k=1
b-1 o
rectangle. Similarlyzugﬂ equals the number of lattice points on the upper half of tlitamgle. Since there
k=1

are (a— 1)(b—1) lattice points in total, and their number is shared equalythe halves, the assertion follows.

168 Example Find the integral part of
10°
>
o vk

—1/2

Solution: The functionx — x is decreasing. Thus for positive inteder

1 ktldx 1

—— < — < —.
vk+1 ko VX vk
Summing fromk = 1 tok = 10° — 1 we deduce

L P N
=k o) VX e VK
The integral is easily seen to be 1998. Hence

108
1
1998+1/10° < )~ — <1999
k=1 \/R

The integral part sought is thus 1998.

Practice
Problem 6.1.1 Prove that for all real numbers, y, Problem 6.1.31f n > 1 is a natural number andr > 1 is a
real number, prove that
X0+ [Ix+yl + Lyl < [2x]] + [[2y]]
holds. a
la] > UHJJ.
Problem 6.1.2If x, y real numbers, when is it true that
Xyl < [[xyll?
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Problem 6.1.4If a, b, n are positive integers, prove that
ab b
—|l>all=1.
I~ l=al-]

Problem 6.1.5Let a be a real number.

[—a]

Prove thdt] +
—lorOandthat|a]—2]a/2||=0or 1.

Problem 6.1.6 Prove that
L(2+V3)"|

is an odd integer.

Problem 6.1.7 Show that the n-th element of the sequence
1,2,2,3,3,3,4,4,4,4,5,555,5,...

where there are n occurrences of the integer fwé&n+1/2]|.

Problem 6.1.8 ProveHermite’s Identity if x is a real number
and n is a natural number then

x| = UXJJ+UX+%H+UX+§H+"'+UX+n—;:‘-H.

Problem 6.1.9 Prove that for all integers m, n, the equality

n—m+1
2

m+n

L1+ L

|| =

holds.

Problem 6.1.101f a, b, ¢, d are positive real numbers su
that

[lna]| + |Inb]| = |Inc]| + [ nd|
for all natural numbers n, prove that

at+b=c+d.

Problem 6.1.111f n is a natural number, prove that

n+2— Un/ZSﬂJJ u8n+24

L I

Problem 6.1.12 Solve the equation

Problem 6.1.14 (IMO 1968) For every natural number n,
evaluate the sum )

2. n42

Zu 2k+1 1

k=0

Problem 6.1.15 (Putnam 1973)Prove that if ne N,
{(r;ilg(kJr IIn/k])) = [[vV4n+1].

Problem 6.1.16 (Dirichlet’s principle of the hyperbola)
Let N be the number of integer solutions toxp, x > 0,y > 0.
Prove that

N = ZLLJJ ZZUM Lv/n]2.

1<k< /M

Problem 6.1.17 (Circle Problem)Letr > 0 and let T denote
the number of lattice points of the domafhixy? < r2. Prove
that

T=1+4r|+8 >  [Vr? x2ﬂ+4ufﬂ2

0<x<rv?2

Problem 6.1.18 Let d= (a,b). Prove that

Z uanﬂ_ a—1)(b— 1)

1<n<b-1 2

d— 1
2

Problem 6.1.19 (Eisenstein)if (a,b) =1 and ab are odd,

then
> >

1<n<(b—-1)/2 1<n<(a—1)/2
h

Problem 6.1.20Let me N with m> 1 and let y be a positive
real number. Prove that

SLy2= 1,

where the summation runs through all positive integers x not
divisible by the mth power of an integer exceeding

bn
al=

an

—1)(b—-1
i (a-1)(b—1)

I+ ;

I

Problem 6.1.21 For which natural numbers n will12divide

—l2+v2)"|?

Problem 6.1.22 A triangular numbeis a number of the form
1+2+---4+n,ne N. Find a formula for the nth non-triangular

[ngg [ng% number.
Problem 6.1.13Let [a, 8] be an interval which contains nOProzIem .6,[21'2.3t(A|ME 198? How mané/_oftr:hef first thou-
integers. Prove that there is a positive integer n such hat ¢ POSIIVE INtegers can be expressed In the form

[nar, nB] still contains no integers but has length at leagé.

12| + [|4x]| + || 6x]| + || 8%]|?
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Problem 6.1.24 (AIME 1987) What is the largest positive irf-Problem 6.1.30 (AIME 1991) Suppose that r is a real num-

teger n for which there is a unique integer k such that ber for which
91
k
8 n 7 > lr+ -] =546
el —?
15 nik " 13 1o 100!
Find the value of/ 100r ).
Problem 6.1.25 Prove that if p is an odd prime, then
Problem 6.1.31 (AIME 1995) Let f(n) denote the integer
2+/5)P|| —2prtL
L2+vSF] closest to *, when n is a natural number. Find the exact
i divisible by p numerical value of
' 1995
1
Problem 6.1.26 Prove that the n-th number not of the fofm n—1 f(n)

€], k=1,2,...is
Problem 6.1.32 Prove that

/1(_1)u1994<ﬂ+u1995<ﬂ ( 1993 > < 1994 > dx— 0.
Problem 6.1.27 (Leningrad Olympiad) How many differen 0 11994/ \[11995]
integers are there in the sequence

To=n+[lIn(n+1+ |In(n+1)[]) .

Problem 6.1.33 Prove that

12 22 198
L7580 LTogol L Tog0!? LVA+VAFL] = [VA+ VT2,

Problem 6.1.28 Let k> 2 be a natural number and x a podi-Problem 6.1.34 (Putnam 1976)Prove that

tive real number. Prove that < 2n n )
lim I—1-2]|-]) =In4—1.
L0 = 14/ o, 2

Problem 6.1.29 1. Find a real number x£ 0 such that| Problem 6.1.35 (Putnam 1983)Prove that
X, 2X, ..., 34x have no/’s in their decimal expansions.

.1 /Mn

lim —/ 7| dx=1ogs(4/m.
2. Prove that for any real number 0 at least one of n—en fp 11X
X, 2X,...79% has a7 in its decimal expansion.
You may appeal ttWallis Product Formula:
3. Can you improve the “gap” betwee3#t and79?
22446688 m

6.2 De Polignac’s Formula

We will consider now the following result due to De Polignac.

169 Theorem (De Polignac's Formula)  The highest power of a primgdividing n! is given by
2.n
> L=l
o1 P

Proof: The number of integers contributing a factor of g|is/p||, the number of factors contributing a second
factor of pis|n/p?||, etc.O

170 Example How many zeroes are at the end of 300




De Polignac’s Formula 63

Solution: The number of zeroes is determined by how manystib@edivides into 300. Since there are more factors of 2 il 300
than factors of 5, the number of zeroes is thus determinetdhighest power of 5 in 300By De Polignac’s Formula this is

> 11300/5"| =60+ 12+2=74,
k=1

171 Example Does
100
?
7‘ ( 5000) '
Solution: The highest power of 7 dividing into 1008|| 1000/7|| + || 1000/ 72|| 4 || 1000/ 73 || = 142+ 20+ 2 = 164. Similarly,
the highest power of 7 dividing into 500! is 4110+ 1= 82. Since (1000) 100d

500 ~ (5002 the highest power of 7 that divides
1000 . .. /100
< 5000) is 164—2-82=0, and so 7 does not leIdé 5000) .

172 Example Letn=n;+ny+---+ ng where then; are nonnegative integers. Prove that the quantity

n!
ny!ng!---ng!

is an integer.

Solution: From (3) in Theorem58we deduce by induction that

laa]] + [[aol| + -+ &l < [ar+ax+---+a].

For any primep, the power ofp dividing n! is

ST/l = S N+ ng -+ /1.

i>1 j>1
The power ofp dividing ny!ny! - - - ng! is
> lna/pt ]+ Ing/p [+ [/ P! |-
j>1

Since
e/ P!+ e/ P! 1+ + /P < [L(n 412+ +1) /P!,
we see that the power of any prime dividing the numerator of

n!
ny!ing!---ng!

is at least the power of the same prime dividing the denominatich establishes the assertion.
173 Example Given a positive integem > 3, prove that the least common multiple of the produgts - - - x«(k > 1), whose

factorsx; are the positive integers with
X1+Xo+-- X <N,

is less tham!.

Solution: We claim that the least common multiple of the nensbin question is

I pivel.
P

p prime
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Consider an arbitrary produgtx; - - - X, and an arbitrary prime. Suppose thap“i |x;, ptitt JXj. Clearly p® +---+ pax <n

and sincep” > ap, we have
plai+---ai) <nor

Hence it follows that the exponent of an arbitrary pripis at

al+"'+ak§u%ﬂ-

most|n/p]|. But on choosingy =--- = x« = p,k=|[n/p||, we

see that there is at least one product for which equalityhgaed. This proves the claim.

The assertion of the problem now follows upon applying DedPaic’s Formula and the claim.

Practice

Problem 6.2.1 (AHSME 1977)Find the largest possible
such thatl0" divides1005.

Problem 6.2.2 Find the highest power ofl7 that divides
(17" — 2)! for a positive integer n.

Problem 6.2.3 Find the exponent of the highest power2df
that divides300.

Problem 6.2.4 Find the largest power of in 300.

Problem 6.2.5 (AIME 1983) What is the largest two-dig
prime factor of the integer

200\,
100/
Problem 6.2.6 (USAMO 1975)

II5x]| + [|5Y] > [I3x+ Y| + I3y + x]-

2. Using the result of part 1 or otherwise, prove that

(5m)!(5n)!
min!(3m+n)!(3n+m)!

1. Prove that

is an integer for all positive integers,m

Problem 6.2.7 Prove that if n> 1, (n,6) = 1, then

(2n—4)!
n!(n—2)!

6.3 Complementary Sequences

nis an integer.

Problem 6.2.8 (AIME 1992) Define a positive integer n to be
a “factorial tail” if there is some positive integer m suchah
the base-ten representation of ends with exactly n zeroes.
How many positive integers less th&f892 are not factorial
tails?

Problem 6.2.9 Prove that if m and n are relatively prime pos-
itive integers then

(m+n—1)!

t min!

is an integer.

