
Moving from Logical to Physical Data Models 421

the associations are going to be maintained from a technical standpoint. In a rela-
tional database, for example, an association between two tables is maintained by a
technique referred to as a foreign key. A foreign key is the primary key field(s)
from one table that is repeated in another table to provide a common field between
the two tables. The common field contains values that match a record in one table
to a record in the other. For example, if we were to create two tables called Cus-
tomer and Order that were related to each other, we could include the primary key
field from Customer (cust_id) in the Order table as well. In this way, if we want to
find out customer information (e.g., name, address, phone number) when looking
at someone’s order, we can use the value for cust_id that appears in the Order table
to go back to the Customer table to locate the appropriate information.

Thus, on the physical ERD, the primary key fields in the parent tables (the “1”
end of the relationship) are copied and placed as fields in the child tables (the
“many” end of the relationship) and designated as foreign keys. The fields will con-
tain values that are common between the two tables. Many times, the CASE tools
that are used to draw ERDs will “migrate” foreign keys to the appropriate tables on
the model automatically, and the database technology will ensure that the values in
the two fields match appropriately, helping to ensure referential integrity.

Step 5: Add System-Related Components As the fifth and final step, components
are added to the physical ERD to reflect special implementation needs, including
components that were included on the DFD. We have mentioned balance between
DFDs and ERDs in earlier chapters, and this balance must be maintained in the
physical models as well. Therefore, implementation-specific data stores and data
elements from the physical DFD should be included on the ERD as tables and
fields. For example, in Figure 10-2 we added the Tune to buy history data store to
the physical DFD to serve as a “backup” for tunes that are sent to the purchase tunes
process. Now we will need to add a tune to buy batch history file to the physical
ERD model along with its fields and relationships.

Revisiting the CRUD Matrix

As discussed in Chapter 6, it is important to verify that the system’s DFD and ERD
models are balanced. In other words, we must ensure that data needed in the sys-
tems processes are stored and that all stored data are used by at least one process.
The CRUD matrix was introduced in Chapter 6 as a tool showing how data are used
by processes in the system.

Often the CRUD matrix is created during analysis on the basis of the logical
process and data models. In design, as these models are converted to physical mod-
els, changes in the form of new processes, new data stores, and new data elements
may occur. The CRUD matrix should be revised at this point to include the new com-
ponents and ensure that balance is maintained between the physical ERD and DFDs.

If the CRUD matrix was not developed during analysis, it should be devel-
oped now prior to implementation. The matrix shows exactly how data are used and
created by the major processes in the system, so it serves as a very useful compo-
nent of the system design materials.

Applying the Concepts at Tune Source

Let us now apply some of the concepts that you have learned by creating a physical
ERD, using the logical ERD that was created in Chapter 6.

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 421

Vivine
Highlight

When we use the logical model as a starting point, the first step is to rename the
entities to match with the tables or files that will be used by the system (Figure 11-13).
Outwardly, the data model does not look very different after this step, but notice that
several entities have been renamed to be consistent with Tune Source’s table naming
standards. At this time, we will need to include metadata for the tables, such as their
estimated size.

Next, the attributes for the entities become fields with such characteristics as
data type, length, and valid values, and this is recorded in the CASE repository. For
example, CUS_state in the CUSTOMER table will be a text field with a size of two

422 Chapter 11 Data Storage Design

FIGURE 11-13
Tune Source Physical ERD

TUNES

*TUN_ID: VARCHAR(8)
TUN_title: VARCHAR(30)
TUN_artist: VARCHAR(25)
TUN_genre: VARCHAR(20)
TUN_length: TIME
TUN_price: DECIMAL(5,2)
TUN_mp3short: OBJECT
TUN_mp3full: OBJECT

CUSTOMER

*CUS_number: VARCHAR(8)
CUS_lastname: VARCHAR(25)
CUS_firstname: VARCHAR(30)
CUS_address: VARCHAR(100)
CUS_city: VARCHAR(30)
CUS_state: CHAR(2)
CUS_zipcode: VARCHAR(9)
CUS_phone: VARCHAR(10)
CUS_email: VARCHAR(50)
CUS_username: VARCHAR(30)
CUS_password: VARCHAR(30)