Problem 6.2.101f p is a prime divisor O(Znn) with p>+/2n

. o n
prove that the exponent of p in the factorisation é%n)

equalsl.

Problem 6.2.11 Prove that
~lem(1,2,...,n+1)

en( () () =22,

Problem 6.2.12 Prove the following result of Catalan:

(m: ”) divides (i’:‘) <2n”> .

We define thespectrunof a real numbea to be the infinite multiset of integers

Speca) = {[la]|,

|2a],13a]],-- -}

Two sequenceSpec¢a) and Spe¢f3) are said to beomplementaryf they partition the natural numbers, i.6Spe¢a) N

Spe¢B) = @ andSpeca) USpe¢S) =N.

For example, it appears that the two sequences

Spe¢v2) = {1,2,4,5,7,8,9,11,12,14,15,16,18,19,21,22,24,25, .. .},
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and
Spe¢2+ V2) = {3,6,10,13,17,20,23 27,30,34,37,40,44,47,51,.. .}

are complementary. The following theorem establishestarmn for spectra to be complementary.

174 Theorem (Beatty's Theorem, 1926) If a > 1is irrational and

1 1
i |
a+B ’

then the sequences
Speca) andSpe¢B)

are complementary.

Proof: Sincea > 1,3 > 1, Speca) and Spef) are each sequences of distinct terms, and the total number of
terms not exceeding N taken together in both sequend@s/ig ||+ [[N/B]. ButN/a—1+N/B—1<|N/a| +

[N/B] < N/a+N/B, the last inequality being strict because bot}3 are irrational. Asl/a+ 1/ =1, we gather
thatN—2 < |[N/a ||+ |IN/B] < N. Since the sandwiched quantity is an integer, we defNge]+[N/Bl =N—1.

Thus the total number of terms not exceeding N in §pgeand Spef3) is N—1, as this is true for any N> 1 each
interval (n,n+ 1) contains exactly one such term. It follows that Spec) Spe¢B) =N, Spec¢a) NSpe¢fB) = .

O

The converse of Beatty’s Theorem is also true.

175 Theorem (Bang's Theorem, 1957) If the sequences
Speca) andSpe¢f)
are complementary, then 3 are positive irrational numbers with

1 1
—+—==1
a+B

Proof: If botha,f are rational numbers, it is clear that Spec), Spe¢f3) eventually contain the same integers,
and so are not disjoint. Thug and 3 must be irrational. If0 < o < 1, given n there is an# for which
ma — 1 < n < ma; hence n=[ma], which implies that Spéa) = N, whencea > 1 (and sof3 > 1 also). If
Speca)NSpe¢P) is finite, then

i VU +UVB

n—oo

3

but since(||n/a]| + [Ln/BJJ)% —1/a+1/B as h— o, it follows thatl/a +1/8 =1. O

176 Example Suppose we sieve the positive integers as follows: we chapsel and then delete; + 1 = 2. The next term
is 3, which we calby,, and then we deleta, + 2 = 5. Thus the next available integer is4az, and we deletas+3 =7, etc.
Thereby we leave the integers314,6,8,9,11,12 14,16,17,. ... Find a formula fora,.

Solution: What we are asking for is a sequefig} which is complementary to the sequed& + n}. By Beatty’s Theorem,
|nt] and|[nT||+n=|In(T+1)]| are complementary if o +1/(T+ 1) = 1. But thent = (1+/5)/2, the Golden ratio. The
n-th term is thus, = || nt||.

Practice
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1++/5
2

Ratio. Prove that the three sequences Xn1)

Problem 6.3.1 (Skolem) Letr = {Lrlen] I3, (el 2n] )Y, {[[2n]} are complementary.

be the Golder'

6.4 Arithmetic Functions

An arithmeticfunction f is a function whose domain is the set of positive integersveimaise range is a subset of the complex
numbers. The following functions are of considerable int@oce in Number Theory:

d(n) the number of positive divisors of the number n.
a(n) the sum of the positive divisors of n.
@(n) the number of positive integers not exceeding
n and relative prime to n.
w(n) the number of distinct prime divisors of n.
Q(n) the number of primes dividing n, counting multiplicity.

In symbols the above functions are:

d(n) = 21, o(n) = Zd, w(n) = 21, Q(n) = Z a,

dn dn pin pailn

)= > L

1<k<n

(k,n)=1

and

(The symbol | in p?||nis readexactly dividesand it signifies thap®|n but p® 1 jh.)

For example, since 1, 2, 4, 5, 10 and 20 are the divisors of 8bhaved(20) = 6, 0(20) =42, w(20) =2, Q(20) = 3. Since
the numbers 13, 7,9, 11 13, 17,19 are the positive integers not exceeding 20 and relatpriye to 20, we see thgt(20) = 8.

If fis an arithmetic function which is not identically O suchttfimn) = f (m) f (n) for every pair of relatively prime natural
numberan, n, we say thaff is then amultiplicative function.If f(mn) = f(m)f(n) for every pair of natural numbers, n we
say then thaf is totally multiplicative

Let f be multiplicative and leh have the prime factorisatian= pél‘1 pgz - p¥*. Then

f(n) = f(pTH) F(P?) - F(pf¥).
A multiplicative function is thus determined by its valuépeame powers. Iff is multiplicative, then there is a positive integer
asuch thatf (a) # 0. Hencef (a) = f(1-a) = f(1) f(a) which entails thaf (1) = 1.

We will now show that the functiond ando are multiplicative. For this we need first the following résu

177 Theorem Let f be a multiplicative function and lét(n) = Z f(d). ThenF is also multiplicative.
din

Proof: Suppose that,® are natural numbers witha,b) = 1. By the Fundamental Theorem of Arithmetic, every
divisor d of ab has the form & did, where d|a,d;|b, (d1,d2) = 1. Thus there is a one-to-one correspondence
between positive divisors d of ab and paiksdp of positive divisors of a and b. Hence, ifnab, (a,b) = 1 then

Fim =Y f(d) =" fldidy).
d\n dl\a dz‘b
Since f is multiplicative the dextral side of the above egual
SN f(d)f(d) =Y f(dh) D (o) =F(a)F(b).
dl\a dz‘b dl\a dz‘b

This completes the prodfl
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Since the functiorf (n) = 1 for all natural numbera is clearly multiplicative (indeed, totally multiplica®), the theorem
above shows thal(n) = 21 is a multiplicative function. Ifp is a prime, the divisors op? are 1 p,p?, p°,...,p? and so
din
d(p?) = a+ 1. This entails that ifh has the prime factorisatiam= pél‘1 pgz .- p¥, then
d(n)=(1+ai)(1+ap) - (1+a).

For exampled(2904) = d(23-3-11%) =d(2%)d(3)d(11%) = (1+3)(1+1)(1+2) =24
We give now some examples pertaining to the divisor function

178 Example (AHSME 1993) For how many values af will an n-sided polygon have interior angles with integral degree
measures?

(n—2)180

Solution: The measure of an interior angle of a regolaided polygon is%. It follows thatn must divide 180. Since
there are 18 divisors of 180, the answer is 16, becaus8 and so we must exclude the divisors 1 and 2.

179 Example Prove thad(n) < 2y/n.

. L : . .. n n .
Solution: Each positive divisa of n can paired with its complementary d|V|sgr Asn=a- 3 one of these divisors must be
< y/n. This gives at most-¢n divisors.

180 Example Find all positive integers n such thdfn) = 6.

Solution: Since 6 can be factored as32and 6 1, the desiredh must have only two distinct prime factonsandq, say. Thus
n=p°q? and either - a = 2,14+ B =3 or 1+ a = 6,1+ B = 1. Hence,n must be of one of the formsc’ or p°, wherep,q
are distinct primes.

181 Example Prove that

n n
n
dik)=> "I~
k=1 j=1 J
Solution: We have . .
dodk=>>" 1
k=1 k=1 jlk

Interchanging the order of summation

> > =X

j<n j<k<n j<n
k=0 mod j

which is what we wanted to prove.

182 Example (Putnam 1967) A certain locker room contains lockers numbered,2,...,n and are originally locked. An
attendant performs a sequence of operatiing;, ..., T, whereby with the operatiofi, 1 < k < n, the condition of being
locked or unlocked is changed for all those lockers and dmbge lockers whose numbers are multipleg.oAfter all the n
operations have been performed it is observed that all fIsakbose numbers are perfect squares (and only those Ipekers
now open or unlocked. Prove this mathematically.

Solution: Observe that locken, 1 < m < n, will be unlocked aften operations if and only ifnhas an odd number of divisors.
Now, d(m) is odd if and only ifmis a perfect square. The assertion is proved.
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Since the functiorf (n) = nis multiplicative (indeed, totally multiplicative), théave theorem entails thatis multiplica-
tive. If pis a prime, then clearlg (p?) = 1+ p+ p?+- - -+ p?. This entails that if has the prime factorisation= pi‘l pgz - pg,
then

o(n) = (L4 pr+ P+ + PP (L4 Pt pa+---+ ) (L4 pr+ pF+---+ pfY).
This last product also equals

pil1+1—1 p32+1_1 ?;Jrl_l
p1—1 p2—1 pr—1 °

We present now some examples related to the funetion

183 Example (Putnam 1969) Let n be a positive integer such that|24- 1. Prove that the sum of all divisors ofis also
divisible by 24.

Solution: Since 2th+1 n=10or2 mod3and=1,3,50r7 mod 8. Asd(g) =-1 mod3or mod 8, the only possibilities
are

d=1 n/d=2 mod 3 orviceversa

d=1 n/d=7 mod 8 orviceversa

d=3, n/d=5 mod 8 orviceversa

In all casesd+n/d=0 mod3and mod 8, whence 24 dividgs-n/d. As d # n/d, no divisor is used twice in the pairing.

This implies that 24 " d.
din

We say that a natural numbemsrfectifit is the sum of its proper divisors. For example, 6 is petfeecause 6 Z d=
d|6,d6
1+ 24 3. Itis easy to see that a natural number is perfect if and orily i Zd. The following theorem is classical.
din

184 Theorem An even number is perfect if and only if it is of the forfAi 2% (2P — 1) where bothp and 2 — 1 are primes.

Proof: Suppose that 2P — 1 are primes. Thew (2P —1) = 1+2P—1. Since(2P~1,2°P —1) = 1,0(2P (2P —
1) =02 Ho(2P—1) = (1+24 2%+ 4+ 2P 1) (14+2P—1) = (2P—1)2(2P 1), and2P—1(2P — 1) is perfect.

Conversely, let n be an even perfect number. Write2im,m odd. Thero(n) = o(2%)o(m) = (2571 —1)a(m).
Also, since n perfect isg(n) = 2n = 25*Im. Hence(25"! — 1)a(m) = 25" Im. One deduces th&**1|g(m), and
soa(m) = 251h for some natural number But then(25™* —1)b=m, and so bm,b # m.

We propose to show thatb1. Observe thatb-m= (2571 — 1)b+b=25"'b = g(m). If b # 1, then there are at
least three divisors of amelyl, b and m which yieldso(m) > 1+ b+ m, a contradiction. Thus b= 1, and so
m= (251 —1)b=25"1—1is a prime. This means that"! —1is a Mersenne prime and hence-4 must be a
prime[]

185 Example Prove that for every natural number n there exist naturalrersx andy such thak—y > nando (x%) = o (y?).

Solution: Lets > n, (s,10) = 1. We takex = 5s,y = 4s. Theno (x%) = o (y?) = 310(s?).

Practice
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Problem 6.4.1 Find the numerical values of @024), (1024
Q(1024) and @(1024).

Problem 6.4.2 Describe all natural numbers n such th
d(n) =10.

Problem 6.4.3 Prove that

d(2"—1)>d(n).

Problem 6.4.4 Prove that dn) < v/3n with equality if and
onlyifn=12

Problem 6.4.5 Prove that the following_ambert expansiof

holds:

[

>

n=1

tn
1—tn’

d(nt" = i
n=1

Problem 6.4.6 Let di(n) = d(n),dk(n) = d(dk_1(n)),k =
2,3,.... Describe d(n) for sufficiently large k.

Problem 6.4.7 Let me N be given. Prove that the set
o ={ne N:m|d(n)}

contains an infinite arithmetic progression.

Problem 6.4.8 Let n be a perfect number. Show that

>

din

— =2

Problem 6.4.9 Prove that

[[d=ndnrz

djn

Problem 6.4.10 Prove that the power of a prime cannot bq
perfect number.

Problem 6.4.11 (AIME, 1995) Let n= 2313'°. How many
positive integer divisors ofnare less than n but do not d

iditdin 6.4.12 Prove that if n is composite, theoi(n) >
n-++/n.

pProblem 6.4.13 Prove thato (n) =n+k, k> 1 a fixed natural
number has only finitely many solutions.

Problem 6.4.14 Characterise all n for whiclo (n) is odd.

Problem 6.4.15 Prove that p is a prime if and only & (p) =
1+p.

Problem 6.4.16 Prove that
)

|

1

2

1

a(n
+e =
! n

> 14
n!

Problem 6.4.17 Prove that an odd perfect number must have
at least two distinct prime factors.

Problem 6.4.18 Prove that in an odd perfect number, only one
of its prime factors occurs to an odd power; all the others oc-
cur to an even power.

Problem 6.4.19 Show that an odd perfect number must con-
tain one prime factor p such that, if the highest power of p
occurring in n is @, both p and a are congruent tbmodulo

4; all other prime factors must occur to an even power.

Problem 6.4.20 Prove that every odd perfect number having
three distinct prime factors must have two of its prime feto
3and>s.

Problem 6.4.21 Prove that there do not exist odd perfect num-
bers having exactly three distinct prime factors.

Problem 6.4.22 Prove that

a n n n
> ook =>"ill5].
k=1 =1 ]

-Problem 6.4.23 Find the number of sets of positive integers

vide n?

{a,b,c} suchthatax b x c=462

6.5 Euler's Function. Reduced Residues

Recall that Euler'sp(n) function counts the number of positive integars n that are relatively prime to. We will prove now
that @ is multiplicative. This requires more work than that doned@ando.

First we need the following definitions.
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186 Definition Letn > 1. The@(n) integers I=a; < @, < --- < 8y(n) = N— 1 less tham and relatively prime ta are called
the canonical reduced residuesodulon.

187 Definition A reduced residue systemodulon, n > 1 is a set ofg(n) incongruent integers modulothat are relatively
prime ton.

For example, the canonical reduced residues mod 12,&& 11 and the sef—11,5,19,23} forms a reduced residue
system modulo 12.
We are now ready to prove the main result of this section.

188 Theorem The functiong is multiplicative.

Proof: Letn be a natural number withsa ab, (a,b) = 1. We arrange the ab integefls 2, ..., ab as follows.

1 2 3 ... k ... a

a+1 a+2 a+3 ... a+k ... 2a
2a+1 2a+2 2a+3 ... 2a+k ... 3a
(b—1)a+1 (b—1)a+2 (b—1)a+3 ... (b—1)a+k ... ba

Now, an integer r is relatively prime to m if and only if it idagively prime to a and b. We shall determine first the
number of integers in the above array that are relativelynito a and find out how may of them are also relatively
prime to b

There arep(a) integers relatively prime to a in the first row. Now considwez k-th column] < k < a. Each integer
on this column is of the form miak,0 < m< b—1. As k= ma+k moda, k will have a common factor with a if
and only if mat k does. This means that there are exagilg) columns of integers that are relatively prime to a.
We must determine how many of these integers are relativieheo b.

We claim that no two integers&+k; ..., (b— 1)a+ k on the k-th column are congruent modulo b. For ifi& =
ja+k modbthendi—j)=0 modb. Sincea,b) =1, we deduce that+ j =0 modb thanks to Corollani 48
Now i, j € [0,b— 1] which implies thati — j| < b. This forces i= j. This means that the b integers in any of these
¢@(n) columns are, in some order, congruent to the integels...,b— 1. But exactlygp(b) of these are relatively
prime to b This means that exactlg(a)@(b) integers on the array are relatively prime to ab, which is wie
wanted to showl]

If pis a prime andna natural number, the integers

p,2p,3p,....p" 1p

m

are the only positive integers p™ sharing any prime factors with™. Thusg(p™) = p™— p™ L. Sinceg is multiplicative, if

n= pél‘1 “e pﬁk is the factorisation ofi into distinct primes, then

o(n) = (P —pi ) (PR — 7).
For examplep(48) = @(2*-3) = ¢(2*)p(3) = (2*—2%)(3— 1) = 16, and @(550) = @(2-5°-11) = @(2) - ¢(5%) - p(11) =
(2—1)(5°—5)(11—1) = 1-20-10= 200.

189 Example Letnbe a natural number. How many of the fraction®2/n, ..., (n—1)/n,n/nare irreducible?

n
Solution: This number is clearIZ o(K).
k=1
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190 Example Prove that fon > 1,

Solution: Clearly if I<a<nand(a,n)=1,1<n—a<nand(n—a,n) =1. Thus

S= ) a= ) n-—a

1<a<n 1<a<n

(a,n)=1 (a,n)=1

whence
2S= Y n=ng(n).
1<a<n
(a,n)=1
The assertion follows.

191 Theorem Letn be a positive integer. TheE o(d) =n.
din

Proof: For each divisor d of n, let{[n) be the set of positive integersn whose gcd with nis d. As d varies
over the divisors of n, theypartition the set{1,2,...,n} and so

Z Ta(n) =n.

din

We claim that §(n) has ¢(n/d) elements. Note that the elements gfn] are found amongst the integers
d,2d,...gd. Ifk € Tq(n), then k=ad, 1 < a < n/d and(k,n) =d. Butther('a‘,g) —1 Thisimpliesthata,g) —1

™ =1 But

Therefore counting the elements gff) is the same as counting the integers a with a < n/d, (a, d

there are exactlyp(n/d) such a We gather that

n=>" o(n/d).

din

But as d runs through the divisors of ry,diruns through the divisors of n in reverse order, WhenceE o(n/d)=

din
> o(d).0

din

192 Example If p—1 andp+ 1 are twin primes, an@ > 4, prove that (p) < p.

Solution: Observe that > 4 must be a multiple of 6, so
p=223"m, ab>1, (m,6) =1.

We then havep(p) < 223°~1p(m) < 223°"'m=p/3.

193 Example Letn € N. Prove that the equation
@(x) =n!

is soluble.
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Solution: We want to solve the equatigiix) = n with the constraint that has precisely the same prime factorsnasThis
restriction implies thaip(x) /x = @(n)/n. It follows thatx = n?/¢(n)

(ef
Letn= H pY. Thenx = p—. The integex will have the same prime factors agprovided thatH(pf Dn. Itis

peIn pelin " pln
clear then that a necessary and sufficient conditiopfal = n to be soluble under the restriction thatas precisely the same

prime factors a® is H(p— 1)n. If n=K!, this last condition is clearly satisfied. An explicit sotnito the problem is thus

pin
x= (K)?/p(K!).

194 Example Let@(n) =@(@_1(n)),k=1,2,..., whereg(n) = ¢(n). Show thatvk € N, ¢x(n) > 1 for all sufficiently large
n.

Solution: Letpilpgzm & be the prime factorisation of. Clearly

a2 /2 a2 o1l P P
i P2 P >2 2 Zpl— pr—1
Hence 1 1 1 1 a1 32 ar
_Pi—1p—1 Pl e e a1l PPy Py
oln) = P P2 Pr PP P25 o i a2

P P P

. . 1 1 /1~ 19,
';h|s last quantity equalg/n/2. Thereforeg, (n) > z\/(p(n) > > Z\/ﬁ = 4n . In general we can show thagk(n) >
2 k—

4 . We conclude that > 222 implies thatg(n) > 1

195 Example Find infinitely many integera such that 10p(n)

Solution: Taken =11 k=1,2,.... Theng(11¥) = 11— 111 =10-11¢ L.