TUNESALES

*SAL_number: VARCHAR(8)
 SAL_date: DATETIME
CUS_username: VARCHAR(30) FK
 TUN_ID: VARCHAR(8) FK

*TUN_ID: VARCHAR(8) FK
*FAV_dateadded: DATETIME

CUSFAVS

*CUS_number: VARCHAR(8) FK
*TUN_ID: VARCHAR(8) FK
*INT_datecreated: DATETIME

CUSINTS

*CUS_number: VARCHAR(8) FK

targets

is targeted by

creates

is created by

specifies

is specified in

purchases

is purchased in

lists

is listed by

includes

is included in

promotes

is promoted by

makes

is made by

PROMOTIONS

*PRO_code: VARCHAR(8)
CUS_number: VARCHAR(8) FK
TUN_ID: VARCHAR(8) FK
PRO_price: DECIMAL(5,2)
PRO_term: NUMBER(3)

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 422

Moving from Logical to Physical Data Models 423

characters, and valid values are the 50 two-letter state abbreviations. If most cus-
tomers at Tune Source live in the state of California, then it may be worthwhile to
make CA the default value for this field. However, since this is an Internet-based
system, this assumption may not be valid. Figure 11-14 is an example of the CASE
repository entry for the CUS_state field.

Step 3 suggests that we change the identifiers in the logical ERD to become
primary keys, and entities without identifiers need to have a primary key created.
At this time, we also can decide to use a system-generated primary key if it is more
efficient than using logical attributes from the logical model.

The relationships on the logical ERD indicate where foreign key fields need
to be placed. For example, CUS_number is placed as a field in TUNESALES to
serve as the link between two entities, and TUNESALES gets the extra field
because it is the child table (it exists at the “many” end of the relationship). Simi-
larly, TUN_ID is placed in the TUNESALES table.

Finally, system-related components are included within the model. For exam-
ple, fields that will capture when a record was last inserted or updated were added
to many of the tables.

The project team also updated the CRUD matrix for the system. Figure 11-15
shows the CRUD matrix that was created for the Tune Source search and browse
tunes process. Look at the original process models, and notice how the first process
is merely reading information from data stores. This is illustrated on the CRUD
matrix by an “R” placed in the relevant intersections of the matrix. Can you tell how
data are used by the remaining processes?

FIGURE 11-14
Computer-Aided Software Engineering Repository Entry for cus_state Field

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 423

OPTIMIZING DATA STORAGE

The selected data storage format is now optimized for processing efficiency. The
optimization methods will vary with the format that you select; however, the basic
concepts will remain the same. Once you understand how to optimize a particular
type of data storage, you will have some idea as to how to approach the optimiza-
tion of other formats. This section focuses on the optimization of the most popular
data storage format: relational databases.

There are two primary dimensions in which to optimize a relational data-
base: for storage efficiency and for speed of access. Unfortunately, these two
goals often conflict because the best design for access speed may take up a great
deal of storage space as compared with other less speedy designs. This section
describes how to use normalization (Chapter 6) to optimize data storage for stor-
age efficiency. The next section presents design techniques, such as denormal-
ization and indexing, that will quicken the performance of the system. Ultimately,
the project team will go through a series of trade-offs until the ideal balance
between both optimization dimensions is reached. Finally, the project team must
estimate the size of the data storage needed to ensure that there is enough capacity
on the server(s).

424 Chapter 11 Data Storage Design

1.1 Load Web

Site

1.2 Process

Search Requests

1.3 Process

Tune Selection

PROMOTIONS

R

R

R

R

PRO_code

CUS_number

R

R

R

R

C

C

C

C

C

C

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

TUN_ID

PRO_price

PRO_term

CUS_number

CUSFAVS

TUN_ID

FAV_dateadded

TUNES

TUN_ID

TUN_title

TUN_artist

TUN_genre

TUN_length

TUN_price

TUN_mp3short

TUN_mp3full

CUSINTS

INT_datecreated

TUN_ID

CUS_numberFIGURE 11-15
CRUD Matrix for Search and Browse
Tunes Process

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 424