Practice

Problem 6.5.1 Prove that Problem 6.5.6 If ¢(n)|n, then n must be of the fora?3° for
nonnegative integers b
el (-3).

pin Problem 6.5.7 Prove that if ¢(n)|n— 1, then n must be
squarefree.

Problem 6.5.2 Prove that if n is composite thep(n) < n—
v/n. When is equality achieved? Problem 6.5.8 (Mandelbrot 1994) Four hundred people are
standing in a circle. You tag one person, then skip k people,
then tag another, skip k, and so on, continuing until you tag
someone for the second time. For how many positive values
of k less thalOOwill every person in the circle get tagged at
least once?

Problem 6.5.3 (AIME 1992) Find the sum of all positive raf
tional numbers that are less thd® and have denominat@0
when written in lowest terms.

Answer: 400 Problem 6.5.9 Prove that ifg(n)|n— 1 and n is composite,

then n has at least three distinct prime factors.
Problem 6.5.4 Prove thatp(n) > n2~“("

Problem 6.5.10 Prove that ifg(n)|n— 1 and n is composite,
Problem 6.5.5 Prove thatp(n) > v/n for n> 6. then n has at least four prime factors.
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Problem6.5.11Forn> 1llet1=a; < @ < --- < @y = | (Hint: Use the Chinese Remainder Theorem).
n—1 be the positive integers less than n that are relatiely

rime to n. Define the Jacobsthal function - .
P Problem 6.5.12 Prove that a necessary and sufficient condi-

g(n):=_max agy1—a tion for n to be a prime is that
1<k<e(n)—-1

to be the maximum gap between the ®rove thatw(n) <
g(n). a(n)+ @(n) =nd(n).

6.6 Multiplication in z,

In section 3.5 we saw th&t, endowed with the operation of additien, becomes a group. We are now going to investigate the
multiplicative structure ofy.

How to define multiplication irZ,? If we want to multiplya -n b we simply multiplya- b and reduce the result maod As
an example, let us consider Talilel. To obtain4 -2 we first multiplied 4 2 = 8 and then reduced mod 6 obtaining=&
mod 6. The answer is thdsg2 = 2.

Another look at the table shows the interesting produg = 0. Why is it interesting? We have multiplied to non-zero
entities and obtained a zero entity!

DoesZg form a group undefs? What is the multiplicative identity? In analogy with theioaal numbers, we would like
1 to be the multiplicative identity. We would then define theltiplicative inverse ofa to be thatb that has the property that
a-gb=b-ga=1. Butthen, we encounter some problems. For example, we ste@,tha, and4 do not have a multiplicative
inverse. We need to be able to identify the invertible eletmefnZ,. For that we need the following.

|~ wn| R ols
o|lo|o|lo|lo|lolo
gl sl wlRlol-
INENIF-]1FS NI 1IN
w|o|w|lo|lw|lo|lw
SIESE=1F VI IFNF] IS
=N w| B o|o|o

Table 6.1: Multiplication Table foZg

196 Definition Letn> 1 be a natural number. An integerfs said to be the inverse of an integemodulonif ab=1 modn.

Itis easy to see that inverses are unique madgor if x,y are inversesta modnthenax=1 modnanday=1 modn.
Multiplying by y the first of these congruencgga)x =y modn. Hencex=y modn.

197 Theorem Letn > 1,abe integers. Thea possesses an inverse modalidand only if ais relatively prime tan.

Proof: Assume that b is the inverse ofmodn. Then ab=1 modn, which entails the existence of an integer s
such thatab-1=sn, i.e. ab-sn= 1. This is a linear combination of a and n and hence divisiblddyy). This
implies that(a,n) = 1.

Conversely if a,n) = 1, by the Bachet-Bezout Theorem there are integgrswch that ax- ny= 1. This immedi-
ately yields ax=1 modn, i.e., a has an inversemodn.]

198 Example Find the inverse of 5 mod 7.

Solution: We are looking for a solution to the congruenges5l mod 7. By inspection we see that thixis 3 mod 7.
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According to the preceding theoremwill have a multiplicative inverse if and only {fa,n) = 1. We thus see that only the
reduced residues mathave an inverse. We It} = {a1,a2,...,34(n) }. It is easy to see that the operatiqris associative,

since it inherits associativity from the integers. We condel thatZ) is a group under the operatian
We now give some assorted examples.

199 Example (IMO 1964) Prove that there is no positive integefor which 2"+ 1 is divisible by 7.

Solution: Observe that'2=2,2°=4, 2 =1 mod7,2=2 mod7,2=4 mod7,%=1 mod7, etc. The pattern 2, 4, 1,
repeats thus cyclically. This says that there is no powengfizh is=—-1=6 mod 7.

200 Theorem If ais relatively prime to the positive integar there exists a positive integer< n such thagX =1 modn.

Proof: Since(a,n) = 1 we must havéal,n) = 1for all j > 1. Consider the sequenceat,a>,...,a""* modn.

As there are a1 numbers and only n residues mogdthe Pigeonhole Principle two of these powers must have
the same remaindermodn. That is, we can find,swith 1 < s<t < n+1 such that &= a' modn. Now,
1<t—s<n. Hence d=a modn gives & %a°= a~%a" modn, which is to say 'a= a'~%a" modn. Using
Corollary 148we gather that &S =1 modn, which proves the resuli.

If (a,n) = 1, the preceding theorem tells us that there is a positivegérk with a¢ =1 modn. By the Well-Ordering
Principle, there must be a smallest positive integer wiih pinoperty. This prompts the following definition.

201 Definition  If mis the least positive integer with the property th3t= 1 modn, we say thaa has ordem modn.
For example, 3=3,32=2,33=6,3*=4,3=53%=1 mod 7, and so the order of 3 mod 7 is 6. We write this fact as
ord;3==6.

Givenn, not all integersa are going to have an order mad This is clear ifn|a, because thea™ = 0 modn for all
positive integersn. The question as to which integers are going to have an orded niis answered in the following theorem.

202 Theorem Letn > 1 be a positive integer. Thenc Z has an order modif and only if (a,n) = 1.

Proof: If (a,n) =1, then a has an order in view of Theor&@0and the Well-Ordering Principle. Hence assume
that a has an order modn. Clearly a 0. The existence of an order entails the existence of a positteger

m such that # =1 modn. Hence, there is an integer s witf'a sn=1 or a-a™ ! +sn= 1. This is a linear
combination of a and n and hence divisible(layn). This entails thata,n) = 1. O

The following theorem is of utmost importance.

203 Theorem Let (a,n) = 1 and lett be an integer. Thed =1 modn if and only if ord,alt.

Proof: Assume thabrd,ajt. Then there is an integer s such thatd,a =t. This gives

a=a¥ %= (0%)S=15=1 modn.

Conversely, assume thdta 1 modn and t=x-orda—+ y,0<y < ordya. Then

@ =ad =gl (20 X=1.1"X=1 modn.

If y > 0 we would have a positive integer smaller thamh,a with the property A= 1 modn. This contradicts
the definition obrd,a as the smallest positive integer with that property. HeneeO and thus t= x- orda, i.e.,
ordyajt.Od
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204 Example (IMO 1964) Find all positive integera for which 2" — 1 is divisible by 7.

Solution: Observe that the order of 2 mod 7 is 3. We wdh=2l mod 7. It must then be the case that.3Thusn =
3,6,9,12,....
The following result will be used repeatedly.

205 Theorem Letn>1ae€Z,(an) =1 1If ry,ra,...,ryn) is areduced set of residues modajdhenary,arz, ..., aryn) is
also a reduced set of residues modulo

Proof: We just need to show that tipgn) numbers af, ars, ... . ,ary ) are mutually incongruentmodn. Suppose
that ar = ar; modn for some i j. Since(a,n) = 1, we deduce from Corollar§48that r, = rj modn. This
contradicts the fact that the r's are incongruent, so theotieen followsl

For example, as,b,7,11 is a reduced residue system modulo 12 gI®)5) = 1, the set 525,35,55 is also a reduced

residue system modulo 12. Again, thé 17,11 are the 525,35,55 in some order and-5-7-11=5-25-35-55 mod 12.
The following corollary to Theorerdi05should be immediate.

206 Corollary Letn>1labe Z,(an) =1 If ry,rp,...,rypm is a reduced set of residues modulothenar; + b,ar; +
b,...,arym) +bis also a reduced set of residues modulo

Practice

Problem 6.6.1 Find the order o5 modulol12.

6.7 Mobbius Function

207 Definition TheMdobius functioris defined for positive integer n as follows:
( ifn=1,

1
pn) =< (=1 if wn) =Q(n),
if w(n) < Q(n).

Thuspu is 1 forn =1 and square free integers with an even number of prime fctdr for square free integers with an
odd number of prime factors, and 0 for non-square free imge@éus for examplg (6) = 1, u(30) = —1 andu(18) = 0.

208 Theorem The M6bius Functioru is multiplicative.

Proof: Assumédm,n) = 1. If both.# and n are square-free then

(=) @M+ — i (mn).

=
3
=
2
I
|
e
El
El
|
e
£
2
I

If one of mn is not square-free then
p(mjp(n) = 0= p(mn).
This proves the theoreml

209 Theorem

1 ifn=1,
Z“(d):{ 0 ifn>1
din
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Proof: There are(wl((n)> square-free divisors d of n with exactly k prime factors. &bsuch d u(d) = (—1)%.

The sum in question is thus
w(n)

B w(n) K
Sua =Y (4) -k

din k=0

By the Binomial Theorem this last sum(is—1)®™) = 0.0

210 Theorem (Mébius Inversion Formula)  Let f be an arithmetical function arféi(n) = >~ f(d). Then
din

f(n) =Y u(dF(n/d) =Y u(n/d)F(d).

din din

Proof: We have

S H@F/d) = Y3
djn din dn N

s\d
S u(d)f(9

dsn

PCHINC)

sin n
d|—
S

. . - n )
In view of theoren209, the inner sum is different fro@only wheng = 1. Hence only the terms n in the outer

sum survives, which means that the above sums simplifynjof

We now show the converse to Theor@iD.

211 Theorem Let f, F be arithmetic functions withi (n) = Zu(d)F (n/d) for all natural numbera. ThenF(n) = Z f(d).

djn

Proof: We have

Y fd) = > > ulsF(d/s

djn din s|d

= > > u(d/s)F(s)

din s|d

= E E H(r)F(s).
sn N
r|—
s

Using Theoren209, the inner sum will b® unless s= n, in which case the entire sum reduces tmEO

Practice

din

Problem 6.7.1 Prove that Problem 6.7.2 If f is an arithmetical function and ) =




Practice 77

Problem 6.7.4 Prove thaty _ |u(d)| = 2"
din

> f(In/K), then
k=1

n
f(n) = u(i)F (/D). Problem 6.7.5 Prove that) ~ u(d)d(d) = (—1)“™.
Problem 6.7.31f F is an arithmetical function such thgtProblem 6.7.6 Given any positive integer k, prove that there

n n.o exist infinitely many integers n with
f(n) =" u(KIF(In/K), prove that Rn) = > f(j).
k=1 j=1

pn+1) =pun+2)=---=u(n+k.
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More on Congruences

7.1 Theorems of Fermat and Wilson
212 Theorem (Fermat's Little Theorem) Let p be a prime and lep fa. Then

a” =1 modp.

Proof: Since(a,p) =1, the setal,a-2,...,a-(p—1) is also a reduced set of residuesnodp in view of
Theoren?05 Hence

(a-1)(a-2)---(a-(p—1))=1-2---(p—1) mod p,
or
aPYp—1)!=(p—1)! mod p.

As((p—1)!, p) = 1 we may cancel out thigp— 1)!'s in view of Corollary148 This proves the theoremm.

As an obvious corollary, we obtain the following.
213 Corollary For every primep and for every integer a,
aP=a mod p.

Proof: Either ga or p Ja. If pjJa,a= 0= aP modp and there is nothing to prove. If fa, Fermat's Little
Theorem yields [aP~1 — 1. Hence pa(a® 1 — 1) = aP — a, which again gives the resuil.

The following corollary will also be useful.
214 Corollary Let p be a prime an@ an integer. Assume that Ja. Then orga/p— 1.

Proof: This follows immediately from Theoretfi3and Fermat'’s Little Theorerl

215 Example Find the order of 8 mod 11.

Solution: By Corollary214ord;18 is either 12,5 or 10. Now § = —2 mod 118*=4 mod 11 and 8= —1 mod 11. The
order is thus orgh8 = 10.

216 Example Leta; = 4,a, = 4%-1 n> 1. Find the remainder whea g is divided by 7.

78
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Solution: By Fermat's Little Theorem®4=1 mod 7. Now, 4 =4 mod 6 for all positive integers i.e., 4' = 4+ 6t for some
integert. Thus
ao=4%9=4""%=4%(4°"'=4 mod 7

217 Example Prove that fom,n € Z, mn(m®°— n®%) is always divisible by 56786730.

Solution: Leta_56786730 23.5.7-11. 13 31-61. LetQ(x y) = xy(x®°—y®0). Observe thatx—y)|Q(x,y), (x*—
YIIQx,Y), (=) [Q(x,y), (X —y"|Q(x,Y), (x®—¥®)|Q(x,y), (x*°—y'9)|Q(x,y), (X —y*)|Q(x,y), and(x** —y*%)|Q(x,y).

If pis any one of the prlmes dividing, the Corollary to Fermat’s Little Theorem yields" —m= 0 modp andnP —
n=0 modp. Thusn(mP—m)—m(nP—n)=0 modp, i.e., mmP~1—nP~1) =0 modp. Hence, we have |thn(m—
n)|Q(m, ), 3jmn(m?—n?)|Q(m,n), 5|mn(m* —n®)|Q(m,n), 7jmn(mP —n®)|Q(m, n), 11mn(m'%—n'%)|Q(m,n), 13 mn(m'?—n'?)|Q(m,n), 31|r
n%)|Q(m, n) and 61mn(mf°— nf%)|Q(m,n). Since these are all distinct primes, we gather #ianQm, n), which is what we
wanted.

218 Example (Putnam 1972) Show that given an odd prim there are always infinitely many integerfor which p|n2"+ 1.

Answer: For any odd primp, taken = (p—1)%*1 k=0,1,2,.... Then

N2+ 1= (p—1)2+L2P-1(P-V* 11— (_1)2+11% 1 1=0 mod p.

219 Example Prove that there are no integers- 1 with n|2" —

Solution: Ifn|2"— 1 for somen > 1, thenn must be odd and have a smallest odd primes a divisor. By Fermat's Little
Theorem, 2=t =1 modp. By Corollary214, ordy2 has a prime factor in common wifh— 1. Now, p|n|2"—1and so 2= 1
modp. Again, by Corollary214, ord,2 must have a common prime factor witl{clearly ord,2 > 1). This means that has a
smaller prime factor thap, a contradiction.

220 Example Let p be a prime. Prove that

1.
(p;l) =(—1)" modp, 1<n<p—1

<p:]—1> =0 modp,2<n<p-1

3. If p#5is an odd prime, prove that eithgy_, or f, 1 is divisible by p.
Solution: (1)(p—1)(p—2)---(p—n) = (—1)(=2)---(—n) = (—1)"n! modp. The assertion follows from this.

@) (p+1)(p)(p—21)---(p—n+2)= (1)(0)(—1)---(—n+2) =0 modp. The assertion follows from this.
(3) Using the Binomial Theorem and Binet's Formula

fn=2n—1_1 ((D +5<g>+52<2>+--->.

(p—1)/2 _
2P2f, 1 =p—1—(5+5%+---+50P 3/ = _ 5#1 mod p.

From this and (1),

Using (2),
2Pfpi1=p+145PV/2=5(P1/21 1 modp.




80 Chapter 7

Thus
2Pf, 1fpr1=5P"1-1 mod p.

But by Fermat's Little Theorem,’51 =1 modp for p 5. The assertion follows.
221 Lemma If a>=1 modp, then eithem=1 modpora=—1 modp.

Proof: We have taz— 1= (a—1)(a+1). Since pis a prime, it must divide at least one of the factotsis T
proves the lemmal

222 Theorem (Wilson's Theorem) If pis a prime, therip—1)! = —1 modp.

Proof: If p=2or p= 3, the result follows by direct verification. So assume that® Considera2<a< p—2.
To each such a we associate its unique invasmodp, i.e. @ =1 modp. Observe that & a since then we
would have &= 1 modp which violates the preceding lemma ag4,a+# p— 1. Thus in multiplying all a in the
range2 < a < p— 2, we pair them of with their inverses, and the net contributidthis product is thereforg. In
symbols,

2-3---(p—2)=1 modp.

In other words,
(p—1)!=1- II i) (p-D=11(p—1)=-1 modp.
2<a<p-2
This gives the result]
223 Example If p=1 mod 4, prove that

(p_;l) !=—1 mod p.
2

Solution: In the productp— 1)! we pair offj,1 < j < (p—1)/2 with p— j. Observe thaj(p—j) = —j° modp. Hence
—1=(p—1) = | I -i#= (fl)w—l)/z(p%l)! mod p.
1<j<(p-1)/2

As (—1)(P~1)/2 = 1, we obtain the result.

224 Example (IMO 1970) Find the set of all positive integerswith the property that the set
{n,n+1,n+2,n+3 n+4n+5}

can be partitioned into two sets such that the product of tmebers in one set equals the product of the numbers in the othe
set.

Solution: We will show that no such partition exists. Supptist we can have such a partition, with one of the subsetadnav
product of its members equal foand the other having product of its members equd.téVe might have two possibilities.
The first possibility is that exactly one of the numbers ingbe{n,n+ 1,n+2 n+3,n+4,n+ 5} is divisible by 7, in which
case exactly one g or Bis divisible by 7, and sé- B is not divisible by 7, and soA- Bis not a square. The second possibility
is that all of the members of the set are relatively prime tlmZhis last case we have

nn+1)---(n+6)=1-2---6=A-B=-1 mod 7

But if A= B then we are saying that there is an inte§esuch thatA?> = —1 mod 7, which is an impossibility, as1 is not a
square mod 7. This finishes the proof.

Practice
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Problem 7.1.1 Find all the natural numbers n for whic
3|(n2"+1).

Problem 7.1.2 Prove that there are infinitely many integerg
with n[2" + 2.

Problem 7.1.3 Find all primes p such that|@P + 1.

Answer: p = 3 only.

Problem 7.1.4 If p and g are distinct primes prove that
pgl(a”i—aP—al-a)

for all integers a.

Problem 7.1.5If p is a prime prove that a° + (p—1)!a for
all integers a.

hProblem 7.1.7 Let p and g be distinct primes. Prove that

g 1+ptt=1 modpg

n
Problem 7.1.8 If pis an odd prime prove thath=n mod 2p
for all integers n.

Problem 7.1.9 If p is an odd prime and |mP + nP prove that
p?|mP 4 nP.

Problem 7.1.10 Prove that n> 1 is a prime if and only if
(n—1)!'=—-1 modn.

Problem 7.1.11 Prove that if p is an odd prime

12.8%. (p—2)2=22 4. (p—1)?=(-1)P"V/2  mod p

Problem 7.1.12 Prove thatl9| (226|<+2 +3) for all nonnegative

Problem 7.1.6 If (mn 42) = 1 prove that168m® —n®.

7.2 Euler's Theorem

In this section we obtain a generalisation of Fermat'’s ¢.ifth
Little Theorem.

225 Theorem (Euler's Theorem)

Proof:
forms a set of incongruent reduced residues. Thus

aay-ad: - adp(n) = a182- - Ag(n)

or

a‘P(n)alaz - Bg(n) = Q@2+ Ag(n)

integers k.

eorem, due to Euler. The proof is analogous to that of &&sm

Let (a,n) = 1. Thena?™ =1 modn.

Let &,ap,...,3yn) be the canonical reduced residuemodn. As(a,n) = 1, aa,ad,...,adyn) also

mod n,

modhn.

As (a132---8y(n),N) = 1, we may cancel the productia@:--a, ) from both sides of the congruence to obtain

Euler's Theorenil

Using Theoren225we obtain the following corollary.
226 Corollary Let(a,n) =1. Then orda|¢(n).

227 Example Find the last two digits of ¥

Solution: Asg(100) = 40, by Euler’s Theorem,8=1 mod

100. Thus

31000 (340)25=125_1 mod 100

and so the last two digits are 01.

228 Example Find the last two digits of 7.
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Solution: First observe thap(100) = ¢(2%)p(5%) = (2% — 2)(5° — 5) = 40. Hence, by Euler's Theorem?*%¥= 1 mod 100.
Now, ¢(40) = ¢(2%)¢(5) =4-4=16, hence ¥ =1 mod 40. Finally, 1008- 16-62+ 8. This means that*??°= (716)%278 =
15278 = (72 =12 =1 mod 40. This means that®°= 1+ 40t for some integet. Upon assembling all this

771000 _ 74 7. (74O)t =7 mod 100

This means that the last two digits are 07.

229 Example (IMO 1978) m,n are natural numbers with 4 m < n. In their decimal representations, the last three digits of
1978" are equal, respectively, to the last three digits of T9Fd m, n such tham+ n has its least value.

Solution: Asm+ n = n—m-+ 2m, we minimisen—m. We are given that
1978'—1978"=1978"(1978" " —1)

is divisible by 1000= 235%. Since the second factor is odd® thust divide the first and sm > 3. Now, ord;»51978 is the
smallest positive integexwith
1976=1 mod 125

By Euler's Theorem
1978%=1 mod 125

and so by Corollary 7.8100. Since 1251978 — 1) we have 51978 —1),i.e.,1978=3°=1 mod 5. Since)|100, this last
congruence implies that= 4,20, or 100. We now rule out the first two possibilities.

Observe that
1978 = (—22)*=2%.11*= (4. 121)>= (-16)°=6 mod 125

This means that # 4. Similarly
1978°=1978". (1978 =6-6*=6-46=26 mod 125

This means that+£ 20 and s&= 100. Sincesis the smallest positive integer with 1281 mod 125, we taka—m=s=100
andm= 3, i.e.,n=103 m= 3, and finallym+n= 106

230 Example (IMO 1984) Find one pair of positive integeesb such that:
(i) ab(a+ b) is not divisible by 7.
(i) (a+b)’—a’—b’ is divisible by 7. Justify your answer.

Solution: We first factoris¢a+b)’ —a’ — b’ asab(a+ b)(a®+ ab+ b?)?. Using the Binomial Theorem we have

(a+b)’—a’—b’ = 7(a®b+ab®+3(a°h?+a’b’) + 5(a’b’+a’b?))

7ab(a’ + b° 4 3ab(a> + b%) 4 5(a%b?) (a+ b))

7ab(a+b)(a*+ b*—a%b—ab®+ a’b?
+3ab(a®— ab+ b?) + 5ab)

= 7abla+b)(a*+b*+2(a%b+ab’) + 3a’b?)

= 7ab(a+b)(a®+ab+b?)>.

The given hypotheses can be thus simplified to
(i) ab(a+b) is not divisible by 7
(i) @® +ab+ b? is divisible by 7.

As (a+b)? > a? 4 ab+b? > 73, we obtaina+b > 19. Using trial and error, we find that = 1,b = 18 give an answer, as
12+1-184 18 =343="75.
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Let us look for more solutions by means of Euler's Theorema#hs b® = (a— b)(a + ab+b?), (i) is implied by

(i) a®=b® mod 7P
azb mod 7

Now ¢(7%) = (7—1)7? = 3-98, and so ifx is not divisible by 7 we havex®®)® = 1 mod 7, which gives the first part of (ii)".
We must verify now the conditions of non-divisibility. Fokample, lettingx = 2 we see that¥® = 4 mod 7. Thus letting
a=2% b=1. Lettingx = 3 we find that 38 = 324 mod ?. We leave to the reader to verify that= 324 b = 1 is another
solution.

Practice

Problem 7.2.1 Show that for all natural numbers s, there|i®roblem 7.2.7 Find the last two digits of @o1if a1 =7,a, =
an integer n divisible by s, such that the sum of the digits pF7fr-1.
equals s.

Problem 7.2.8 Find the remainder of
Problem 7.2.2 Prove that504n°—n.
1019410 + ... 4+ 1010
Problem 7.2.3 Prove that for odd integer i+ O, n|(2”! —1).
upon division byr.

Problem 7.2.4 Let p /10 be a prime. Prove that p dividgs
infinitely many numbers of the form Problem 7.2.9 Prove that for every natural number n there
exists some power @& whose final n digits are all ones and
11...11 WOS.

Problem 7.2.5 Find all natural numbers n that divide Problem 7.2.10 (USAMO 1982)Prove that there exists a

1"+ 2" 4 (n—1)". posit?ve _integer k such that-R" + 1 is composite for every
positive integer n.

Problem 7.2.6 Let (m,n) = 1. Prove that
Problem 7.2.11 (Putnam 1985)Describe the sequence &
m?™ 4+ n?M =1 mod mn 3,a, =3%1 mod 100for large n.
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Scales of Notation

8.1 The Decimal Scale

As we all know, any natural numbarcan be written in the form
n=apl0+a10 1+ .- +a 110+ a,

where 1< ay < 9,0< a; < 9,j > 1. For example, 65789 6-10* +5-10°+ 7-10° 4 8- 10+ 9.

231 Example Find all whole numbers which begin with the digit 6 and desee25 times when this digit is deleted.

Solution: Let the number sought hawe- 1 digits. Then this number can be written asl6" +y, wherey is a number witm
digits (it may begin with one or several zeroes). The coaditf the problem stipulates that

6-10"+y=25.y

whence
_6-10°
=24
From this we gather that> 2 (otherwise, 610" would not be divisible by 24). Far> 2,y = 25.102, that is,y has the form
250---0(n— 2 zeroes). We conclude that all the numbers sought have tire@®5 0...0 .

n—2 zeroes

232 Example (IMO 1968) Find all natural numbers such that the product of their digits (in decimal notatioghialsx® —
10x—22.

Solution: Letx have the form

x=ag+a;104+ a1 +---+a, 110", a <9,a, 1 #0.
Let P(x) be the product of the digits of P(x) = x* — 10x— 22. Now, P(x) = aga; - - an—1 < 9" *a,_1 < 10" ta,_1 < x (strict
inequality occurs wher has more than one digit). S8 — 10x— 22 < x, and we deduce that< 13 whencex has either one
digit orx= 10,11, 13. If x had one digit, themy = x* — 10x— 22, but this equation has no integral solutionsx  10,P(x) =0,

butx? —10x— 22 0. If x=11,P(x) = 1, butx? — 10x— 22+ 1. If x=12,P(x) = 2 andx?® — 10x— 22 = 2. Thereforex = 12
is the only solution.

233 Example A whole number decreases an integral number of times whégsitsligit is deleted. Find all such numbers.

84
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Solution: Let 0<y <9, and 1&+Yy = mx mandx natural numbers. This requires 3¥/x=m, an integer. We must have
x|y. If y =0, any natural numbecwill do, and we obtain the multiples of 10. yf=1 x= 1, and we obtain 11. l[f=2 x=1
or x =2 and we obtain 12 and 22. Continuing in this fashion, the Bbngmbers are: the multiples of 1, 1213, 1415,
16,17, 1819,2224, 2628, 3336, 3944, 4855, 6677,88, and 99.

234 Example LetA be a positive integer, aml be a number written with the aid of the same digits with ararsged in some
other order. Prove that &+ A’ = 10'°, thenA is divisible by 10.

Solution: ClearlyA andA’ must have ten digits. Lé% = ajag...a; be the consecutive digits @fandA’ = ajyay...a;. Now,
A+A =10"ifand onlyifthereis §,0 < j <9 forwhichay + & =ap+ay=---=aj+a, =0,aj,1+a, ;=108 2+ , =
aj+3+a’j+3 =...=ajo+ajy= 9. Notice thatj = 0 implies that there are no sums of the foquk—i—a’Hk,k >2,andj=9
implies that there are no sums of the foam+ a/,1 < | < j. On adding all these sums, we gather

a+a+a+a+--+ap+ajg=10+9(9—j).

Since theg are a permutation of tha, we see that the sinistral side of the above equality is tea eumber a3 +a,+--- +
ajp). This implies thatj must be odd. But this implies thaf +a} = 0, which gives the resuilt.

235 Example (AIME 1994) Given a positive integen, let p(n) be the product of the non-zero digitsmf (If n has only one
digit, thenp(n) is equal to that digit.) Let
S=p(1)+p(2)+---+ p(999).

What is the largest prime factor &?

Solution: Observe thaton-zeradigits are the ones that matter. So, for example, the nunil@€s108, 118, 810, 800, and 811
have the same valygn).
We obtain all the three digit numbers from 001 to 999 by exjpamthe product

(0O+1+2+---+9°-0,
where we subtracted a 0 in order to eliminate 000. Thus
(0+1+2---+9)°—0=001+ 002+ - - -+ 999

In order to obtaim(n) for a particular number, we just have to substitute the (ptejszeroes in the decimal representation, by
1's, and so

P(1)+p(2) +---+p(n) =111+ 112+ +999= (1 +1+2+---+ 93— 1,
which equals 48— 1. (In the last sum, 111 is repeated various times, once for @de for 011, once for 100, once for 101,
once for 110, etc.) As #6- 1 =3°.5.7.-103 the number required is 103.

236 Example (AIME 1992) Let Sbe the set of all rational number® < r < 1, that have a repeating decimal expansion of the
form L
O.abcabcabc.. = 0.abg

where the digits, b, c are not necessarily distinct. To write the elementS a$ fractions in lowest terms, how many different
numerators are required?

Solution: Observe that.@bcabcabc.. = g%;, and 999= 3°. 37. If abcis neither divisible by 3 nor 37, the fraction is already
in lowest terms. By the Inclusion-Exclusion Principle,rthare

999— (999/3+999/37) + 999/3- 37= 648

such numbers. Also, fractions of the fogf87, where 3s,37 fsare inS. There are 12 fractions of this kind. (Observe that we
do not consider fractions of the foriyi3!,37|s,3 Ji, because fractions of this form are greater than 1, and thiis 1%
The total number of distinct numerators in the set of redutions is thus 64@- 12 = 660.




86 Chapter 8

237 Example (Putnam 1956) Prove that every positive integer has a multiple whose dalciepresentation involves all 10
digits.

Solution: Letn be an arbitrary positive integer withdigits. Letm = 123456789101. Then all of then consecutive integers
m+1,m+2,...m+n begin with 1234567890 and one of them is divisiblerby

238 Example (Putnam 1987) The sequence of digits
12345678910111213141516171819202122

is obtained by writing the positive integers in order. If th@ digit of this sequence occurs in the part in which theligit
numbers are placed, defirfén) to bem. For examplef(2) = 2, because the hundredth digit enters the sequence in the
placement of the two-digit integer 55. Find, with pro6f1987).

Solution There are 910/ ~1j-digit positive integers. The total number of digits in nuenbwith at most digits is g(r) =

Zj 9.101-rg -0 -1 As 0< 10—

1 < 10, we get(r —1)10 < g(r) < r10. Thusg(1983 < 1983103 <

104 10'983= 10'%8"andg(1984) > 1983 10'984> 10°. 10'°8* Thereforef (1987 = 1984

Practice

Problem 8.1.1 Prove that there is no whole number which déRrroblem 8.1.7 Let t be a positive real number. Prove that
creases35times when its initial digit is deleted. there is a positive integer n such that the decimal expansion
of nt contains &.

Problem 8.1.2 A whole number is equal to the arithmetic
mean of all the numbers obtained from the given number iMthoblem 8.1.8 (AIME 1988) Find the smallest positive inte-
the aid of all possible permutations of its digits. Find alele | ger whose cube ends 888

numbers with that property.

Problem 8.1.9 (AIME 1987) An ordered pair(m,n) of non-
Problem 8.1.3 (AIME 1989) Suppose that n is a positive ipnegative integers is callesimpleif the addition mfn requires
tegeranddis a single digit in base-ten. Find n if no carrying. Find the number of simple ordered pairs of non-

negative integers that sui#92

W) = 0.d25d25d25025. .

Problem 8.1.10 (AIME 1986) In the parlor game, the “ma-
Problem 8.1.4 (AIME 1992) For how many pairs of conseg-gician” asks one of the participants to think of a three-digi
utive integers in number abc, where &, c represent the digits of the number
in the order indicated. The magician asks his victim to form
{100Q100%,...,2000} the numbers aclbac cab and cba, to add the number and to
reveal their sum N. If told the value of N, the magician can

. . . . "
is no carrying required when the two integers are added identity abc. Play the magician and determine abc #1819,

Problem 8.1.5 Let m be a seventeen-digit positive integer d@roblem 8.1.11 The integer n is the smallest multiple b5
let N be number obtained from m by writing the same dig|tsS ch that every digit of n is eithéror 8. Compute R15.
reversed order. Prove that at least one digit in the decin A fydg P

representation of the number MN is even.

Problem 8.1.12 (AIME 1988) For any positive integer k, let
. f1(k) denote the square of the sums of the digits of k. For
Problem 8.1.6 Given that N> 2, let fa(K) = f1(fr_1(K)). Find froge(11).

1.1 1
e2++++

2 3 Problem 8.1.13 (IMO 1969) Determine all three-digit num-
prove that e is irrational. bers N that are divisible b§1 and such that N11 equals the
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sum of the squares of the digits of N Problem 8.1.16 A Liouville numberis a real number x such
that for every positive k there exist integers a and B, such

Problem 8.1.14 (IMO 1962) Find the smallest natural nunf-that

ber having last digit i$ and if this6 is erased and put in front Ix—a/b| < bk,
of the other digits, the resulting number is four times agédr
as the original number. Prove or disprove thatt is the sum of two Liouville numbers.

Problem 8.1.15 1. Show thaChampernowne’s number Problem 8.1.17 Given that
X =0.123456789101112131415161718192021

is irrational 1/49=0.02040816326530612244897959183673469387,7551

2. Letre Qand lete > 0 be given. Prove that there exist§ing the last thousand digits of
a positive integer n such that

110" —r| < &. 1450+ 50%+ - +50°.

8.2 Non-decimal Scales

The fact that most people have ten fingers has fixed our scaletafion to the decimal. Given any positive integer 1, we
can, however, express any number in lrase

239 Example Express the decimal number 5213 in base-seven.

Solution: Observe that 5213 7°. We thus want to find & ay, ..., as < 6,a4 # 0, such that
5213=as7* + as7® + a7 + a1 7+ ao.

Now, divide by 7 to obtain
2+ proper fraction= a4 + proper fraction

Sinceaq is an integer, it must be the case that= 2. Thus 5213-2-7% = 411=a37° + ay7° + a17 + ao. Dividing 411 by 7
we obtain
1+ proper fraction= az + proper fraction

Thusaz = 1. Continuing in this way we deduce that 522321125,
240 Example Express the decimal number /1% in base-six.

Solution: Write

Multiply by 6 to obtain
4+ proper fraction= a; + proper fraction

Thusa; = 4. Hence 1316—4/6=7/48= % + % +.... Multiply by 62 to obtain
5+ proper fraction= a, + proper fraction

We gather thas, = 5. Continuing in this fashion, we deduce that/18 = .4513.
241 Example Prove that 41 is a perfect square in any scale of notation.

Solution: If 4.41 is in scale, then
4 1 1\?
441=4+ -+ = 2+=) .
rr r
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242 Example Let ||x| denote the greatest integer less than or equal Boes the equation
L]+ (12| + [[4x]) + [[8x]] + |[16x]| + || 32x|| = 12345

have a solution?

Solution: We show that there is no suchRecall that] x|| satisfies the inequalities— 1 < ||x|| < x. Thus
X—14+2X—1+4+4x—1+---+32%—1 < x|+ I2X] + 4] + |I8X]|
+[116x] + [ 32x]]
< X+ 2X+ 44X+ -+ 32X

From this we see that &3-6 < 12345< 63x. Hence 195< x < 196.
Write thenx in base-two:

a a a
X—195+?+?+¥+...,
with ax =0 or 1. Then
2] = 2-195+ay,
l4x] = 4-195+2a;+ay,
18x]| = 8-195+4a;+ 2ay+ ag,
|16x|| = 16-195+ 8a;+ 4ay+ 2a3+ au,

32| = 32-195+ 16a;+ 8ap+4ag+ 284+ as.

Adding we find that| x|| + || 2x]| + [|4x]| + || 8x]| + || 16x|| + || 32x|] = 63- 195+ 31a; + 15a, + 7az+ 3as +as, i.e. 31a; +15a,+
Tag+ 3a4+ a5 = 60. This cannot be becaused3¥ 15a,+ 7az+ a4+ a5 < 31+ 15+ 7+ 3+ 1=57< 60.

243 Example (AHSME 1993) Given 0< xp < 1, let

. { 2Xn—1 if2xh_1<1

for all integersn > 0. For how manyxg is it true thatxg = x5?

Solution: Writexg in base-two,

— an
Xo = Z on 81 = Oorl
k=1
The algorithm given just moves the binary point one unit te tight. Forxg to equalxs we need (yayazaqasagay... =
0.agazagagaipag1ai2- - .- This will happen if and only iky has a repeating expansion wike,azasas as the repeating block .
There are 2= 32 such blocks. But ify =a, = --- = a5 = 1, thenxg = 1, which is outsidg0,1). The total number of values
for whichxg = xs is thus 32-1=31.

244 Example (AIME 1986) The increasing sequence
1,3,4,9,10,12/13,...
consists of all those positive integers which are powers of 8ums distinct powers of 3. Find the hundredth term of the
sequence.
Solution: If the terms of the sequence are written in bagbey; comprise the positive integers which do not contairdifé
2. Thus, the terms of the sequence in ascending order are thus
1,10,11,100,101,110111......

In the binary scale, these numbers are, of course, 1, 2, 3, .... To ob@ihG8-th term of the sequence we just write 100 in
binary 100= 1100100 and translate this into ternary: 11003693% 4 3°+ 32 =981

Practice
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Problem 8.2.1 (Putnam, 1987)For each positive integer 1
let a(n) be the number of zeroes in the base-three repre
tation of n. For which positive real numbers x does the ser|
1 !

(n)
3
converge?

Problem 8.2.2 Prove that for xc R,x > 0, one has

(_gﬁ =1-2(x—[x]))-

n=1

Problem 8.2.3 (Putnam, 1981)Let E(n) denote the largest
such tha¥ is an integral divisor ofl’223%...n". Calculate

Problem 8.2.4 (AHSME, 1982)The base-eight represent
tion of a perfect square is & with as 0. Find the value
of c.

Problem 8.2.5 (Putnam, 1977)An  ordered triple  off
(X1,X%2,x3) of positive irrational numbers withpd X, +x3 =1
is called balanced if x< 1/2 for all 1 < n < 3. If a triple
is not balanced, sayjx> 1/2, one performs the followin
“balancing act”;

,where X = 2x; if x; # xj and ¥ = 2x; — 1. If the new triple
S&nnot balanced, one performs the balancing act on it. Does
exontinuation of this process always lead to a balanced eripl
after a finite number of performances of the balancing act?

Problem 8.2.6 Let C denote the class of positive integers
which, when written in base-three, do not require the digit
Show that no three integers in C are in arithmetic progressio

Problem 8.2.7 Let B(n) be the number of’s in the base-two
expansion of n. For example,(® = B(11%,) = 2,B(15) =
B(111%) = 4.

1. (PUTNAM 1981)Is

exp (i
n=1

a rational number?

B(n)
n2+n

2. (PuTNAM 1984)Express
i

2m—1

D

n=0

71)B(n)nm

in the form (—1)™af(™ (g(m))! where a is an integer
and f,g are polynomials.

Y
Problem 8.2.8 What is the largest integer that | should be

permitted to choose so that you may determine my number in

B(XL X2, X3) = (X,lv X,27 X,3)7

8.3 A theorem of Kummer

We first establish the following theorem.

twenty “yes” or “no” questions?

245 Theorem (Legendre) Let p be a prime and let = agp® +a; p* 1 +--- +ac_1p+ a be the base expansion oh. The

exact power m of a prime p dividing is given by

m— N~ (80

apt---ta

p—1

Proof: By De Polignac’s Formula

m:Zu%ﬂ.
k=1
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Now, [[n/p] = aop* ' +ap“ %+ - a_op+ a1, [In/P?] = aop 2 +arp 3+ +ac ..., [In/p]| = a0

Thus .
S/ = aoll+p+p+-+p N Fa(l4p+pi+- -+
k=1
coF a1l a ,
p<— pt-1 pP-1 _p-1
T e L
_ aoptaptt o tac(atat o tal
_ —
_ n—(aota+--+a
_ 1 ,
as wanted.

: s . . .. [a+b\.
246 Theorem (Kummer's Theorem) The exact power of a primp dividing the binomial coefﬁmen( —g > is equal to the

number of “carry-overs” when performing the additionegb written in basep.

Proof: Leta= ao+a1p+---+akpk,b: bo+blp+---+bkpk,0§ aj,bj <p—1,and a+bx>0. Let § =
k k
> a;,S%=> bj. Letg,0<cj < p—1 andg =0or 1, be defined as follows:
j=0 j=0
3+ bo = &P+ Co,
+ait+by=¢&p+cy,
g +axt+hby=ep+cy,
-1+ a+ b = &Pp+Ck.

Multiplying all these equalities successivelyhy, p?, ... and adding them:

a+b+ep+eap’+..+ta1pt = epteap’+...+acipt+eaptt
+Co+C1p+ -+ opk '

We deduce that@b=co+cip+- -+ ckp“+ &p“*L. By adding all the equalities above, we obtain similarly:
S+S+(eoteat - t+aca)=(otat - +a)pt+Sarp— &
Upon using Legendre’s result from above,
(p—1m=(a+b)—Sp—a+S—b+S=(p—1)(eo+e+ - +&),

which gives the resulil
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Miscellaneous Problems

247 Example Prove that

diverges.

Solution: Let.% denote the family consisting of the integer 1 and the pasititegersh all whose prime factors are less than
or equal tox. By the Unique Factorisation Theorem

11 (1+;+ + - ) Z— (9.1)

p<x ne.%y
p prime

Now, L L
POED D
ne %y n<x
As the harmonic series diverges, the product on the sih&tta of 2.3.3 diverges as— «. But

11 1
11 <1+l_3+?+m>: > I—D+O(1).

p<x p<x
p prime p prime
This finishes the proof.

248 Example Prove that for each positive integethere exist infinitely many even positive integers which barnwritten in
more thark ways as the sum of two odd primes.

Solution: Letay denote the number of ways in whick 2an be written as the sum of two odd primes. Assumeahat C Vk

for some positive constaft Then
2

Z xP Zakx2k<C1X4X2

p>2
p prime
This yields
DO R o
\/1 X2
p>2
p prime

91
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Integrating term by term,

1 Lox
R e

p>2
p prime

But the leftmost series is divergent, and we obtain a coittiad.

249 Example (IMO 1976) Determine, with proof, the largest number which is the pridif positive integers whose sum is
1976.

Solution: Suppose that
at+ax+---+an=1974
n
we want to maximisq_[ ax. We shall replace some of tlag so that the product is enlarged, but the sum remains the $yne.
k=1
the arithmetic mean-geometric mean inequality

n 1/n
(Hak> QutEtote

k=1

with equality if and only ifa; = a, = - -- = a. Thus we want to make tha as equal as possible.

If we have argy > 4, we replace it by two numbers & — 2. Then the sum is not affected, bugR— 2) > ax, since we are
assuminga, > 4. Therefore, in order to maximise the product, we must take 2 orax = 3. We must take as many 2's and
3's as possible.

Now, 2+ 2+ 2 =3+ 3, but 2 < 32, thus we should take no more than two 2’s. Since 1986658+ 2, the largest possible
product is 2 35%8

250 Example (USAMO 1983) Consider ampeninterval of length ¥non the real line, wherris a positive integer. Prove that
the number of irreducible fractiorsg’b, 1 < b < n, contained in the given interval is at mdst+ 1) /2.

Solution: Divide the rational numbers [, x+ 1/n) into two sets:{t%},k =1,2,...,r, with denominators K ty < n/2 and

thoseuy /v, k =1,2,...,s with denominators/2 < vx < n, where all these fractions are in reduced form. Now, for yter
there are integer such than/2 < ¢ty < n. Defineus k = CkSk, Vsk = Ciktk, Yk+r = Uktr/Vik+r- NO two of they, 1 <I <r+s
are equal, for otherwisg =y would yield

|uk/Vk—ui/vi| > 1/vi > 1/n,
which contradicts that the open interval is of lengfim1Hence the number of distinct rationalsis s<n—||n/2] < (n+1)/2.

Aliter: Suppose to the contrary that we have at lédst+ 1)/2|| + 1 = a fractions. Lets,,t,1 < k < a be the set of
numerators and denominators. The set of denominators iss&tof

{1,2,...,2(a—1)}.
By the Pigeonhole Principlé |tk for somei, k, sayty = mf. But then
|/t —si/ti] = Mg —s¢|/t > 1/n,
contradicting the hypothesis that the open interval is ofta 1/n.

251 Example Let

(rs)!
ris! -

Qrs=

Show thatQ; ps= Qrs mod p, wherep is a prime
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Solution: As

and

it follows from

(14x)0P 1= (14 xP) (14 x)P 1

that

jps—1
ps—1

(

whence the result.

Practice

js—1
s—1

mod p

) mod p,

Problem 9.0.1 Find a four-digit number which is a perfe¢tProblem 9.0.8 Determine two-parameter solutions for the

square such that its first two digits are equal to each o
and its last two digits are equal to each other.

Problem 9.0.2 Find all integral solutions of the equation
X
> K=y
k=1

Problem 9.0.3 Find all integral solutions of the equation

k=1

&@lmost” Fermat Diophantine equations

anl_i_ynflzzn’
Xn+1+yn+lzzn’
xn+1+yn*1:zn,

Problem 9.0.9 (AIME 1984) What is the largest even integer
which cannot be written as the sum of two odd composite num-
bers?

Problem 9.0.10 Prove that are infinitely many nonnegative

Problem 9.0.4 (USAMO 1985)Determine whether there afejntegers n which cannot be written as=x? +y* + 2 for non-

any positive integral solutions to the simultaneous eaureti
XX+ +Xloas =Y
XX+ + Xggs =2

with distinct integers X X, . .., X1985

Problem 9.0.5 Show that the Diophantine equation
1 1 1 1
—+—+...+ +—+

a a dh—1 an Qqaz---an

has at least one solution for everyaN.

Problem 9.0.6 (AIME 1987) Find the largest possible valy
of k for which3!! is expressible as the sum of k consecu
positive integers.

Problem 9.0.7 (AIME 1987) Let .# be the smallest positiV|
integer whose cube is of the formHr, where ne N0 < r <

negative integers,y, z.

Problem 9.0.11 Find the integral solutions of
X +x=Y'+y +y+y.

Problem 9.0.12 Show that there are infinitely many integers
X,y such that

A —T7y? =—1.

Problem 9.0.13 Prove that

e
live 1.

D

1/1000Q Find n.

a’+b3+c—3abc= (a+b+c)(a®+b’+c?—ab—bc—ca).

2. Find integers ab,c such that1987= a°+b® + ¢ —
3abc
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3. Find polynomials R, R in xy,z such that

PP+ Q@+ RP—3PQR= (° + Y3+ Z — 3xy2)?

4. Canyou find integers, b, c with 1987 = a®+ b +c%—
3abc?

Problem 9.0.14 Find all integers n such thatn+n+7is a
perfect square.

Problem 9.0.15 Prove that1991%%%s not the sum of two pe
fect squares.

Problem 9.0.16 Find infinitely many integersx 1,y > 1 z>
1 such that

xlyl =2.

Problem 9.0.17 Find all positive integers with

m'—nM=1.

Problem 9.0.18 Find all integers with
X*r—2y?=1.

Problem 9.0.19 Prove that for every positive integer k thg
exists a sequence of k consecutive positive integers no
which can be represented as the sum of two squares.

Problem 9.0.20 (IMO 1977) In a finite sequence of real nur
bers, the sum of any seven successive terms is negativée|
sum of any eleven successive terms is positive. Determen
maximum number of terms in the sequence.

Problem 9.0.21 Determine an infinite series of terms su
that each term of the series is a perfect square and the
of the series at any point is also a perfect square.

Problem 9.0.22 Prove that any positive rational integer c§
be expressed as a finite sum of distinct terms of the harn

Problem 9.0.23 (Wostenholme’s Theorem) et p> 3 be a

prime. If

9'714_}_;’_1'4_ +i
b~ ""2"3 p—1’

then ff|a.

Problem 9.0.24 Prove that the number of odd binomial coef-
ficients in any row of Pascal’s Triangle is a poweraf

Problem 9.0.25 Prove that the coefficients of a binomial ex-
_pansion are odd if and only if n is of the for2h— 1.

Problem 9.0.26 Let the numbers;de defined by the power
series identity

(14 X+X4 - +xP 1) /(1—x)P =14 cox+ P+ - - .

Showthatc=0 mod pforalli> 1.

Problem 9.0.27 Let p be a prime. Show that

(")

foral 0<k<p-—1.

(—1)% mod p

Problem 9.0.28 (Putnam 1977)et p be a prime and let a2
® > 0 be integers. Prove that
a

he of
pay
(8)-(6) e
]_

hgioblem 9.0.29 Demonstrate that for a prime p andN,
eth K

PY) = 0 modp

a - k)

Cfor 0 < a< p~.
sum

Problem 9.0.30Let p be a prime and let,h e N0 < a<
p“— 1. Demonstrate that

onic =(-1)* mod p.

series,1,1/2,1/3,....

l
p-1
a
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